
Firebird Conference 2019
Berlin, 17-19 October

THE WHOLE TRUTH ABOUT JOINS

Firebird International Conference 2019 - Berlin

What kinds of JOINs exist
 INNER and OUTER
 Outer: LEFT, RIGHT, FULL OUTER

 RIGHT → LEFT
 FULL OUTER — somewhat exotic

(with optimization caveats)

Firebird International Conference 2019 - Berlin

Differences in optimization
 INNER: join order does not matter

 But directly affects performance
 Optimizer uses statistics and sometimes heuristics

 OUTER: join order is pre-defined
by the SQL statement
 No ways for permutations

Firebird International Conference 2019 - Berlin

Differences in optimization
 INNER: all predicates are equivalent (ON = WHERE)

 Combined together by the optimizer
 Dependent predicates are used for joining
 Independent predicates are used for filtering

Firebird International Conference 2019 - Berlin

Differences in optimization
 OUTER: there is a difference between ON and WHERE

 But sometimes predicates can «migrate»
from WHERE to ON

TABLE_A TA
left join TABLE_B TB on TA.ID = TB.ID
where TB.STATUS = 1

vs
where TB.STATUS is null

vs
where TB.STATUS is not null

Firebird International Conference 2019 - Berlin

Differences in optimization
 INNER: all streams are optimized together

 A join B join C join D — single 4-way join
JOIN (A, B, C, D)

 Order of tables is determined by the optimizer
 OUTER: tables are combined into pairs

 A left join B left join C — two joins
((A JOIN B) JOIN C)

Firebird International Conference 2019 - Berlin

Differences in optimization
 Mixing INNER/OUTER separates tables into groups

 A join B on A.F1 = B.F1
left join C on B.F2 = C.F2
join D on C.F3 = D.F3

 Three joins
(((A JOIN B) JOIN C) JOIN D)

 Permutations are possible between {A, B},
D is optimized independently

Firebird International Conference 2019 - Berlin

Differences in optimization
 Mixing INNER/OUTER separates tables into groups

 A join B on A.F1 = B.F1
left join C on B.F2 = C.F2
join D on C.F3 = D.F3

 Three joins
(((A JOIN B) JOIN C) JOIN D)

 Permutations are possible between {A, B},
D is optimized independently

 Hint!
 All INNER streams should go first

and only then OUTER streams should follow

Firebird International Conference 2019 - Berlin

Differences in optimization
 INNER: views / derived tables can be merged

 V = (B join C)
A join V
=
A join B join C

 Then they are optimized as a simple 3-way join
 OUTER: such a merging is impossible

 We will see groups of multiple joins

Firebird International Conference 2019 - Berlin

Hinting
 Via enable/disable index usage

 + 0 for numbers / dates, || `` for strings
 Indirectly affects join order

 Via LEFT/RIGHT JOIN
 Affects only join order

select *
from TABLE_A TA
left join TABLE_B TB on TA.ID = TB.ID
where TB.ID is not null

Firebird International Conference 2019 - Berlin

JOIN execution algorithms
 Nested loop join

 JOIN in query plan
 Merge join (aka sort/merge join)

 MERGE in query plan
 Hash join – starting with Firebird 3

 HASH in query plan

Firebird International Conference 2019 - Berlin

Nested loop join
 A join B join C
=
for select from A
 for select from B
 for select from C

 Without join conditions — decart product (aka CROSS
JOIN), very slow (nested full scans)

 Independent predicates allow to use indices for filtering
and thus limit record sets

 Dependent predicates (join conditions) allow to execute
context-based retrieval

Firebird International Conference 2019 - Berlin

Nested loop join
 Optimizer goal — reduce record sets for nested streams

by using properly indexed retrievals

 How cost is calculated:

A join B

cost(A) + cardinality(A) * cost(B)

A join B join C

cost(A) + cardinality(A) * cost(B) +
cardinality(A, B) * cost(C)

Firebird International Conference 2019 - Berlin

Merge join
 All input streams are SORTed
 One-way merge is performed
 Indices are used for filtering only

 Sorting costs a lot, swapping to temp files is possible
 Now it works for equi-joins only
 Now used for INNER JOINs only
 Temporarily disabled in Firebird 3

