
Alex Peshkoff, Firebird
Alexey Kovyazin, IBSurgeon

Firebird Database Encryption
Workshop

Agenda

1) Why Encryption?
2) How Encryption works

1)On Server-Side
2)On Client-Side

3) Installation and Configuration
4) Performance of encrypted databases
5) Real-world cases and real-world problems

1)Windows CryptoAPI and in-place keys
2)Multi-thread client applications

1. Why Firebird Encryption

1. Why Encryption

• Protect database from the physical stealing
• Protect database from the access from the
applications without keys

• Protect databases with pre-filled data
• Protect metadata (stored procedures, triggers)
with non-trivial logic

• Because government wants it

When we don’t need encryption

• Protect database from file copying
 Adjust security settings on the server and in the

network
• Restrict access to the specific database

 Use separate security database, etc

2.1 How Firebird Encryption Works
On the Server-Side

2.1. How Firebird Encryption Works
On Server-Side

1)What part of a database is encrypted

2)When encryption happen?

3)How keys are transferred to plugin

4)DbCrypt plugin

5)DbCrypt and KeyHolder: key exchange details

What part of a database is encrypted?

PagesPages

Pointer pagesPointer pages

Data pagesData pages
Blob pointer

page

Blob pageBlob page

Index
root
page

Index
pages

System pagesSystem pages

PIPPIP Transaction
Pages

Transaction
Pages

Generators
pages

Generators
pages

Non-crypted DB: FirstAID data preview

Only pages with users data encrypted

PagesPages

Pointer pagesPointer pages

Data pagesData pages
Blob pointer

page

Blob pageBlob page

Index
root
page

Index
pages

System pagesSystem pages

PIPPIP Transaction
Pages

Transaction
Pages

Generators
pages

Generators
pages

System pages are not encrypted!

When data pages are being encrypted?

Database file

Operating System File Cache

Firebird Page Cache

SELECT * FROM TABLE1

When data pages are being encrypted?

Database file

Operating System File Cache

Firebird Page Cache

SELECT * FROM TABLE1

N
ot

 e
nc

ry
pt

ed
E

n
cr

yp
te

d

Let’s consider details

Operating System File Cache

Firebird Page Cache

N
ot

 e
nc

ry
p

te
d

E
n

cr
yp

te
d

?

Details: DbCrypt Plugin

Operation System File Cache

Firebird Page Cache

N
ot

 e
nc

ry
p

te
d

E
n

cr
yp

te
d

DbCrypt

DbCrypt.dll or
libDbCrypt.so
in plugins
folder

Details: DbCrypt Plugin

Operation System File Cache

Firebird Page Cache

N
ot

 e
nc

ry
p

te
d

E
n

cr
yp

te
d

DbCrypt

How DbCrypt
get the key to
encrypt/decrypt
data?

Details: DbCrypt and KeyHolder

Operation System File Cache

Firebird Page Cache

N
ot

 e
nc

ry
p

te
d

E
n

cr
yp

te
d

DbCrypt KeyHolder

Keys exchange details

DbCrypt KeyHolder

Read key from server-side file

DbCrypt

Key from
“secret” place

● “Secret” place or
USB stick

● Encrypted key file
(with built-in or
CryptoAPI)

Read key from server-side file

DbCrypt

KeyHolder.conf

● Unified way to work with keys – KeyHolder
● In case of file with keys – KeyHolder.conf

KeyHolder

Example of KeyHolder.conf

Key=Red
0xec,0xa1,0x52,0xf6,0x4d,0x27,0xda,0x93,0x53,0
xe5,0x48,0x86,0xb9,0x7d,0xe2,0x8f,0x3b,0xfa,0xb
7,0x91,0x22,0x5b,0x59,0x15,0x82,0x35,0xf5,0x30,
0x1f,0x04,0xdc,0x75,

Key=Green
0xab,0xd7,0x34,0x63,0xae,0x19,0x52,0x00,0xb8,0
x84,0xa3,0x44,0xbd,0x11,0x9f,0x72,0xe0,0x04,0x
68,0x4f,0xc4,0x89,0x3b,0x20,0x8d,0x2a,0xa7,0x0
7,0x32,0x3b,0x5e,0x74,

Database header of encrypted
database (gstat -h databasename)

Database header page information:

....

