
OPTIMIZATION OF SQL

QUERIES IN FIREBIRD

Dmitry Yemanov, Firebird

Alexey Kovyazin, IBSurgeon

Firebird Conference 2019
Berlin, 17-19 October

PART 1: EXPLAINED

PLANS

Explained plans in Firebird 3

• Run ISQL

• To see plans in the old format

set plan on;

• To see new plans:

set explain;

Full Scan (ex NATURAL)

select * from employee

PLAN (EMPLOYEE NATURAL)

Select Expression

-> Table "T1" Full Scan

• The fastest way to read records

Record 1

Record 2

Record 3

Record 3

Record 4

Record 5

Old and new plans

SELECT * FROM RDB$RELATIONS

WHERE RDB$RELATION_NAME > :a

ORDER BY RDB$SYSTEM_FLAG

PLAN SORT (RDB$RELATIONS INDEX (RDB$INDEX_0))

Select Expression

-> Sort (record length: 484, key length: 8)

-> Filter

-> Table "RDB$RELATIONS" Access By ID

-> Bitmap

-> Index "RDB$INDEX_0" Range Scan (lower bound: 1/1)

Old and new plans

SELECT * FROM RDB$RELATIONS

WHERE RDB$RELATION_NAME > :a

ORDER BY RDB$SYSTEM_FLAG

PLAN SORT (RDB$RELATIONS INDEX (RDB$INDEX_0))

Select Expression

-> Sort (record length: 484, key length: 8)

-> Filter

-> Table "RDB$RELATIONS" Access By ID

-> Bitmap

-> Index "RDB$INDEX_0" Range Scan (lower bound: 1/1)

Old and new plans

• SELECT * FROM RDB$RELATIONS

• WHERE RDB$RELATION_NAME > :a

• ORDER BY RDB$SYSTEM_FLAG

• PLAN SORT (RDB$RELATIONS INDEX (RDB$INDEX_0))

Select Expression

-> Sort (record length: 484, key length: 8)

-> Filter

-> Table "RDB$RELATIONS" Access By ID

-> Bitmap

-> Index "RDB$INDEX_0" Range Scan (lower bound: 1/1)

Old and new plans

• SELECT * FROM RDB$RELATIONS

• WHERE RDB$RELATION_NAME > :a

• ORDER BY RDB$SYSTEM_FLAG

• PLAN SORT (RDB$RELATIONS INDEX (RDB$INDEX_0))

Select Expression

-> Sort (record length: 484, key length: 8)

-> Filter

-> Table "RDB$RELATIONS" Access By ID

-> Bitmap

-> Index "RDB$INDEX_0" Range Scan (lower bound: 1/1)

Index Range Scan options

•Lower bound - >, >=

•Upper bound - <, <=

•Full scan - <>

•Unique scan - =
• For unique indices

•Full match - =
• For non-unique indices

Index

Lower

Upper

value

create index ixname on T1(name1)

• Alexandre

• Boris

• Carl

• Carlos

• Darth

• Emmanuel

• Darth

• Boris

• Emmanuel

• Carl

• Alexandre

• Carlos

Natural order In index

Index

Lower

Upper

value

Example of Lower Bound

SQL> select * from t1 where name1>'Carlos';

Select Expression

-> Filter

-> Table "T1" Access By ID

-> Bitmap

-> Index "IXNAME" Range Scan (lower bound: 1/1)

NAME1

==============================

Emmanuel

Dath

Example of Upper Bound

SQL> select * from t1 where name1<'Carlos';

Select Expression

-> Filter

-> Table "T1" Access By ID

-> Bitmap

-> Index "IXNAME" Range Scan (upper bound: 1/1)

NAME1

==============================

Carl

Alexandre

Boris

Example of Full match

SQL> select * from t1 where name1='Carlos';

Select Expression

-> Filter

-> Table "T1" Access By ID

-> Bitmap

-> Index "IXNAME" Range Scan (full match)

