
OPTIMIZATION OF SQL QUERIES
IN FIREBIRD, PART 3 – PRACTICAL
USAGE, TIPS AND TRICKS

Dmitry Yemanov, Firebird

Alexey Kovyazin, IBSurgeon

Firebird Conference 2019
Berlin, 17-19 October

How to identify slow queries?

• In Firebird 2.5 and 3.0 use Trace capabilities of

Firebird:

• With standard tools included in Firebird

• With third-party tools

• In Firebird 2.1, 2.0, 1.5 – IBSurgeon FBScanner

Trace with standard tools (FB3)

• 1. Create trace config file C:\Temp\mytrace1.conf

database

{

enabled = true

log_statement_finish = true

log_errors = true

log_initfini = false

time_threshold = 10000

max_sql_length = 65000

}

Trace with standard tools

• 2. Run trace session

fbtracemgr.exe -se localhost:service_mgr -

start -conf "C:\temp\mytrace1.conf" -user

SYSDBA -pass masterkey > output.txt

3. Result will be the text file which contains

all queries and stored procedures which took

more than 10 seconds

Example of output for 1 stored procedure

Trace with HQbird

HQbird Performance report

How to identify the reason of slowness

Natural reads are 3 times cheaper!

• NATURAL 1 read = 1-2 physical reads

• INDEX read = 1-2+(Depth of index) physical

reads

Query statistics and resources

• Fetches = CPU rounds (access the cache)

• Reads = Disk reads

• Writes = Disk writes

Slow <> Time

• 36 seconds to fetch 47992 records = good result!

• Always compare real results with the time

Indication of the bad index

Disable wrong index with +0 and create
index on expression

SELECT CONTACT.ID, CONTACT.DBID FROM

CONTACT

WHERE UPPER(CONTACT.MSGID)=UPPER(?)

AND CONTACT.KIND+0 IN (0,1)

AND CONTACT.ISDELETE<>?

ORDER BY CONTACT.ID DESC

CREATE INDEX IXUPPERMSGID ON CONTACT

COMPUTED BY (UPPER(MSGID))

After optimization it becomes 200ms!

More complex query statistics example

Now let’s look at the query

select d.*, c.histnum, Case when

(d.locktype = 1 and ? = 2) or (? = 1) then

'' else d.phones end phones_ext

from SPDolgCalc (?, ?, ?, ?, ?, ?, ?, ?) d

left join clients c on (d.pcode =

c.pcode)

where (d.DolgUE >= 0.01 OR d.DolgUE <= -

0.01) and ((coalesce(d.hfamily, 0) = 0) or

(d.IsFamily = 0))

• It does not contain table TREAT!

How to identify problem in stored
procedure?

• Stored procedures does not show correct plan (NATURAL

in FB3)

• Stored procedures can be nested

SP1
SP2

SP3

SP4

SP10

SP3

SP6

Debugging stored procedure with Trace

• 1. Create trace config file c:\temp\mysp1.txt:

database

{

enabled = true

log_procedure_start = true

Log_procedure_finish = true

log_initfini = false

time_threshold = 0

max_sql_length = 65000

}

Debugging stored procedure with Trace

• 2. Run trace

• fbtracemgr.exe -se localhost:service_mgr -

start -conf "C:\temp\mysp1.conf" -user

SYSDBA -pass masterkey > outputSP.txt

• 3. Run stored procedure in dev tool or in

the single-thread application

Debugging stored procedure with Trace

• Result will be detailed execution of all nested stored

procedures with times

SP1 1000ms
SP2 500ms

SP3 499ms

SP4 1ms

SP10 500ms

SP3 499ms

SP6 499ms

• It will be able to understand which nested procedure is a

problem and concentrate on it.

