
Version 3.0

FBOpt - The Database Optimiser

...

Introduction

Requirements and

Installation

Running FBOpt

Modes of Work

Scanning database content

for later analysis

Creating optimized copy of

the database

Creating a simple copy of

the database

Data pump

Database structure

upgrade and downgrade

Converting database to

new character set

Parallel operations

Introduction

IBPhoenix FbOpt is a command-line tool for optimising Firebird databases. The

tool addresses some aspects of the internal structure of databases that the

Firebird engine itself cannot rectify, and some issues that survive even a backup

and restore with gbak.

Beside optimization, FBOpt can be also used to upgrade or downgrade databases

between Firebird versions (ODS structures), convert databases to new default

character set, or to create regular gbak database backups with simultaneous
restore.

FBOpt can run on 64-bit versions of Windows and Linux, and requires at least the

client part of 64-bit version of Firebird 3 or newer to be installed on machine

where you want to run it.

3 of 21

http://www.ibphoenix.com/

Internal Database Structure
Ef�ciency of the internal database structure plays an important role in the performance

of the Firebird engine. The layout of internal structures has a direct impact on the

complexity and speed of operations needed for processing them, which translates to

utilisation of CPU and memory. Data distribution has a primary impact on the number of

I/O operations and on cache utilisation. While the layout of data structures is �xed in the

code, data distribution is variable, depending on the actual operations performed on the

database. In current Firebird implementations, the engine pays only minimal attention to

the storage and distribution of both user and internal data. The engine’s primary focus is

on the speed of the current operation, rather than the overall balanced performance.

Over time this can lead to degradation of performance as the internal database layout

becomes progressively less ef�cient.

Eventually the drop in performance requires intervention which, for Firebird, means a

rebuild of the database from a logical backup (gbak). However, restore from backup �xes

only the following problems, namely:

Row fragmenta�on, so each row is stored on single page (if a single row is not bigger than
database page)
Table and index fragmenta�on, data and index pages are compacted to hold as much data as

possible, and all pages that belong to single database table or index are stored consecutively.

It does not address the following issues:

Index clustering: jumps to different data pages while walking through an index

Data density on data pages: all data pages could be either highly packed or have space reserved
for updates

Physical loca�on of user data and index structures: all user data is stored �rst, in creation order,
then all the indices are added
Preven�on of data fragmenta�on

FBOpt was designed and built to solve all these problems.

Physical Order of Rows

Specifying the order of rows can signi�cantly improve performance for queries that read

data in a range of key values or in a given key order.

If there is an index with the same key, it has the highest possible “clustering factor” and

there are no unnecessary jumps to different data pages while walking through the index.

Any potential loss of performance from using such an index for returning data in key

order, rather than internal sort order, is eliminated.

With FBOpt, you can specify one such index for each table.

Space Reservation

Specifying the space reservation level for individual tables allows the option to mark

tables that do not change for higher storage density while keeping necessary space

reserved for tables that are frequently updated. High data density saves disk space and

increases query performance by reducing the number of I/O operations.

Physical Order of Tables and Clustering

Specifying the physical order of tables in a database allows storage of tables with static

data before tables that are updated or extended, so the volatile part of the database is at

the end of the �le. Combining this with table clustering makes it possible to keep static

data more or less separated from volatile data which, over time, helps reduce the build-

up of fragmentation.

Database analysis

Since version 2.0, FBOpt can determine the best clustering and physical ordering of

tables, and which tables could use dense storage without reserving space.

5 of 21

To do so, FBOpt analyzes the database and collects information about transactions that

saved individual table rows. By comparing two such information sets taken at different

time, FBOpt can determine data change patterns for each table, and assign it to

appropriate data cluster.

Database optimization
FBOpt is basically a database copy utility that perform speci�c optimizations while

creating the new database:

row defragmentation so that each row is stored on one page (if one row is not larger than a

database page)
defragmentation of tables and indexes, so that data and index pages are compressed to contain as
much data as possible and all pages that belong to one database table or index are stored one by

one.
in selected cases, further compression of data pages is performed by not reserving space for
additional versions of rows on each page.

optional physical sorting of rows in individual tables (for a better clustering factor for the most
important index in a given table).

setting the physical order of the tables in the database in a way that reduces the possibility and
extent of data fragmentation due to subsequent changes in the database. This physical layout is
divided into multiple blocks stored sequentially.

The optimized database structure is as follows:

The �rst block contains tables whose data does not change. Table data is placed �rst, followed by
any indexes de�ned for those tables. Table data is written with the “no reserve” �ag set, for higher

data density.
The second block contains tables that have been shortened (only deleting rows from the end).

Data and indexes are stored in the same way as in the �rst block.
The third block contains only the data of the tables, the contents of which are only expanded.
Table data is written with the “no reserve” �ag set.

The fourth block contains only the data of the tables whose contents are changing (via update /
delete). Data is written with the “reserve space” �ag set.