Creation date Jan 11, 2017 15:12:20

Attributes force write, encrypted, plugin DBCRYPT

Variable header data:

 Crypt checksum: MUB2NTJqchh9RshmP6xFAiIc2iI=

 Key hash: ask88tfWbinvC6b1JvS9Mfuh47c=

 Encryption key name: RED

 Sweep interval: 0

END

Multi-database access

DB1
KEY RED

DB2
KEY BLUE

DB3
KEY GREEN

DbCrypt

Array of Keys:
{ ‘RED’,
0xec,0xa1,0x52,0xf6,... }
{‘BLUE’,
0xab,0xd7,0x34,0x63,…}
{‘GREEN’, 0x32,…}

Keys management: KeyHolder

DbCrypt KeyHolder

Key exchange

KeyHolder gets the
keys from the client
app, or from the
safe storage

Attack scenarios
Option 1: Fake DbCrypt.dll

fake
DbCrypt.dll

KeyHolder

Key Dump

Attack scenarios:
Option 2: Fake Firebird.exe

DbCrypt.dll KeyHolder

Key Dump

Firebird.exe

Protection from fake modules

DbCrypt KeyHolder

Secret
Asymmetric Key

Public
Asymmetric Key

Key exchange is encrypted
with pair of public/private keys

Key exchange protocol (simplified)

• DbCrypt → KeyHolder:
● Give Me The Key

• KeyHolder
● Encrypt Key With Token From DbCrypt
● Transfers Encrypted Key to DbCrypt

• DbCrypt
● Decrypt Key
● Ready To Work

Execute Statement On External

• In case of ES On External – how to transfer
encryption key?

DbCrypt

KeyHolder

DbCrypt

KeyHolder

Server 1 Server 2

Summary for the server-side part of
encryption
• Encryption/decryption is done by DbCrypt plugin,
page by page, during the load/upload data from
Firebird page cache

• Key management can be implemented in the
simple way, when DbCrypt reads keys directly, but
better with KeyHolder plugin

• Now let’s discover how client applications work the
encrypted databases

2.2 How Firebird Encryption Works
On the Client-Side

Regular Firebird connection process
(simplified)

1)Client application loads client library

1) fbclient.dll – native Windows apps

2) libfbclient.so -native Linux apps

3) Java, .NET - implements simplified version of
protocol

2) Client app initiates connection, sending

1) Username, e.g. SYSDBA

2) Password, e.g., masterkey

3) Path/alias to database

Connection in a case of encrypted
database
● It is necessary to pass the encryption name and

key during the regular connection
● Yes, additional network roundtrip(s) is done

● To pass key, it is necessary to implement
interface ICryptCallback

How to implement ICryptCallBack

● It can be done in any popular programming
language

● To simplify creation of protected interface one
can use at client side:

fbcrypt.dll (HQbird)

Protection from key stealing

KeyHolder fbcrypt.dll

Secret
Asymmetric Key

Public
Asymmetric Key

Key exchange is encrypted
with pair of public/private keys

Connecting native apps through
fbcrypt.dll (Delphi, C++, PHP)

1)fbcrypt_init(pszClientPathName:Pointer) :
integer;

2)fbcrypt_key(pszKeyName:Pointer;pKeyValu
e:Pointer;iKeyLength:Cardinal) : integer;

3)fbcrypt_callback(provider:Pointer) : integer;

● And after that establish connection as usual

Connection process

Database file

Client app

fbcrypt.dll

fbclient.dll

Firebird Engine

KeyHolder pluginDbCrypt

Delphi example (w/o error handling)