TIPS AND TRICKS

Avoid repetitive reading-1
select field_1 from some_table where id = :p1 into var_1;

select field_1 from some_table where id = :p2 into var_2;

select field_1 from some_table where id = :p3 into var_3;

select field_1 from some_table where id = :p4 into var_4;

• Instead of 4 queries we can do the single

select

max(iif(id=1,x, null))

,max(iif(id=2,x, null))

,max(iif(id=3,x, null))

,max(iif(id=4,x, null))

from test

where id in (1,2,3,4)

into var_1, var_2, var_3, var_4;

Avoid repetitive reading -2

CREATE TABLE INV (…, QTY INTEGER, STATUS VARCHAR(4));

SELECT

(SELECT sum(QTY) FROM INV WHERE STATUS=‘SOLD’) SOLD,

(SELECT sum(QTY) FROM INV WHERE STATUS=‘CNC’) CANCEL,

(SELECT sum(QTY) FROM INV WHERE STATUS=‘INPR’) INPROC

FROM STATUSES;

This query reads INV 3 times.

Avoid repetitive reading-2

• Better do with EXECUTE BLOCK or STORED
PROCEDURE – will be 1 read of INV table

FOR SELECT QTY, STATUS FROM INV

INTO :current_qty, :current_status

DO BEGIN

If(current_status=‘SOLD’) THEN

SOLD=SOLD+current_qty;

If(current_status=‘CNC’) THEN

CNC=CNC+current_qty;

If(current_status=‘INPR’) THEN

INPROC=INPROC+current_qty;

END

Avoid DISTINCT (if not needed)

• DISTINCT never uses index for sorting!

select distinct e.job_code from employee e

==> plan natural

select e.job_code from employee e group by 1

==> PLAN (E ORDER RDB$FOREIGN9)

GROUP BY unknown things

• GROUP BY <field_with_DESC_index> does not

use index - until Firebird 4 Beta 1(CORE-4529).

• GROUP BY <field_collate_unicode_ci> never

uses index – (CORE-4787)

Avoid unnecessary sorting in stored
procedures

create or alter procedure NEW_PROCEDURE

returns (SUMX double precision)

as

declare variable _amount double precision;

begin

for select T1.amount from Table1 t1 where

order by id

into :_amount

do

begin

sumx=sumx+_amount

end;

suspend;

end

Don’t use COUNT() to check existence

SELECT * FROM T1

WHERE (select count(t2.id) from T2 where

T1.id=t2.fkid)>0

This query will count all records in T2.

Much faster with Exists():

WHERE exists (select t2.id from T2 where

T1.id=t2.fkid)

This query will read only 1 record

Don’t use LEFT JOIN when unnecessary

SELECT * FROM T1 LEFT JOIN T2 ON ()

WHERE T2.CONDITION

• In this case, condition applied to T2 means we can use

INNER JOIN:

SELECT * FROM T1 LEFT JOIN T2 ON ()

WHERE T2.CONDITION

COMPUTED BY

• If you are using

UPPER(Field1) LIKE UPPER(‘BlaBla1%’)

• don’t‘ forget to create INDEX on expression

CREATE INDEX ix1 on T1 COMPUTED BY

(UPPER(Field1))

UPDATE or INSERT with complex

logic
• Usually

• UPDATE OR INSERT

• Sometimes need to check additional things

update test set f01 = :val_for_f01 where id

= :val_for_pk;

if (row_count = 0) then

insert into test (id, f01) values(

:val_for_pk, :val_for_f01);

Trick to sort wide result sets-1

CREATE TABLE T1(I1 integer,

Name varchar(50),

Notes varchar(10000));

SELECT i1, name, Notes FROM t1

ORDER BY name

Full size of sorted record=

(SELECT fields+ORDER BY fields)

The query will be very slow due to wide result set.