The ��h block contains only the data of the tables that are new (without the information in the
base data �le used for the analysis). Data is written with the “reserve space” �ag set.
Finally, the remaining indexes (not created within block 1 and 2 storage) are created.

6 of 21

Requirements

FBOpt can optimize only databases created by Firebird 3 or newver. It could be

used on 64-bit versions of Windows and Linux, and requires at least the client

part of 64-bit version of Firebird to be installed on machine where you want to

run it.

Installation

FBOpt is distributed as a single executable �le, that you can place it into any

directory that suits your needs. A license �le fbopt.license must be placed in

the same directory.

The license �le should be automatically sent to the e-mail address you entered on

purchase (for FREE version, a 14-day trial license is sent). If you did not received

your license, please contact us at support@ibphoenix.com.

8 of 21

Running FBOpt

The CLI has next basic schema:

 fbopt [options] source-db [new-db]

Where:

source-db is a database from which an optimized copy or snapshot should be

created.

new-db is the newly created optimized copy.

Both source-db and new-db could be either local or remote databases.

However, for best performance it’s recommended to use local database

speci�cations (FBOpt uses embedded Firebird server to work with local

databases).

9 of 21

Command line options
-A(NALYZE) <file>
Read saved database statistics from the given file

-B(ACKUP) <file>
Store backup file locally as well

-BU(FFERS) <number>
Override page buffers default

-CRYPT <name>
Crypt plugin name for new database

-DATA(_ONLY)
Copy only data into already existing target database

-FE(TCH_PASSWORD) <file>
Fetch user password from text file

-H(ELP), -?
Display help text

-I(NACTIVE)
Do not activate indexes in created database

-KEYHOLDER <name>
Key holder plugin name

-KEY(NAME) <name>
Name of encryption key

-M(ETADATA)
Use database comments to adjust optimization

10 of 21

-N(O_VALIDITY)
Do not activate data validation constraints in created database

-NOD(BTRIGGER S)
Do not run database triggers

-NOOP(TIMIZE)
Perform backup-restore only

-P(AGE_SIZE) <number>
Set page size for new database

-PAR(ALLEL) <N>
Perform operations using N threads

-PAS(SWORD) <password>
User password

-Q
Be quiet. More ‘Q’s - more quiet

-REPLICA <mode>
“none”, “read_only” or “read_write” replica mode for created database

-RO(LE) <name>
User SQL role

-S(NAPSHOT) <file>
Save database statistics to the given file

-U(SER) <name>
Firebird user name

11 of 21

-V
Be verbose. More ‘V’s - more verbose

-Z
Print version number and licensing information

Modes of Work
The development of FBOpt went through several phases. In the �rst version,

FBOpt used manually created speci�cation �les to drive the optimization

process. The second version added functionality to analyze the database

content at different points in time, to detect data change patterns, which were

then used to generate parameter sets for subsequent optimization. The

current third version further simpli�es the optimization process by bypassing

the need to use parameter sets and also adds brand new features that go

beyond database optimization.

The FBOpt functionality could then be divided into several areas:

Creating optimized copy of the database

Scanning database content for later comparative analysis

Creating a simple copy of the database

The “simple copy” mode could be used for several tasks:

Upgrading or downgrading the database internal structure (ODS)

Converting database content to different character set

Creating logical database backup with simultaneous restore

Executing direct logical backup and restore in single step without

intermediate backup �le

The following sections describe the individual work modes.

12 of 21

Scanning database content for later comparative analysis

Activation:

 fbopt [options] -SNAPSHOT file source-db

Enabled options:

 -CRYPT <name>

 -KEYHOLDER <name>

 -KEY(NAME) <name>

 -NOD(BTRIGGERS)

 -PAR(ALLEL) <N>

 -U(SER) <name>

 -PAS(SWORD) <password>

 -FE(TCH_PASSWORD) <file>

 -Q

 -V

In this mode, FBOpt simply connects to the speci�ed source database, reads information

about transactions that created individual data rows, and saves it to the file speci�ed

by the -SNAPSHOT parameter. You should keep it at safe place for future use with FBOpt.

The speed of snapshot creation depends on many factors, but it’s typically much faster

than backup with gbak. By default, FBOpt use 6 worker threads to gather required

information in parallel. You can adjust number of parallel workers with -PAR(ALLEL)

option.

13 of 21

Creating optimized copy of the database

Activation:

 fbopt [options] [-METADATA] [-ANALYZE file] source-db new-db

Enabled options:

 -REP(LACE_DATABASE)

 -NOD(BTRIGGERS)

 -BU(FFERS) <number>

 -I(NACTIVE)

 -N(O_VALIDITY)

 -P(AGE_SIZE) <number>

 -REPLICA <mode>

 -CRYPT <name>

 -KEYHOLDER <name>

 -KEY(NAME) <name>

 -U(SER) <name>

 -PAS(SWORD) <password>

 -FE(TCH_PASSWORD) <file>

 -RO(LE) <name>

 -PAR(ALLEL) <N>

 -Q and -V

 -SNAPSHOT <file>

 -DATA(_ONLY)

The parameters for optimization process could be provided in several ways:

1. If classi�cation of tables and indices is stored in database metadata, use the METADATA

option.

