
Firebird Conference 2019
Berlin, 17-19 October

THE WHOLE TRUTH ABOUT JOINS

Firebird International Conference 2019 - Berlin

What kinds of JOINs exist
 INNER and OUTER
 Outer: LEFT, RIGHT, FULL OUTER

 RIGHT → LEFT
 FULL OUTER — somewhat exotic

(with optimization caveats)

Firebird International Conference 2019 - Berlin

Differences in optimization
 INNER: join order does not matter

 But directly affects performance
 Optimizer uses statistics and sometimes heuristics

 OUTER: join order is pre-defined
by the SQL statement
 No ways for permutations

Firebird International Conference 2019 - Berlin

Differences in optimization
 INNER: all predicates are equivalent (ON = WHERE)

 Combined together by the optimizer
 Dependent predicates are used for joining
 Independent predicates are used for filtering

Firebird International Conference 2019 - Berlin

Differences in optimization
 OUTER: there is a difference between ON and WHERE

 But sometimes predicates can «migrate»
from WHERE to ON

TABLE_A TA
left join TABLE_B TB on TA.ID = TB.ID
where TB.STATUS = 1

vs
where TB.STATUS is null

vs
where TB.STATUS is not null

Firebird International Conference 2019 - Berlin

Differences in optimization
 INNER: all streams are optimized together

 A join B join C join D — single 4-way join
JOIN (A, B, C, D)

 Order of tables is determined by the optimizer
 OUTER: tables are combined into pairs

 A left join B left join C — two joins
((A JOIN B) JOIN C)

Firebird International Conference 2019 - Berlin

Differences in optimization
 Mixing INNER/OUTER separates tables into groups

 A join B on A.F1 = B.F1
left join C on B.F2 = C.F2
join D on C.F3 = D.F3

 Three joins
(((A JOIN B) JOIN C) JOIN D)

 Permutations are possible between {A, B},
D is optimized independently

Firebird International Conference 2019 - Berlin

Differences in optimization
 Mixing INNER/OUTER separates tables into groups

 A join B on A.F1 = B.F1
left join C on B.F2 = C.F2
join D on C.F3 = D.F3

 Three joins
(((A JOIN B) JOIN C) JOIN D)

 Permutations are possible between {A, B},
D is optimized independently

 Hint!
 All INNER streams should go first

and only then OUTER streams should follow

Firebird International Conference 2019 - Berlin

Differences in optimization
 INNER: views / derived tables can be merged

 V = (B join C)
A join V
=
A join B join C

 Then they are optimized as a simple 3-way join
 OUTER: such a merging is impossible

 We will see groups of multiple joins

Firebird International Conference 2019 - Berlin

Hinting
 Via enable/disable index usage

 + 0 for numbers / dates, || `` for strings
 Indirectly affects join order

 Via LEFT/RIGHT JOIN
 Affects only join order

select *
from TABLE_A TA
left join TABLE_B TB on TA.ID = TB.ID
where TB.ID is not null

Firebird International Conference 2019 - Berlin

JOIN execution algorithms
 Nested loop join

 JOIN in query plan
 Merge join (aka sort/merge join)

 MERGE in query plan
 Hash join – starting with Firebird 3

 HASH in query plan

Firebird International Conference 2019 - Berlin

Nested loop join
 A join B join C
=
for select from A
 for select from B
 for select from C

 Without join conditions — decart product (aka CROSS
JOIN), very slow (nested full scans)

 Independent predicates allow to use indices for filtering
and thus limit record sets

 Dependent predicates (join conditions) allow to execute
context-based retrieval

Firebird International Conference 2019 - Berlin

Nested loop join
 Optimizer goal — reduce record sets for nested streams

by using properly indexed retrievals

 How cost is calculated:

A join B

cost(A) + cardinality(A) * cost(B)

A join B join C

cost(A) + cardinality(A) * cost(B) +
cardinality(A, B) * cost(C)

Firebird International Conference 2019 - Berlin

Merge join
 All input streams are SORTed
 One-way merge is performed
 Indices are used for filtering only

 Sorting costs a lot, swapping to temp files is possible
 Now it works for equi-joins only
 Now used for INNER JOINs only
 Temporarily disabled in Firebird 3