Firebird International Conference 2019 - Berlin

Hash join
 Smaller stream is buffered inside the temp space,

hash table is built for all join keys
 Larger table is scanned once,

join keys are probed against the hash table
 Indices are used for filtering only

 Hashing is not free either
 Possible for equi-joins only
 Now used for INNER JOINs only
 Firebird 3 temporarily uses HASH JOIN intead of

MERGE JOIN

Firebird International Conference 2019 - Berlin

When MERGE is better than HASH
 At least one input stream is already sorted

by the join key
 ORDER BY the join key exists
 Joined streams all very large

 There is no way to choose between them now :-(

Firebird International Conference 2019 - Berlin

When HASH is better than Nested Loops
 Many retrievals from the nested streams

 Outer stream cardinality
vs
Inner stream selectivity

 Complex computations inside the inner streams

 Can be «hinted» by disabling indices on both join fields

Firebird International Conference 2019 - Berlin

How join algorithm is chosen now
 If there are indexed join conditions

→ nested loop join
 If there are no indexed join conditions

AND they are equalities
AND it is INNER JOIN
→ merge join / hash join

 If join conditions are inequalities
OR it is OUTER JOIN
→ nested loop join

Firebird International Conference 2019 - Berlin

What can be changed in the near future
 Merge/Hash join implementation for OUTER JOINs
 Cost- (or heuristic-) based choice between merge and

hash joins
 Cost-based choice between nested loop and

merge/hash algorithms

Firebird International Conference 2019 - Berlin

Joins with selectable stored procedures
 Optimizer puts SP at the first position

 To avoid multiple executions of SP
 To use indices for joined table(s)
 And that is good :-)
 If index is «turned off» via a hint, MERGE/HASH

will be used instead of Nested Loops, but usually it
does not make much sense

Firebird International Conference 2019 - Berlin

Joins with selectable stored procedures
 Join via input parameter

 Before Firebird 3 — error «no record to fetch»,
LEFT JOIN should be used instead of INNER JOIN

 Now optimizer puts the procedure at its proper
position

TABLE_A TA
join PROC_B(TA.ID) on 1 = 1

or

TABLE_A TA cross join PROC_B(TA.ID)

Firebird International Conference 2019 - Berlin

Joins with aggregates / unions
 They are also positioned unconditionally
 But it is not always good

(if predicate pushing is possible)
 Can be altered via LEFT JOIN

select …
from TABLE_A TA
 join (select FLD1, sum(FLD2)
 from …
 group by FLD1) DT
 on TA.ID = DT.FLD1

Firebird International Conference 2019 - Berlin

Joins and ORDER BY
 Ordering via SORT allows any possible join order,

let the optimizer doing its work
 ORDER plan (index-order navigation) can happen

only for the first joined table
 SORT vs ORDER — to be explained
 Join order can be altered by «hinting»,

but is it really necessary?
 Heuristics for FIRST, MIN/MAX, EXISTS

Firebird International Conference 2019 - Berlin

Example (nested loop join)

select s_acctbal, s_name, n_name

from part
 join partsupp on p_partkey = ps_partkey
 join supplier on ps_suppkey = s_suppkey
 join nation on s_nationkey = n_nationkey
 join region on n_regionkey = r_regionkey

where p_size = 15
 and p_type like '%BRASS'
 and r_name = 'EUROPE'

order by
 s_acctbal, n_name, s_name, p_partkey

Firebird International Conference 2019 - Berlin

Example (nested loop join)
PLAN SORT (JOIN (
 NATION NATURAL,
 REGION INDEX (REGION_PK),
 SUPPLIER INDEX (SUPPLIER_NATIONKEY),
 PARTSUPP INDEX (PARTSUPP_SUPPKEY),
 PART INDEX (PART_PK)))

vs

PLAN SORT (JOIN (
 PART NATURAL,
 PARTSUPP INDEX (PARTSUPP_PK),
 SUPPLIER INDEX (SUPPLIER_PK),
 NATION INDEX (NATION_PK),
 REGION INDEX (REGION_PK)))

Firebird International Conference 2019 - Berlin

Example (nested loop join)
→ Sort

 → Nested Loop Join (inner)