NAME1

==============================

Carlos

r15

r28

r43

r44

r55

r68

r75

How data are stored in the index

A

D

A

C

D

Alexandre r55

Boris r28

Carl r44

Carlos r68

Darth r15

Emmanuel r43

Root Page Pointer Page Keys (Leaf page) Data Pages

r15

r28

r43

r44

r55

r68

r75

Step 1: Find the first key corresponding to

the condition

A

D

A

C

D

Alexandre r55

Boris r28

Carl r44

Carlos r68

Darth r15

Emmanuel r43

Root Page Pointer Page Keys (Leaf page) Data Pages

In this case, Firebird does at least 3 reads of index pages

and 1 read of data page to read the first record.

r15

r28

r43

r44

r55

r68

r75

Step 2: Get all record numbers for keys

according the condition into the array

A

D

A

C

D

Alexandre r55

Boris r28

Carl r44

Carlos r68

Darth r15

Emmanuel r43

Root Page Pointer Page Keys (Leaf page) Data Pages

Step 3: sort records numbers

Alexandre r55

Boris r28

Carl r44

Carlos r68

Darth r15

Emmanuel r43

R15

R28

R43

R44

R55

R68

Composite indices

CREATE INDEX BY_AB ON MYTABLE (A, B)

SELECT * FROM MYTABLE
WHERE A = 1 AND B > 5
PLAN (MYTABLE INDEX (BY_AB))
• A B

1 1
1 2
1 3
2 1
2 2
2 3
3 1

• The second column depends on

the first column.

• where A > 1 and B > 5 - it will

not use the second condition

• where A = 1 and B = 5 it will use

both conditions

Index "RDB$INDEX_0" Range Scan (lower

bound: 1/1)

• For composite indices > 1.

• 1st value – how many segments is used

• 2nd value – total number of segments

• 1/3 – one of 3 segments is used (bad)

• 2/3 – 2 of 3 are used (better)

• 3/3 – all segments are used (best)

• In case of 1/3, 2/3 – better use 1-segment indices

2 indices together: Index bitmap
• select * from employee

where emp_no > 5 and last_name > 'b‘

PLAN (EMPLOYEE INDEX (RDB$PRIMARY7, NAMEX))

rdb$primary7 namex
employee

emp_no > 5

last_name > b

AND, OR

2 indices together: index bitmap

select * from a

where name > 'b' and a.id > 5

PLAN (A INDEX (ANAME, PK_A))

Select Expression

-> Filter

-> Table "A" Access By ID

-> Bitmap And

-> Bitmap

-> Index "ANAME" Range Scan (lower bound: 1/1)

-> Bitmap

-> Index "PK_A" Range Scan (lower bound: 1/1)

Full Scan or (TABLE ORDER INDEX)

select * from employee order by last_name;

PLAN (EMPLOYEE ORDER NAMEX)

Select Expression

-> Table "EMPLOYEE" Access By ID

-> Index "NAMEX" Full Scan

r15

r28

r43

r44

r55

r68

r75

Find the key corresponding to the

condition

A

D

A

C

D

Alexandre r55

Boris r28

Carl r44

Carlos r68

Darth r15

Emmanuel r43

Root Page Pointer Page Keys (Leaf page) Data Pages

In this case, Firebird does at least 3 reads of index pages and 1

read of data page to read the first record.

Example for Index Full Scan

• select count(*) from table (14mln записей)
Execute time = 42s 500ms
Buffers = 2048
Reads = 118 792
Fetches = 28 814 893

• select a, count(a) from table
group by a
PLAN (TABLE ORDER A)
Execute time = 1m 12s 469ms
Reads = 3 733 434

every page was re-read to cache ~31 times
Fetches = 42 869 143

Clustering factor

Index Key 1

Index Key 2

Index Key 3

Index Key 5

Index Key 4

Data Page 12

Data Page 13

Data Page 14

Good clustering factor:
INT/BIGINT autoincrement

Index Key 1

Index Key 2

Index Key 3

Index Key 5

Index Key 4

Data Page 12

Data Page 25

Data Page 28

Data Page 57

Data Page 44

Bad clustering factor:
GUID, random PK

Summary for table ORDER index

• It returns the first records very fast, according the

index

• Many jumps through index and data pages

• High IO (3x more than natural per each record)