Firebird International Conference 2019 - Berlin

Hash join
 Smaller stream is buffered inside the temp space,

hash table is built for all join keys
 Larger table is scanned once,

join keys are probed against the hash table
 Indices are used for filtering only

 Hashing is not free either
 Possible for equi-joins only
 Now used for INNER JOINs only
 Firebird 3 temporarily uses HASH JOIN intead of

MERGE JOIN

Firebird International Conference 2019 - Berlin

When MERGE is better than HASH
 At least one input stream is already sorted

by the join key
 ORDER BY the join key exists
 Joined streams all very large

 There is no way to choose between them now :-(

Firebird International Conference 2019 - Berlin

When HASH is better than Nested Loops
 Many retrievals from the nested streams

 Outer stream cardinality
vs
Inner stream selectivity

 Complex computations inside the inner streams

 Can be «hinted» by disabling indices on both join fields

Firebird International Conference 2019 - Berlin

How join algorithm is chosen now
 If there are indexed join conditions

→ nested loop join
 If there are no indexed join conditions

AND they are equalities
AND it is INNER JOIN
→ merge join / hash join

 If join conditions are inequalities
OR it is OUTER JOIN
→ nested loop join

Firebird International Conference 2019 - Berlin

What can be changed in the near future
 Merge/Hash join implementation for OUTER JOINs
 Cost- (or heuristic-) based choice between merge and

hash joins
 Cost-based choice between nested loop and

merge/hash algorithms

Firebird International Conference 2019 - Berlin

Joins with selectable stored procedures
 Optimizer puts SP at the first position

 To avoid multiple executions of SP
 To use indices for joined table(s)
 And that is good :-)
 If index is «turned off» via a hint, MERGE/HASH

will be used instead of Nested Loops, but usually it
does not make much sense

Firebird International Conference 2019 - Berlin

Joins with selectable stored procedures
 Join via input parameter

 Before Firebird 3 — error «no record to fetch»,
LEFT JOIN should be used instead of INNER JOIN

 Now optimizer puts the procedure at its proper
position

TABLE_A TA
join PROC_B(TA.ID) on 1 = 1

or

TABLE_A TA cross join PROC_B(TA.ID)

Firebird International Conference 2019 - Berlin

Joins with aggregates / unions
 They are also positioned unconditionally
 But it is not always good

(if predicate pushing is possible)
 Can be altered via LEFT JOIN

select …
from TABLE_A TA
 join (select FLD1, sum(FLD2)
 from …
 group by FLD1) DT
 on TA.ID = DT.FLD1

Firebird International Conference 2019 - Berlin

Joins and ORDER BY
 Ordering via SORT allows any possible join order,

let the optimizer doing its work
 ORDER plan (index-order navigation) can happen

only for the first joined table
 SORT vs ORDER — to be explained
 Join order can be altered by «hinting»,

but is it really necessary?
 Heuristics for FIRST, MIN/MAX, EXISTS

Firebird International Conference 2019 - Berlin

Example (nested loop join)

select s_acctbal, s_name, n_name

from part
 join partsupp on p_partkey = ps_partkey
 join supplier on ps_suppkey = s_suppkey
 join nation on s_nationkey = n_nationkey
 join region on n_regionkey = r_regionkey

where p_size = 15
 and p_type like '%BRASS'
 and r_name = 'EUROPE'

order by
 s_acctbal, n_name, s_name, p_partkey

Firebird International Conference 2019 - Berlin

Example (nested loop join)
PLAN SORT (JOIN (
 NATION NATURAL,
 REGION INDEX (REGION_PK),
 SUPPLIER INDEX (SUPPLIER_NATIONKEY),
 PARTSUPP INDEX (PARTSUPP_SUPPKEY),
 PART INDEX (PART_PK)))

vs

PLAN SORT (JOIN (
 PART NATURAL,
 PARTSUPP INDEX (PARTSUPP_PK),
 SUPPLIER INDEX (SUPPLIER_PK),
 NATION INDEX (NATION_PK),
 REGION INDEX (REGION_PK)))

Firebird International Conference 2019 - Berlin

Example (nested loop join)
→ Sort

 → Nested Loop Join (inner)