 → Table «NATION» Full Scan

 → Table «REGION» Access By ID

 → Bitmap

 → Index «REGION_PK» Unique Scan

 → Table «SUPPLIER» Access By ID

 → Bitmap

 → Index «SUPPLIER_NATIONKEY» Range Scan

 → Table «PARTSUPP» Access By ID

 → Bitmap

 → Index «PARTSUPP_SUPPKEY» Range Scan

 → Table «PART» Access By ID

 → Bitmap

 → Index «PART_PK» Unique Scan

Firebird International Conference 2019 - Berlin

Example (nested loop join)
→ Sort

 → Nested Loop Join (inner)

 → Table «PART» Full Scan

 → Table «PARTSUPP» Access By ID

 → Bitmap

 → Index «PARTSUPP_PK» Unique Scan

 → Table «SUPPLIER» Access By ID

 → Bitmap

 → Index «SUPPLIER_PK» Unique Scan

 → Table «NATION» Access By ID

 → Bitmap

 → Index «NATION_PK» Unique Scan

 → Table «REGION» Access By ID

 → Bitmap

 → Index «REGION_PK» Unique Scan

Firebird International Conference 2019 - Berlin

Example (nested loop join)

select s_acctbal, s_name, n_name

from part
 join partsupp on p_partkey = ps_partkey
 join supplier on ps_suppkey = s_suppkey
 join nation on s_nationkey+0 = n_nationkey+0
 join region on n_regionkey+0 = r_regionkey+0

where p_size = 15
 and p_type like '%BRASS'
 and r_name = 'EUROPE'

order by
 s_acctbal, n_name, s_name, p_partkey

Firebird International Conference 2019 - Berlin

Example (nested loop join)
PLAN SORT (
 HASH (
 HASH (
 JOIN (
 PART NATURAL,
 PARTSUPP INDEX (PARTSUPP_PK),
 SUPPLIER INDEX (SUPPLIER_PK)
),
 NATION NATURAL
),
 REGION NATURAL)
)
)

Firebird International Conference 2019 - Berlin

Example (nested loop join)
→ Sort

 → Hash Join (inner)

 → Hash Join (inner)

 → Nested Loop Join (inner)

 → Table «PART» Full Scan

 → Table «PARTSUPP» Access By ID

 → Bitmap

 → Index «PARTSUPP_PK» Unique Scan

 → Table «SUPPLIER» Access By ID

 → Bitmap

 → Index «SUPPLIER_PK» Unique Scan

 → Table «NATION» Full Scan

 → Table «REGION» Full Scan

Firebird International Conference 2019 - Berlin

Example (nested loop join)

select l_orderkey, o_orderdate,
 o_shippriority, sum(l_extendedprice)

from customer
 join orders on c_custkey = o_custkey
 join lineitem on o_orderkey = l_orderkey

where c_mktsegment = 'BUILDING'
 and o_orderdate < date '1995-03-15'
 and l_shipdate > date '1995-03-15'

group by 1, 2, 3

Firebird International Conference 2019 - Berlin

Example (nested loop join)
PLAN SORT (JOIN (
 CUSTOMER NATURAL,
 ORDERS INDEX (ORDERS_CUSTKEY),
 LINEITEM INDEX (LINEITEM_PK, LINEITEM_SHIPDATE)))

vs

PLAN SORT (JOIN (
 LINEITEM INDEX (LINEITEM_SHIPDATE),
 ORDERS INDEX (ORDERS_PK),
 CUSTOMER INDEX (CUSTOMER_PK)))

Firebird International Conference 2019 - Berlin

Example (nested loop join)
PLAN SORT (JOIN (
 LINEITEM INDEX (LINEITEM_SHIPDATE),
 ORDERS INDEX (ORDERS_PK),
 CUSTOMER INDEX (CUSTOMER_PK)))

vs

PLAN SORT (JOIN (
 ORDERS INDEX (ORDERS_ORDERDATE),
 CUSTOMER INDEX (CUSTOMER_PK),
 LINEITEM INDEX (LINEITEM_PK)))

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Страница 28
	Страница 29
	Страница 30
	Страница 31
	Страница 32
	Страница 33
	Страница 34

