
 Firebird Conference 2019, Berlin Firebird Conference 2019, Berlin

Transactions interaction and best
practices for application

development

1

 Firebird Conference 2019, Berlin

Firebird Conference 2019
Berlin, 17-19 October

 Firebird Conference 2019, Berlin

TRANSACTIONS LIFETIME IN
VARIOUS DRIVERS

3

 Firebird Conference 2019, Berlin

InterBase and Firebird API

Database
attachment

Transaction 1

Transaction 2

Transaction 3

Query 1

Query 2

Query 3

Query 4

Handles!

4

 Firebird Conference 2019, Berlin

Most standard drivers

Database
attachment

Implicit
transaction

Query 1

Query 2

Query 3

Explicit
control

Start
Commit
Rollback

5

 Firebird Conference 2019, Berlin

Implicit transactions

• Hidden. You do not see them, you do not control them
• Any SQL statement causes transaction start
• Autocommit mode

– Each successful INSERT, UPDATE, DELETE and Execute Procedure
causes automatic Commit. Any error causes Rollback.

– SELECT statements may not be committed, until Insert, Update,
Delete or Execute procedure.

• You cannot define set of SQL DML statements as a real
transaction

• Transaction with Select statements can run forever
• Transaction may be ended by Retaining
• Connect may start transaction immediately

6

 Firebird Conference 2019, Berlin

Connect

Select Update Select Insert

start t1 commit t1
start t2

commit t2
start t3

commit t3
start t4 commit t4

7

 Firebird Conference 2019, Berlin

Explicit transactions

• You may (or not) call StartTransaction

• All SQL statements will execute in that
transaction

• You must end transaction with explicit Commit
or Rollback

8

 Firebird Conference 2019, Berlin

Connect

Select Update Select Insert

start t1 commit t1
start t2

commit t2
start t3

commit t3

9

 Firebird Conference 2019, Berlin

One transaction per connect

• Common driver architecture
– BDE
– ODBC
– JDBC
– DBExpress
– .Net driver
– …

• Implicit transactions by default
• You may start explicit transactions
• Transactions can live (be active) for a very long

time

10

 Firebird Conference 2019, Berlin

BDE

• DataSet.Open;

• Query.ExecSQL;

• Database.StartTransaction

– Query1.ExecSQL;

– DataSet1.Open;

• Database.Commit;

11

 Firebird Conference 2019, Berlin

Many transactions per connect

• IBX, FIBPlus, FireDAC (AnyDAC), UIB, …

• Total control on transaction parameters

• Many transactions per connect

• Ability to use DataSets for read in one
transaction, and write in another

12

 Firebird Conference 2019, Berlin

IBX

• Transaction1.StartTransaction;

• IBQuery1.ExecSQL;

• Transaction2.StartTransaction;

• IBQuery2.ExecSQL;

• Transaction1.Commit;

• Transaction2.Rollback;

13

 Firebird Conference 2019, Berlin

Long reading transactions

• from InterBase 6.0

• read
nowait
read_committed
rec_version

• This can be running forever

14

 Firebird Conference 2019, Berlin

dbExpress – handles?

• Cannot set parameters

• TDBXTransaction exists, but useless

• Cannot switch between transactions

• transaction1.BeginTransaction;

• …

• transaction2.BeginTransaction;

• … here you can not return to transaction1
context, you can only call it’s commit/rollback.

15

 Firebird Conference 2019, Berlin

Bad transaction control

16

 Firebird Conference 2019, Berlin

Perfect transaction control

17

 Firebird Conference 2019, Berlin

Rules for native components/drivers

• Do not use “default” transaction. Always use
explicit transaction control.

• Do not use “default transaction parameters”
– Default may be ReadCommitted or Snapshot, you will

never know

• Do not allow to live transactions for a long time.
– Keep transactions short
– Use read read_committed for long reading

• Do not use retaining (CommitRetaining,
RollbackRetaining)

• Even if there AutoCommit option, check it not to
use Retaining mode.

18

 Firebird Conference 2019, Berlin

Rules for ‘single transactional’

• Do not use these drivers/components 

• All you can do, is from time to time call

– Database.StartTransaction;

– Database.Commit;

• to end default transaction lifecycle

19

 Firebird Conference 2019, Berlin

TRANSACTIONS INTERACTION
TYPES

20

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 5
commit

Tx 6
commit

Tx 7
commit

Sequential transactions

21

 Firebird Conference 2019, Berlin

Gstat -h

• Database header page information:
• Flags 0
• Checksum 12345
• Generation 112431494
• Page size 8192
• ODS version 11.1
• Oldest transaction 100 x-1
• Oldest active 101 x
• Oldest snapshot 101 x
• Next transaction 102 x+1
• Bumped transaction 1
• Sequence number 0
• Next attachment ID 0
• Implementation ID 16
• Shadow count 0
• Page buffers 256
• Next header page 0
• Database dialect 1
• Creation date Jun 5, 2011 10:02:19
• Attributes force write

