
 Firebird Conference 2019, Berlin Firebird Conference 2019, Berlin

Effective development of Firebird
database applications in

Delphi/Lazarus

Dmitrii Kuzmenko, IBSurgeon

1

 Firebird Conference 2019, Berlin

Firebird Conference 2019
Berlin, 17-19 October

 Firebird Conference 2019, Berlin

List of topics

• Client Library

• Delphi, Lazarus

• Unicode

• Transactions

• Other

– Reports

– Stored Aggregates

– Explicit locks

– Data Editing

3

 Firebird Conference 2019, Berlin

Client and server, 32 and 64 bit

4

fbclient.dll
32-bit

fbclient.dll
64-bit

Application
32-bit

Application
64-bit

Server,
32-bit

or
64-bit

TCP

Application Driver
Firebird Client
or Embedded

One capacity

Embedded

 Firebird Conference 2019, Berlin

Exe + dll

fbembed.dll
client +
engine

App

1.5-2.5

DB

fbclient.dll

App

DB

3.0

engine12.dll

5

 Firebird Conference 2019, Berlin

Embedded - Development and usage

• Develompent is uncomfortable

– ServerMode=SuperClassic, not SuperServer

– Better use normal Firebird server installation

• 32bit or 64bit – to your taste

• Usage – single-user applications. Not multi-
user

– SuperClassic mode allows to work with one
database for several applications on the same
computer

6

 Firebird Conference 2019, Berlin

Delphi

• FireDAC

• IBX

• dbExpress

• IBObjects

• FIBPlus – discontinued

• IBDAC, UNIDAC

• …

• in the beginning of the 2000 there were around
40 different drivers and component sets

7

 Firebird Conference 2019, Berlin

Delphi

• Delphi – 32bit IDE

• Can compile 32bit and 64bit applications

• so, you need to have 32bit and 64bit
fbclient.dll installed (by instclient i f)

• instclient i g - may also be needed for IBX
(gds32.dll)

8

 Firebird Conference 2019, Berlin

Delphi - FireDAC

see Firebird documentation
Firebird 3.0 Developer’s Guide
Developing Firebird Applications in Delphi

FDTransaction.Params

9

 Firebird Conference 2019, Berlin

dbExpress – handles?

• Cannot set transaction parameters

• TDBXTransaction exists, but useless

• Cannot switch between transactions

• transaction1.BeginTransaction;

• …

• transaction2.BeginTransaction;

• … here you can not return to transaction1 context,
you can only call it’s commit/rollback.

10

 Firebird Conference 2019, Berlin

Lazarus

• Components

• IBX2

– contains FB 3 API wrapper

• ZeosDBO

• FBLib

11

 Firebird Conference 2019, Berlin

Client libraries

• Lazarus – 64bit IDE

• all components need 64bit fbclient.dll

• use instreg i f

• or put fbclient to the lazarus and application
folder

12

 Firebird Conference 2019, Berlin

Lazarus - IBX

13

 Firebird Conference 2019, Berlin

IBX

14

 Firebird Conference 2019, Berlin

ZeosDBO

• No Transacton component
• if not lConnection.InTransaction then

 lConnection.BeginTransaction;
if lConnection.InTransaction then
 lConnection.CommitTransaction;

• Default to BDE – autocommit,
etc…

15

 Firebird Conference 2019, Berlin

• ZConnection.TransactIsolationLevel := tiNone;
ZConnection.Properties.Add('isc_tpb_concurrency');
ZConnection.Properties.Add('isc_tpb_wait');
ZConection.Properties.Add ('lc_ctype=ISO8859_1');
ZConnection.Connect;

16

 Firebird Conference 2019, Berlin

Working with components

• Table component – only for reference tables

• “Live dataset” does not exist

– Select, insert, update, delete, refreshRow

• Main problem – invalidation of a cursor after
commit/rollback

– you may use ClientDataSet (briefcase model)

17

 Firebird Conference 2019, Berlin

Components summary

• Better use components with transaction
control, with ability to set Firebird specific
connection and transaction parameters, and
with Services API support

• Universal components (including ODBC) – for
universal (different SQL servers) development

18

 Firebird Conference 2019, Berlin

Unicode

• Delphi up to 2007

– non-unicode

• Delphi 2009 and higher

– unicode, UTF-16, UTF-8

• Lazarus

– unicode, UTF-8

19

 Firebird Conference 2019, Berlin

Unicode

• database in country charset

– ISO8859_1, WIN1252 – Western Europe

• Danmark, Germany, Netherlands, UK, Spain, Finland,
France, Iceland, Italy, Notway, Portugal, Brasil, Sweden

– ISO8859_2, WIN1250 – Central Europe

• Czech, Hungary, Poland

– ISO8859_4 – Northern Europe

• Estonia, Latvia, Lithuania, Greenland

• database in unicode (UTF8)

20

 Firebird Conference 2019, Berlin

Charsets

• Connection charset – only one particular charset
• Database charset – each character or text blob column

can have it’s own charset
! “database charset” is a default charset that will be used when new
character/blob column is created, and no charset is specified. In this
sense database has no “charset”.
rdb$database.rdb$character_set_name
rdb$character_sets.rdb$default_collate_name – from 2.5

• Example:
if connection charset is ISO8859_1, and database have
character columns of ISO8859_2, there must be
“conversion table” from the column charset to
connection charset

21

 Firebird Conference 2019, Berlin

Is unicode is bigger?