• It leads to kicking pages from cache

• Only 1 index can be used – according ORDER

BY or GROUP BY sequence

• Index Clustering factor is important to estimate

the quality

PLAN SORT
• select * from employee order by last_name||’’

PLAN SORT ((EMPLOYEE NATURAL))

• Select Expression

• -> Sort (record length: 158, key length: 28)

• -> Table "EMPLOYEE" Full Scan

Database

Memory +

temporary file

sorting

Output

Copy data

ORDER vs SORT

• If page cache is small, SORT will be faster

• To speed up SORT – TempCacheLimit, fast drive for temp files

• To speed up ORDER – increase cache (SuperServer only)

PLAN SORT ((A

NATURAL))

Execute time = 35 s

Buffers = 2 048

Reads = 119 915

Fetches 14 767 524

PLAN (TABLE ORDER A)

Execute time = 1m 12s

Buffers = 2 048

Reads = 3 627 028

Fetches = 32 224 797

Execute time = 27s 518ms

Buffers = 150 000

Reads = 124 663

Fetches = 32 224 797

JOIN (recordset, recordset)

select e.last_name, p.proj_id

from employee e, employee_project p

where e.emp_no = p.emp_no

select e.last_name, p.proj_id

from employee e inner join employee_project p on
(e.emp_no = p.emp_no)

PLAN JOIN (P NATURAL, E INDEX (RDB$PRIMARY7))

JOIN PLAN variants

• JOIN (table1 NATURAL, table2 NATURAL)

• JOIN (table1 NATURAL, table2 INDEX indexname)

• JOIN (JOIN(table1 NATURAL, table 2 INDEX indexname),

table indexname)

• LEFT/RIGHT, INNER, FULL JOIN

Join plan for INNER JOIN

select e.emp_no, d.department from employee e

inner join department d on (e.dept_no = d.dept_no);

Select Expression

-> Nested Loop Join (inner)

-> Table "DEPARTMENT" as "D" Full Scan

-> Filter

-> Table "EMPLOYEE" as "E" Access By ID

-> Bitmap

-> Index "RDB$FOREIGN8" Range Scan (full match)

Join plan for LEFT/RIGHT

select e.emp_no, d.department from employee e

left join department d on (e.dept_no = d.dept_no);

Select Expression

-> Nested Loop Join (outer)

-> Table "EMPLOYEE" as "E" Full Scan

-> Filter

-> Table "DEPARTMENT" as "D" Access By ID

-> Bitmap

-> Index "RDB$PRIMARY5" Unique Scan

INNER JOIN + LEFT JOIN

select e.emp_no, d.department

from employee e inner join employee_project p

on (e.emp_no = ep.emp_no)

left join department d

on (e.dept_no = d.dept_no);

Old plan

PLAN JOIN (JOIN (EP NATURAL, E INDEX (RDB$PRIMARY7)),

D INDEX (RDB$PRIMARY5))

PLAN for INNER JOIN+LEFT

Select Expression

-> Nested Loop Join (outer)

-> Nested Loop Join (inner)

-> Table "EMPLOYEE_PROJECT" as "EP" Full Scan

-> Filter

-> Table "EMPLOYEE" as "E" Access By ID

-> Bitmap

-> Index "RDB$PRIMARY7" Unique Scan

-> Filter

-> Table "DEPARTMENT" as "D" Access By ID

-> Bitmap

-> Index "RDB$PRIMARY5" Unique Scan

select e.* from employee e, employee_project p

where e.emp_no+0 = p.emp_no+0

PLAN HASH (E NATURAL, P NATURAL)

Select Expression

-> Filter

-> Hash Join (inner)

-> Table "EMPLOYEE" as "E" Full Scan

-> Record Buffer (record length: 25)

-> Table "EMPLOYEE_PROJECT" as "P" Full Scan

HASH JOIN

Summary for new plans

•Natural

•FullScan

• Index

•RangeScan

•FullScan

•Sort

•JOIN

• Inner

•Outer

•Hash

END OF PART 1