In BeforeConnect handler

fbcrypt_init(PAnsiChar(‘C:\Firebird30\fbclient.dll’));

fbcrypt_key(‘RED’, ‘0xec,0xa1,0x52,0xf6,...’));

fbcrypt_callback();

Then connect as usual

Database1.Active:=True;

Thread safety

• fbcrypt calls must be done before the connection
• fbcrypt calls must be done in the same thread
where the connection will be established

• Every thread requires own key transfer (as well
as own connection)
● The single call of fbcrypt_callback is enough

fbcrypt_key

• Invoking fbcrypt_key() adds key to internal key
storage (array) in dll

• Keys by default are never deleted
● To explicitly delete all keys from internal storage

on the client side, use fbcrypt_init

Connecting to .NET and Java apps

• .NET and Java drivers have simplified
implementations of the Firebird connection
protocol

• The “ugly hack” is to send key through the
connection string
● Yes, it is unsafe! No protection from fake server

module

It is necessary to set in HQbird

UnsafeClient=true in the file KeyHolder.conf

 try
 {
 string connectionString =
 "User=SYSDBA;" +
 "Password=masterkey;" +
 "Database=G:\\Databases\\ODS12\\CRYPT.FDB;" +
 "DataSource=localhost;" +
 "Port=3053;" +
 "Dialect=3;" +
 "Charset=NONE;" +
 "Role=;" +
 "Connection lifetime=15;" +
 "Pooling=true;" +
 "MinPoolSize=0;" +
 "MaxPoolSize=50;" +
 "Packet Size=8192;" +
 "ServerType=0;" +
 "cryptkey = TXlLZXk6MHhlYywweG…...;";

 //you need calculate base64 from string:

"MyKey:0xec,0xa1,0x52,0xf6,0x4d,0x27,0xda,0x93,0x53,0
xe5,0x48,0x86,0xb9,0x7d,0xe2,0x8f,0x3b,0xfa,0xb7,0x91,
0x22,0x5b,0x59,0x15,0x82,0x35,0xf5,0x30,0x1f,0x04,0xdc
,0x75,"

// and use it as param for "cryptkey=xxx;" with ";" at the end

Why encryption key looks different?

Detailed examples

• The ready-to-use sample client applications for
Delphi, PHP, Java and .NET are here

• https://ib-aid.com/crypt

3. Installation and Configuration

Firebird.conf

• Put in firebird.conf

KeyHolderPlugin = KeyHolder
• Or, alternatively, in databases.conf, for alias crypt:

crypt =
C:\Temp\EMPLOYEE30\EMPLOYEE30.FDB
{
 KeyHolderPlugin = KeyHolder
}

https://ib-aid.com/crypt

Files on server
• %FirebirdFolder$\plugins

● DbCrypt.dll
● DbCrypt.conf
● KeyHolder.dll
● KeyHolder.conf – for development mode!

• %FirebirdFolder$
● fbcrypt.dll
● libcrypto-1_1-x64.dll

Test the encryption on server-side

isql
localhost:C:\Temp\EMPLOYEE30\EMPLOYEE30.FDB
-user SYSDBA -pass masterkey

SQL>alter database encrypt with dbcrypt key red;

SQL> show database;

Database:
localhost:C:\Temp\EMPLOYEE30\EMPLOYEE30.FDB

….

ODS = 12.0

Database encrypted

Default Character set: NONE

Yes, CaSe is ImporTanT on LinuX

Please note - on Linux it is necessary to use
quotes and case-sensitive plugin name:

alter database encrypt with "DbCrypt" key Red;

But keys names are always case-insensitive

Moving from Windows to Linux

 "DbCrypt"

Database header page information:

....