Table Records RecLength Data Pages Size, mb

X1251 100000 28.86 852 6.66

XUTF8 100000 49.01 1094 8.55

Test:
X1251 varchar(30) character set win1251
XUTF8 varchar(30) character set UTF8
100k records.

Win1251 is a single-byte character set. So, 30 characters = 30 bytes
UTF8 is dynamic character set. Russian characters here occupy 2 bytes per each,
latin characters are 1 byte per character.
So, let us fill data with the national (russian) characters only.

UTF8 storage takes ~30% more than single-byte character set

22

 Firebird Conference 2019, Berlin

To and back

• Connection win1251 – database win1251

• Connection utf8 – database win1251

– only win1251 characters will pass

• Connection win1251 – database utf8

– only win1251 characters will pass

• As a transition – first use UTF8 connection
charset, next upgrade your database

23

 Firebird Conference 2019, Berlin

How to upgrade to UTF8?

• Only by pumping data to the new UTF8 DB.
– take script from the db (isql –x –ch nnn)

• -ch is mandatory. otherwise you may get garbage instead of literals
and comments

– check any specification of “character set”

– check any “collation” specification, decide what to specify
– UTF8 (USC_BASIC), UNICODE, UNICODE_CI,
UNICODE_CI_AI

– check column sizes that are close to 32k bytes (32k/4=8k)

– create database

– pump data from original database to the new one
(don’t worry to use non-unicode pump, just use same
character set for both connections, data will be converted
to unicode automatically)

24

 Firebird Conference 2019, Berlin

Upper

• Old style

– select * from table
where upper(name) = ‘STRING‘

• New style

– declare column as
name varchar(30) collate unicode_ci

– select * from table
where name = ‘string'

25

 Firebird Conference 2019, Berlin

iOS, Android?

• Only UTF8 databases.

26

 Firebird Conference 2019, Berlin

Working with transactions

• Worst example – MastApp.
One transaction for everything
CommitRetaining

• Do not use CommitRetaining (or
RollbackRetaining)

• Use as many transactions components, as you
need

• Do not use IBTransaction.Active:=True/False
– use StartTransaction, Commit and Rollback methods.

Active:=False is equal to Rollback (by default)

• Do not start transactions too often
• Avoid long running transactions

27

 Firebird Conference 2019, Berlin

Transaction defaults

• IBX – write wait snapshot

• FIBPlus – write no wait read_committed
rec_version

• FireDAC - write no wait read_committed

• Others - ? check by yourself

28

 Firebird Conference 2019, Berlin

Main performance issues

• Transaction control

– garbage, slowness

• Query optimization

– bad SQL, no index, redundant index

• firebird.conf optimization

• Hardware optimization

29

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 5
commit

Tx 6
commit

Tx 7
commit

Sequential transactions

30

Always test your application in the multi-user mode

 Firebird Conference 2019, Berlin

Gstat -h
• Database header page information:
• Flags 0
• Checksum 12345
• Generation 112431494
• Page size 8192
• ODS version 11.1
• Oldest transaction 100 x-1
• Oldest active 101 x
• Oldest snapshot 101 x
• Next transaction 102 x+1
• Bumped transaction 1
• Sequence number 0
• Next attachment ID 0
• Implementation ID 16
• Shadow count 0
• Page buffers 0
• Next header page 0
• Database dialect 1
• Creation date Jun 5, 2011 10:02:19
• Attributes force write

• Variable header data:
• Sweep interval: 20000
• *END*

31

 Firebird Conference 2019, Berlin

Ideal transaction control

32

 Firebird Conference 2019, Berlin

Two ways to almost ideal transaction
control

1. Long read-only read-committed (until Firebird
4.0) and short write

2. Short read and write

33

 Firebird Conference 2019, Berlin

Long read-only RC and short write

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx60 commit

Insert into T1(i1)
values (100);

Tx50
commit

SELECT i1
FROM T1

i1

Tx65 commit

Update T1 set
i1=200;