• Variable header data:
• Sweep interval: 20000
• *END*

22

 Firebird Conference 2019, Berlin

Ideal transaction control

23

 Firebird Conference 2019, Berlin

Two ways to almost ideal transaction
control

1. Long read-only read-committed and short
write

2. Short read and write

24

 Firebird Conference 2019, Berlin

Long read-only RC and short write

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx60 commit

Insert into T1(i1)
values (100);

Tx50
commit

SELECT i1
FROM T1

i1

Tx65 commit

Update T1 set
i1=200;

SELECT i1
FROM T1

i1
100

SELECT i1
FROM T1

i1
200

read
read committed
rec_version

25

 Firebird Conference 2019, Berlin

Short read and write

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx60 commit

Select *
from T1

Tx65 commit

Update T1
set i1=200;

Tx67 commit

Insert into
T1 values

(200);

Get records
into app cache

Update cache or
re-read all records

Update cache or
re-read all records

26

 Firebird Conference 2019, Berlin

Pro & Contra

Long read-only RC and short
writes

• + easy to implement read
and update logic

• - requires support from
drivers/components (2
transactions or 2
connections)

• + more convenient for
client-server

• - less convenient for multi-
tier and stateless
applications

Short read and writes

• - hard to implement
sophisticated caching

• + works with any data
access drivers/components

• - less convenient for client-
server

• + more convenient for
multi-tier and stateless
applications

27

 Firebird Conference 2019, Berlin

HOW TO IMPLEMENT EDIT DIALOGS
IN AN EFFECTIVE AND SAFE WAY

28

 Firebird Conference 2019, Berlin

Data editing

• Application is used by operator not in the way
developer designed it

• Badly designed data editing can be a problem

29

 Firebird Conference 2019, Berlin

Data editing: wrong scenario

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx50
commit

Select …
Update t1 set

i1=…
snapshot

Open form
StartTransaction;
 IBDataSet.Open;
 IBDataSet.Edit;
// entering edit mode

on Save button
 Commit;
on Cancel button
 Rollback;

Wait for user input

30

 Firebird Conference 2019, Berlin

What is that?
Lunch time!

31

 Firebird Conference 2019, Berlin

Data editing: Solution

• Open form
• StartTransaction;
• Fill controls
• Commit;
• Wait for user

• User presses Save button:
• StartTransaction;

– IBDataSet.Edit; or IBQuery1.Prepare

• Fill data from controls
– IBDataSet.Post; or IBQuery1.ExecSQL;

• Commit;

32

 Firebird Conference 2019, Berlin

Data editing: Solution

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx60 commit

Select *
from T1

Tx67 commit

Insert into
T1 values

(200);

Open form
StartTransaction;
Fill controls
Commit;

Wait for user

on Save button:
 StartTransaction;

 IBDataSet.Edit; or IBQuery1.Prepare
 Fill data from controls
 IBDataSet.Post; or IBQuery1.ExecSQL;
 Commit;

33

 Firebird Conference 2019, Berlin 34

Retaining transaction context

● Retaining ends transaction and starts a new
one

● Old transaction is marked in TIP as
committed\rolled back

● New transaction keeps context of old
transaction

● Old snapshot is preserved, i.e. new
transaction have the same OAT value as
the old one

● New transaction will see changes of the old
one as committed

 Firebird Conference 2019, Berlin 35

Hard commit\rollback vs retaining

● Pluses

● One network roundtrip instead of two

● Client recordsets survive transaction end

● Minuses

● Open cursors are not closed

● Temporary blobs are not released

● Metadata locks are not released

 Firebird Conference 2019, Berlin

WHEN GARBAGE COLLECTION DOES
NOT WORK?

36

 Firebird Conference 2019, Berlin

TIP markers

0

Next Transaction
Oldest transaction

Oldest snapshot

Oldest active

snapshot transaction copy

Firebird sweep interval

Transaction Inventory Page

37

 Firebird Conference 2019, Berlin

OAT is “blocked”
by active

transaction

Active transaction
ended after ~6

hours

38

 Firebird Conference 2019, Berlin

HOW TO IDENTIFY SWEEP

39

 Firebird Conference 2019, Berlin

In the firebird.log !