2. If classi�cation of tables should be determined by comparative analysis of old and

current data creation snapshots, use the -ANALYZE option to specify the base snapshot.

3. In all other cases, classi�cation of tables will be determined by quick heuristic

algorithm.

14 of 21

When -METADATA option is speci�ed, FBOpt looks for speci�c regex patterns in

COMMENT content of each table:

- contains regex “.*(FBOPT STATIC).*” - table is stored in segment 1

- contains regex “.*(FBOPT EXTENDED).*” - table is stored in segment 3

- contains regex “.*(FBOPT VOLATILE).*” - table is stored in segment 4

If COMMENT for any INDEX contains regex “.*(FBOPT).*”, the table data are stored as
sorted in the index key order. If more than one index that belongs to the same table
is marked like this, the first one found is used.

It’s possible to optimize data into already existing database using -DATA(_ONLY)
option. However, this database must be able to accept ALL data from source
database.

If the -SNAPSHOT switch is specified, then analytic information snapshot is created

for newly created database copy.

15 of 21

Creating a simple copy of the database

Activation:

 fbopt [options] [-B(ACKUP) <file>] -NOOPTIMIZE source-db new-db

Enabled options:

 -REP(LACE_DATABASE)

 -NOD(BTRIGGERS)

 -BU(FFERS) <number>

 -I(NACTIVE)

 -N(O_VALIDITY)

 -P(AGE_SIZE) <number>

 -REPLICA <mode>

 -CRYPT <name>

 -KEYHOLDER <name>

 -KEY(NAME) <name>

 -U(SER) <name>

 -PAS(SWORD) <password>

 -FE(TCH_PASSWORD) <file>

 -RO(LE) <name>

 -PAR(ALLEL) <N>

 -Q and -V

 -SNAPSHOT <file>

 -DATA(_ONLY)

In this mode, FBOpt basically pipelines gbak backup to restore. The backup �le is not

created, unless -BACKUP switch is used. This FBOpt mode could be used either as:

1. more convenient and effective replacement for usual gbak backup+restore cycle

which does not require disk space for intermediate backup �le.

2. regular gbak backup with simultaneous restore test (the created database could be

deleted after successful completion, while backup �le is kept).

Data pump

With -DATA_ONLY switch, FBOpt could be used as simple and fast data pump that

moves ALL data from source database to existing (empty) database. The target database

does not need to have exactly the same structure as the source database, but must be

able to accept all data from source without error. This for example means that all

constraint indices must be deactivated.

The -DATA_ONLY switch could be used with both, optimized or simple database copy

operations. However, due to technical constraints, the simple database copy (-

NOOPTIMIZE) in this case does not use gbak to transfer data, but method normally used

to create the optimized copy (it just places all tables and indices in segment 5). Hence

switches -BACKUP and -DATA_ONLY are mutually exclusive.

Database structure upgrade and downgrade

There are several simple methods that could be used to easily upgrade databases to new

ODS structure with FBOpt.

1. You can use remote server for either source or target database (or both), where server

for the target database has the desired higher version.

2. You can install older engine library (for example Engine12.so/dll from Firebird v3)

into plugins directory of newer Firebird installation, and add its name before newer

engine in providers option in firebird.conf. Then you can use the local server

connections, and the newly created database will have upgraded ODS structure.

3. In some cases, when newer Firebird version also supports access to older databases

(like Firebird v5 can access databases created by Firebird v4), the newly created

database will have new ODS automatically.

In all cases, you can use both, simple or optimized database copy methods.

You can use the same methods also to downgrade the database to older ODS versions, if

you’ll �rst create an empty database with older ODS, and use the -DATA_ONLY switch.

18 of 21

Converting database to new default character set

Using empty database and -DATA_ONLY switch could be used not only to downgrade

database ODS, but also to convert data to new default character set. All you have to do is

changethe default character set in the new database and the data will be automatically

converted during the transfer.

19 of 21

Parallel operations

By default, FBOpt uses 6 parallel worker threads to speed up database analysis, copying

of data and activation of indices. You can adjust the number of worker threads with -

PARALLEL option. These parallel workers differ from parallel workers introduced in

Firebird v5.

When FBOpt is used with Firebird v5 or newer, parallel workers provided by Firebird are

used automatically for simple database copy operations without -DATA_ONLY switch,

and if paraller workers are properly con�gured in firebird.conf.

Support & tools for Firebird

IBPhoenix is the leading provider of information , tools and

services for Firebird users and developers

IBPhoenix website & e-shop

...

https://www.ibphoenix.com/