SELECT i1
FROM T1

i1
100

SELECT i1
FROM T1

i1
200

read
read committed
rec_version

34

 Firebird Conference 2019, Berlin

Short read and write

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx60 commit

Select *
from T1

Tx65 commit

Update T1
set i1=200;

Tx67 commit

Insert into
T1 values

(200);

Get records
into app cache

Update cache or
re-read all records

Update cache or
re-read all records

35

 Firebird Conference 2019, Berlin

Pro & Contra

Long read-only RC and short
writes

• + easy to implement read
and update logic

• - requires support from
drivers/components (2
transactions or 2
connections)

• + more convenient for
client-server

• - less convenient for multi-
tier and stateless
applications

Short read and writes

• - hard to implement
sophisticated caching

• + works with any data
access drivers/components

• - less convenient for client-
server

• + more convenient for
multi-tier and stateless
applications

36

 Firebird Conference 2019, Berlin

WHY NOTHING IS PERFECT

37

 Firebird Conference 2019, Berlin

Exceptions from ideal transaction
control

• Reports

• Product balances

• Explicit record locking

• Data editing

• Robots

38

 Firebird Conference 2019, Berlin

Reports

• Need data consistency

• Long queries

• Complex reports read the same data several
times

39

 Firebird Conference 2019, Berlin

Reports - snapshot

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx50
commit

SELECT i1
FROM T1

i1
100

SELECT i1
FROM T1

i1
100

SELECT i1
FROM T1

i1
100

snapshot

No difference – wait/nowait (except concurrency), read/write

40

 Firebird Conference 2019, Berlin

Heavy report example – OAT stuck

41

 Firebird Conference 2019, Berlin

How to workaround long report
problem

• Most reports does not need real-time data

• Change logic of data processing

• Scaling

– Replication

– Transferring data to another DB with Execute
Statement On External

– Nbackup

42

 Firebird Conference 2019, Berlin

Change logic of data processing –
Stored aggregates

• 1 order - ~10 goods
• 100 orders per day
• 100*10 = 1000 records per day
• 365000 records per year

• Store “order_total” in ORDERS table – 10 times

less records
• Pro: less records, faster queries

– No update conflicts if there is no concurrent order
editing

• Con: additional field in ORDERS

43

 Firebird Conference 2019, Berlin

If you want to go further…

• To store sum by day, month, …

• Updates by triggers “in place” won’t work –
too high possibility of lock conflicts

• Solution? Regular updates

– Regular procedure must be run in exclusive mode

• Using generator

• Using consistency isolation mode

– By schedule (at night)

44

 Firebird Conference 2019, Berlin

Goods balances – update locks

• Change AMOUNT while order is processed
•
• Insert - set AMOUNT = AMOUNT - new.INORDER
• Delete - set AMOUNT = AMOUNT + new.INORDER
• Update - set AMOUNT = AMOUNT + new.INORDER –

old.INORDER

• There may be conflicts when 2 people sell same
good_id
– Long transaction will lock all concurrent order processing
– Short transactions have less chances to get update conflict,

and may be retried

45

 Firebird Conference 2019, Berlin

Update locks

Goods

Order 1

Order 2

Item1

Item2

Item3

ok for the order, while only 1 user
may edit 1 order

not ok for goods, since
same item may be sold in
2 (or more) orders, that may
be edited same time

46

 Firebird Conference 2019, Berlin

ORDER 55
included good
with id 1000

ORDER 34
 edited good with id

1000

GOODS

update GOODS
set amount=amount-:x
where good_id = 1000

update GOODS
set amount=amount-:x
where good_id = 1000

Editing one order by 2 users is a rare case, but using same item is not rare

47

 Firebird Conference 2019, Berlin

Goods balance - solution
• CREATE TABLE MOVEMENTS(

GOOD INTEGER NOT NULL REFERENCES GOODS,
AMOUNT INTEGER NOT NULL)

• CREATE TABLE GOODS_AMOUNTS_AGG(
GOOD INTEGER NOT NULL REFERENCES GOODS,
AMOUNT INTEGER NOT NULL)

• On insert delete and update MOVEMENTS do
• INSERT INTO GOODS_AMOUNT_AGG

(GOOD, AMOUNT) VALUES
– (NEW.GOOD, NEW.AMOUNT);
– (NEW.GOOD, NEW.AMOUNT-OLD.AMOUNT);
– (OLD.GOOD, -OLD.AMOUNT);