• SRV-250 Mon May 18 21:00:01 2015
 Sweep is started by SYSDBA
 Database “----"
 OIT 25963894, OAT 26340734, OST 26340734,
Next 27458805

• SRV-250 Mon May 18 21:46:25 2015
 Sweep is finished
 Database “----“
 OIT 26340733, OAT 26340734, OST 26340734,
Next 27499132

40

 Firebird Conference 2019, Berlin

What sweep could do

• Sweeping took 46 minutes (356gb database)

• OIT moved up by 376 839

• OST went up by 0

• OAT went up by 0

• Next went up by 40 327

– 77k transactions per hour

• Next-OAT = 1 158 398

– div 77k = oat stuck ~14 hours ago

41

 Firebird Conference 2019, Berlin

HOW TO IDENTIFY PROBLEMATIC
TRANSACTIONS (TOO LONG, WRONG
ISOLATION LEVEL) WITH MON$

42

 Firebird Conference 2019, Berlin

mon$transactions

• MON$TRANSACTION_ID - transaction ID
• MON$ATTACHMENT_ID - attachment ID
• MON$STATE - transaction state

– 0: idle
– 1: active

• MON$TIMESTAMP - transaction start date/time
• MON$TOP_TRANSACTION top transaction MON$OLDEST_TRANSACTION - local OIT number
• MON$OLDEST_ACTIVE - local OAT number
• MON$ISOLATION_MODE - isolation mode

– 0: consistency
– 1: concurrency
– 2: read committed record version
– 3: read committed no record version

• MON$LOCK_TIMEOUT - lock timeout
– 0: no wait
– 1: infinite wait
– N: timeout N

• MON$READ_ONLY - read-only flag 0/1
• MON$AUTO_COMMIT - auto-commit flag
• MON$AUTO_UNDO - auto-undo flag
• MON$STAT_ID - statistics ID

43

 Firebird Conference 2019, Berlin

• select * from mon$transactions
order by mon$timestamp desc

• select a.*, t.*
from mon$attachments a, mon$transactions t
where a.mon$attachment_id =
t.mon$attachment_id
order by t.mon$timestamp desc

44

 Firebird Conference 2019, Berlin

MonLogger

who, where, when, how long, what application

45

 Firebird Conference 2019, Berlin

read/write, RC & snapshot, wait

46

 Firebird Conference 2019, Berlin

How to track conflicts and deadlocks

• Set trace config

• Run trace session

• Analyze trace log

• https://ib-aid.com/en/how-to-track-
deadlocks-in-firebird/

47

 Firebird Conference 2019, Berlin

LEGACY APPLICATIONS:
WORKAROUNDS FOR ERROR IN
TRANSACTIONS MANAGEMENT

48

 Firebird Conference 2019, Berlin

Oops…

• If you do not have sources, or you do not
understand sources, or ….
The only way is to terminate these
applications by at/cron schedule, for example,
each hour or two.

• Active transactions in these applications
decrease performance by accumulating record
versions, blocking sweep, etc.

• ! rewrite these applications

49

 Firebird Conference 2019, Berlin

BEST PRACTICES

50

 Firebird Conference 2019, Berlin

Exceptions from ideal transaction
control

• Reports

• Goods balance

• Explicit record locking

• Robots

51

 Firebird Conference 2019, Berlin

Reports

• Need data consistency

• Long queries

• Complex reports read the same data several
times

52

 Firebird Conference 2019, Berlin

Reports - snapshot

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx50
commit

SELECT i1
FROM T1

i1
100

SELECT i1
FROM T1

i1
100

SELECT i1
FROM T1

i1
100

snapshot

No difference – wait/nowait (except concurrency), read/write

53

 Firebird Conference 2019, Berlin

Heavy report example – OAT stuck

54

 Firebird Conference 2019, Berlin

How to workaround long report problem

• Most reports does not need real-time data

• Change logic of data processing

• Scaling

– Replication

– Transferring data to another DB with Execute
Statement On External

– Nbackup

55

 Firebird Conference 2019, Berlin

Change logic of data processing –
Stored aggregates

• 1 order - ~10 goods
• 100 orders per day
• 100*10 = 1000 records per day
• 365000 records per year

• Store “order_total” in ORDERS table – 10 times

less records
• Pro: less records, faster queries

– No update conflicts if there is no concurrent order
editing

• Con: additional field in ORDERS

56

 Firebird Conference 2019, Berlin

If you want to go further…

• To store sum by day, month, …

• Updates by triggers “in place” won’t work –
too high possibility of lock conflicts

• Solution? Routine updates

– Routine procedure must be run in exclusive mode

• Using generator

• Using consistency isolation mode

– By schedule (at night)