Trick to sort wide result sets-2
with c (id, name) as

(

select id, name from T1

order by name

)

select

c.id

,c.name

,x.notes from c

join T1 as x on x.id = c.id

Indices for MAX(), MIN()

• Indices in Firebird are uni-directional

• For MIN – ASC index

• For MAX – DESC index

Too deep indices

• Better don’t use index than use index with depth 4-5-6

IN -> EXISTS() or IN->JOINS

select … from T1 where T1.id IN (select T2.id FROM T2

WHERE T2.Condition)

SELECT… FROM T1 WHERE EXISTS(select T2.id FROM

T2 WHERE T1.id=T2.ID and T2.Condition)

SELECT… FROM T1 JOIN T2 ON(T1.id=t2.id and

t2.Condition)

NOT IN <> NOT EXISTS()!

• NOT IN is not equivalent to NOT EXISTS, due to different

NULL handling

• If there are no NULLs, it is possible to switch NOT IN to

NOT EXISTS

select * from employee

where (emp_no = :param) or (:param is null)

where (emp_no = :param) or (:param = 0)

Old plan in 2.5
PLAN (EMPLOYEE NATURAL)

New plan
PLAN (EMPLOYEE NATURAL, EMPLOYEE
INDEX (RDB$PRIMARY7))

Runtime plan in Firebird 3

Select Expression

-> Filter

-> Condition

-> Table "EMPLOYEE" Full Scan

-> Table "EMPLOYEE" Access By ID

-> Bitmap

-> Index "RDB$PRIMARY7" Unique
Scan

Firebird 3 selects plan in runtime

select * from employee
where emp_no in (1, 2, 3)
PLAN (EMPLOYEE INDEX (RDB$PRIMARY7, RDB$PRIMARY7,
RDB$PRIMARY7))

Select Expression

-> Filter

-> Table "EMPLOYEE" Access By ID

-> Bitmap Or

-> Bitmap Or

-> Bitmap

-> Index "RDB$PRIMARY7" Unique Scan

-> Bitmap

-> Index "RDB$PRIMARY7" Unique Scan

-> Bitmap

-> Index "RDB$PRIMARY7" Unique Scan

If index is unique (PK, UK), even 500 searches will
be fast

If index is non-unique, it is much slower

Field in (1,3,4)
Uses index 3 times: 1 bitmap, 3 scans

Field+0 in (1,3,4)
Disables index

Field+0 in (1,3,4) and (field between 1 and 4)
Enables 1 Range Scan for Between!

How to optimize IN (1,2,3..)

Simple hints

• Force index use (not recommended)
• Where field > 0

• Disable index with expression
• where field+0 > 5

• order by expression or number

• group by expression or number

Sequence of conditions in Where
• Where A = 1 and B = 5

• Calculated from left to right

• How to check
• select * from employee where 1=1 or 1/0=0 – no error
• select * from employee where 1/0=0 or 1=1 – integer divide

by zero

• where B in (select …) and A = 1

• is wrong, better use

• where A=1 and B in (select …)

• Easy calculations at the left, heavy at the right

SELECT in COMPUTED BY

• create table A(…
fld computed by (select fld1 from
stored_proc…),

• Plan will change for various columns

• Better use triggers

LIKE, STARTING WITH

• FIELD LIKE ‘a%’
• Uses index

• FIELD LIKE ‘%a’
• Not uses index

• FIELD LIKE ‘%a%’
• Not uses index

• FIELD LIKE :param
• Not uses index!

• FIELD STARTING WITH ‘a’
• = FIELD LIKE ‘a%’

More optimization tips and tricks

• 45 Ways To Speed Up Firebird
• https://ib-aid.com/en/articles/45-ways-to-speed-up-

firebird-database/

• 23 More Ways To Speed Up Firebird
• https://ib-aid.com/en/articles/23-more-ways-to-speed-

up-firebird/

https://ib-aid.com/en/articles/45-ways-to-speed-up-firebird-database/
https://ib-aid.com/en/articles/23-more-ways-to-speed-up-firebird/

Thank you!

Questions? ak@ib-aid.com

mailto:ak@ib-aid.com