 → Table «NATION» Full Scan

 → Table «REGION» Access By ID

 → Bitmap

 → Index «REGION_PK» Unique Scan

 → Table «SUPPLIER» Access By ID

 → Bitmap

 → Index «SUPPLIER_NATIONKEY» Range Scan

 → Table «PARTSUPP» Access By ID

 → Bitmap

 → Index «PARTSUPP_SUPPKEY» Range Scan

 → Table «PART» Access By ID

 → Bitmap

 → Index «PART_PK» Unique Scan

Firebird International Conference 2019 - Berlin

Example (nested loop join)
→ Sort

 → Nested Loop Join (inner)

 → Table «PART» Full Scan

 → Table «PARTSUPP» Access By ID

 → Bitmap

 → Index «PARTSUPP_PK» Unique Scan

 → Table «SUPPLIER» Access By ID

 → Bitmap

 → Index «SUPPLIER_PK» Unique Scan

 → Table «NATION» Access By ID

 → Bitmap

 → Index «NATION_PK» Unique Scan

 → Table «REGION» Access By ID

 → Bitmap

 → Index «REGION_PK» Unique Scan

Firebird International Conference 2019 - Berlin

Example (nested loop join)

select s_acctbal, s_name, n_name

from part
 join partsupp on p_partkey = ps_partkey
 join supplier on ps_suppkey = s_suppkey
 join nation on s_nationkey+0 = n_nationkey+0
 join region on n_regionkey+0 = r_regionkey+0

where p_size = 15
 and p_type like '%BRASS'
 and r_name = 'EUROPE'

order by
 s_acctbal, n_name, s_name, p_partkey

Firebird International Conference 2019 - Berlin

Example (nested loop join)
PLAN SORT (
 HASH (
 HASH (
 JOIN (
 PART NATURAL,
 PARTSUPP INDEX (PARTSUPP_PK),
 SUPPLIER INDEX (SUPPLIER_PK)
),
 NATION NATURAL
),
 REGION NATURAL)
)
)

Firebird International Conference 2019 - Berlin

Example (nested loop join)
→ Sort

 → Hash Join (inner)

 → Hash Join (inner)

 → Nested Loop Join (inner)

 → Table «PART» Full Scan

 → Table «PARTSUPP» Access By ID

 → Bitmap

 → Index «PARTSUPP_PK» Unique Scan

 → Table «SUPPLIER» Access By ID

 → Bitmap

 → Index «SUPPLIER_PK» Unique Scan

 → Table «NATION» Full Scan

 → Table «REGION» Full Scan

Firebird International Conference 2019 - Berlin

Example (nested loop join)

select l_orderkey, o_orderdate,
 o_shippriority, sum(l_extendedprice)

from customer
 join orders on c_custkey = o_custkey
 join lineitem on o_orderkey = l_orderkey

where c_mktsegment = 'BUILDING'
 and o_orderdate < date '1995-03-15'
 and l_shipdate > date '1995-03-15'

group by 1, 2, 3

Firebird International Conference 2019 - Berlin

Example (nested loop join)
PLAN SORT (JOIN (
 CUSTOMER NATURAL,
 ORDERS INDEX (ORDERS_CUSTKEY),
 LINEITEM INDEX (LINEITEM_PK, LINEITEM_SHIPDATE)))

vs

PLAN SORT (JOIN (
 LINEITEM INDEX (LINEITEM_SHIPDATE),
 ORDERS INDEX (ORDERS_PK),
 CUSTOMER INDEX (CUSTOMER_PK)))

Firebird International Conference 2019 - Berlin

Example (nested loop join)
PLAN SORT (JOIN (
 LINEITEM INDEX (LINEITEM_SHIPDATE),
 ORDERS INDEX (ORDERS_PK),
 CUSTOMER INDEX (CUSTOMER_PK)))

vs

PLAN SORT (JOIN (
 ORDERS INDEX (ORDERS_ORDERDATE),
 CUSTOMER INDEX (CUSTOMER_PK),
 LINEITEM INDEX (LINEITEM_PK)))

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Страница 28
	Страница 29
	Страница 30
	Страница 31
	Страница 32
	Страница 33
	Страница 34