Creation date Jan 11, 2017 15:12:20

Attributes force write, encrypted, plugin
DBCRYPT

In order to fix DBCRYPT → DbCrypt, make
backup/restore

Or, better, add DBCRYPT to plugins.conf

Files on client side (Windows)
• Demo app – CryptTest.exe (32bit)
• Mandatory files:

● plugins/keyholder.dll
● fbcrypt.dll

• Optional files
● Gbak.exe
● plugins/dbcrypt.dll
● Plugins/DbCrypt.conf

Background encryption thread
Encryption works only when at least 1
connection is established.
It is running in the separate parallel thread,
and can take significant time!

No need for downtime!

How to track encryption progress
select mon$crypt_page *
100.0 / mon$pages as Percent
from mon$database;
commit;

Test client application access

• Remove KeyHolder.conf (or comment out keys)
• Try demo app connection

Backup/restore operations

gbak support in HQbird (FB 3)

 -KEYFILE name of a file with DB and backup
crypt key(s)

 -KEYNAME name of a key to be used for
encryption

 -KEY key value in "0x5A," notation

Backup/restore operations

gbak support in Firebird 4

 -KEYHOLDER name of a key holder
plugin
 -KEYNAME name of a key to be used
for encryption

Backup/restore operations

1) Backup copy will be created encrypted with the
same key as in the database or as specified

2) Restore will be restored with the same key name or
as specified

3) Multi-thread backup/restore is not supported for
encrypted backups and databases (only 1 thread will
be used)

By design it is impossible to create unencrypted
backup of encrypted database!

The opposite is possible.

4. Performance of encrypted
database

Encryption performance

• There are 3 factors: CPU, RAM and Forced
Writes
● CPU: the faster CPU, the better results
● RAM: the bigger part of the database is in page

cache, the better results (because database
pages in database cache are not encrypted)

● Forced Writes Off - cache is flushed less
frequently

Test (intensive IO), DB < RAM
● 24 (12 with HT) CPU Xeon
● RAM 32 Gb
● SSD
● 100 connections, 90 minutes
● AES256 (OpenSSL)
● Database size = 5Gb, Page Buffers 6Gb > DB

Forced writes Not encrypted Encrypted Performance
loss

On 4491 4152 8%

Off 4346 4183 4%

Test (Firebird OLTP-EMUL), 16Gb

100000 250000 350000 500000
0

1000

2000

3000

4000

5000

6000

7000

8000

Unencrypted

Encrypted

Page cache size

5. Real-world cases of Firebird
encryption

1. Encryption with encrypted key in place

• Plugin uses Windows CryptoAPI to read key file,
encrypted with CryptoAPI (custom plugin)

• Key is stored near the database
• End user every time is asked to enter Windows
password

Encrypted database
Key file, encrypted

by Windows CryptoAPI

Pro & Cons

• Pro
● Simple
● The same level of protection of key as in

Chrome, etc
• Cons

● Protection is not related with the application

2. Multi-thread middleware

Customer
portal (PHP)

~1000 databases

Encrypted
Database 1

Key 1

Encrypted
Database 2

Key 2

Encrypted
Database 999

Key 999

Encrypted
database
 with keys

Pro & Cons

• Pro
● Simple enough

• Cons
● One ring rules them all (c)

Summary

Benefits of chosen encryption approach

• Online encryption/decryption – no downtime
● Separate thread is launched
● Only when database has other connection(s)!

• Connections to the several databases may be
encrypted with different keys
● Keys are selected according to DB header
● Up to 2048 keys were tested
● Support of execute statement on external

• Low performance penalty

Limitations and side-effects of
encryption
• gbak – requires special version of gbak to create
encrypted copies (HQbird)

• nbackup, gfix – do not work, will be fixed in FB4
• gstat – only gstat -h and gstat -e (encryption
statistics)

• In case of a serious corruption, database requires
decryption out of FB engine to use third-party
recovery tools (like FirstAID)

Thank you
• Questions?
•
• support@ib-aid.com
•

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 74