48

 Firebird Conference 2019, Berlin

• CREATE VIEW GOODS_AMOUNT
(GOOD, AMOUNT) AS
 SELECT GOOD, SUM(AMOUNT)
 FROM GOODS_AMOUNT_AGG
 GROUP BY GOOD

• CREATE PROCEDURE GOODS_AMOUNT_ROLL_UP AS
DECLARE GOOD INTEGER;
DECLARE TOTAL INTEGER;
BEGIN
 FOR SELECT GOOD, SUM(AMOUNT)
 FROM GOODS_AMOUNT_AGG
 GROUP BY GOOD
 HAVING COUNT(*)>1 – interested of 2 or more records
 INTO :GOOD, :TOTAL
 DO
 BEGIN
 DELETE FROM GOODS_AMOUNT_AGG
 WHERE GOOD=:GOOD;
 INSERT INTO GOODS_AMOUNT_AGG
 (GOOD, AMOUNT) VALUES(:GOOD, :TOTAL);
 END
END

• Run procedure in concurrency (or consistency)

49

 Firebird Conference 2019, Berlin

Exclusive document editing

• Goal – implement exclusive changes

• Rollbacks are not welcome

• Need explicit record locking

50

 Firebird Conference 2019, Berlin

How to implement explicit record locking

• Blank update in long transaction

– Or SELECT … FOR UPDATE WITH LOCK

• Flags at business logic level

51

 Firebird Conference 2019, Berlin

Blank update

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx50
commit

Update T1 set
i1=i1 where id

= 5

SELECT i1
FROM T1…

Update t1 set
i1=…

snapshot

First update creates record version,
preventing other transactions to update this record

Con: Trigger fires on update, 2nd update causes update “in-place”

Pro: Easy to implement

52

 Firebird Conference 2019, Berlin

SELECT … FOR UPDATE WITH LOCK

• Same as blank update

• Can lock several records

• Locks record on fetch

– Result returns one record per one fetch (no
buffering)

• Useless for aggregates (SUM, AVG, COUNT, …)

53

 Firebird Conference 2019, Berlin

• Locking in the versioning server is not normal

• It maybe not enough to choose appropriate
transaction isolation level

54

 Firebird Conference 2019, Berlin

Flags at business logic level

• Add User and TimeStamp fields, or create additional table
• When you want to “lock”, write USER and

CURRENT_TIMESTAMP in short transaction

• if user <> myself then
 if TimeStamp is far then
 UPDATE set User, TimeStamp
 else Fail(“locked by user User at TimeStamp”)
else
 UPDATE set TimeStamp

• Additional table need to be cleared (disconnected apps)

55

 Firebird Conference 2019, Berlin

Data editing

• Application is used by operator not in the way
developer designed it

• Badly designed data editing can be a problem

56

 Firebird Conference 2019, Berlin

Data editing: wrong scenario

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx50
commit

Select …
Update t1 set

i1=…
snapshot

Open form
StartTransaction;
 IBDataSet.Open;
 IBDataSet.Edit;
// entering edit mode

on Save button
 Commit;
on Cancel button
 Rollback;

Wait for user input

57

 Firebird Conference 2019, Berlin

What is that?
Lunch time!

58

 Firebird Conference 2019, Berlin

Data editing: Solution

• Open form

• StartTransaction;

• Fill controls

• Commit;

• Wait for user

• User presses Save button:

• StartTransaction;
– IBDataSet.Edit; or IBQuery1.Prepare

• Fill data from controls
– IBDataSet.Post; or IBQuery1.ExecSQL;

• Commit;

59

 Firebird Conference 2019, Berlin

Data editing: Solution

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx60 commit

Select *
from T1

Tx67 commit

Insert into
T1 values

(200);

Open form
StartTransaction;
Fill controls
Commit;

Wait for user

on Save button:
 StartTransaction;

 IBDataSet.Edit; or IBQuery1.Prepare
 Fill data from controls
 IBDataSet.Post; or IBQuery1.ExecSQL;
 Commit;

60

 Firebird Conference 2019, Berlin

Robot rules

Reading robots

• Use read-only
ReadCommitted

• Try to do work in one
transaction, if possible

• Multi-tier - connection and
transaction pooling

• Goals
– Do not stuck OAT

– Do not advance Next too
much

Writing robots

• Do not keep attachment
open
– attach, do work, close;

• Keep transactions short

• Try to do work in one
transaction, if possible

• Goals
– Do not stuck OAT

61

 Firebird Conference 2019, Berlin

Tools to monitor transaction markers

• gstat –h

• mon$transactions (Firebird 2.1 and higher)

• Trace (Firebird 2.5 and higher)

• HQBird DataGuard

• FBScanner

• IBAnalyst (gstat visual)

62

 Firebird Conference 2019, Berlin

About IBSurgeon

• Tools and consulting

• Platinum Sponsor of Firebird
Foundation

• Founded in 2002: 17 years of
Firebird and InterBase
recoveries and consulting

• Based in Moscow, Russia
www.ib-aid.com www.ibsurgeon.com

63

http://www.ib-aid.com/
http://www.ib-aid.com/
http://www.ib-aid.com/
http://www.ibsurgeon.com/