57

 Firebird Conference 2019, Berlin

Goods balances – update locks

• Change goods AMOUNT while order is processed
•
• Insert - set AMOUNT = AMOUNT - new.INORDER
• Delete - set AMOUNT = AMOUNT + new.INORDER
• Update - set AMOUNT = AMOUNT + new.INORDER –

old.INORDER

• There may be conflicts when 2 people sell same
good_id
– Long transaction will lock all concurrent order processing
– Short transactions have less chances to get update conflict,

and may be retried

58

 Firebird Conference 2019, Berlin

ORDER 55
included good
with id 1000

ORDER 34
 edited good with id

1000

GOODS

update GOODS
set amount=amount-:x
where good_id = 1000

update GOODS
set amount=amount-:x
where good_id = 1000

Editing one order by 2 users is a rare case, but using same item is not rare

59

 Firebird Conference 2019, Berlin

Goods balances- solution

• CREATE TABLE MOVEMENTS(
GOOD INTEGER NOT NULL REFERENCES GOODS, AMOUNT
INTEGER NOT NULL)

• CREATE TABLE GOODS_AMOUNTS_AGG(
GOOD INTEGER NOT NULL REFERENCES GOODS, AMOUNT
INTEGER NOT NULL)

• On insert update and delete MOVEMENTS do
• INSERT INTO GOODS_AMOUNT_AGG

(GOOD, AMOUNT) VALUES
– (NEW.GOOD, NEW.AMOUNT);
– (NEW.GOOD, NEW.AMOUNT-OLD.AMOUNT);
– (OLD.GOOD, -OLD.AMOUNT);

60

 Firebird Conference 2019, Berlin

• CREATE VIEW GOODS_AMOUNT
(GOOD, AMOUNT) AS
 SELECT GOOD, SUM(AMOUNT)
 FROM GOODS_AMOUNT_AGG
 GROUP BY GOOD

• CREATE PROCEDURE GOODS_AMOUNT_ROLL_UP AS
DECLARE GOOD INTEGER;
DECLARE TOTAL INTEGER;
BEGIN
 FOR SELECT GOOD, SUM(AMOUNT)
 FROM GOODS_AMOUNT_AGG
 GROUP BY GOOD
 HAVING COUNT(*)>1 – interested of 2 or more records
 INTO :GOOD, :TOTAL
 DO
 BEGIN
 DELETE FROM GOODS_AMOUNT_AGG
 WHERE GOOD=:GOOD;
 INSERT INTO GOODS_AMOUNT_AGG
 (GOOD, AMOUNT) VALUES(:GOOD, :TOTAL);
 END
END

• Run procedure in concurrency (or consistency)

61

 Firebird Conference 2019, Berlin

Exclusive document editing

• Goal – implement exclusive changes

• Rollbacks are not welcome

• Need explicit record locking

62

 Firebird Conference 2019, Berlin

How to implement explicit record locking

• Blank update in long transaction

– Or SELECT … FOR UPDATE WITH LOCK

• Flags at business logic level

63

 Firebird Conference 2019, Berlin

Blank update

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx50
commit

Update T1 set
i1=i1 where id

= 5

SELECT i1
FROM T1…

Update t1 set
i1=…

snapshot

First update creates record version,
preventing other transactions to update this record

Con: Trigger fires on update

Pro: Easy to implement

64

 Firebird Conference 2019, Berlin

SELECT … FOR UPDATE WITH LOCK

• Same as blank update

• Can lock several records

• Locks record on fetch

– Result returns one record per one fetch (no
buffering)

• Useless for aggregates (SUM, AVG, COUNT, …)

65

 Firebird Conference 2019, Berlin

• Locking in the versioning server is not normal

• It maybe not enough to choose appropriate
transaction isolation level

66

 Firebird Conference 2019, Berlin

Flags at business logic level

• Add User and TimeStamp fields, or create additional table
• When you want to “lock”, write USER and

CURRENT_TIMESTAMP in short transaction

• if user <> myself then
 if TimeStamp is far then
 UPDATE set User, TimeStamp
 else Fail(“locked by user User at TimeStamp”)
else
 UPDATE set TimeStamp

• Additional table need to be cleared (disconnected apps)

67

 Firebird Conference 2019, Berlin

Robot rules

Reading robots

• Use read-only
ReadCommitted

• Try to do work in one
transaction, if possible

• Multi-tier - connection and
transaction pooling

• Goals
– Do not stuck OAT

– Do not advance Next too
much

Writing robots

• Do not keep attachment
open
– attach, do work, close;

• Keep transactions short

• Try to do work in one
transaction, if possible

• Goals
– Do not stuck OAT

68

 Firebird Conference 2019, Berlin

• Thank you!

• www.firebirdsql.org

• www.ib-aid.com

• support@ib-aid.com

69

http://www.firebirdsql.org/
http://www.ib-aid.com/
http://www.ib-aid.com/
http://www.ib-aid.com/
mailto:support@ib-aid.com
mailto:support@ib-aid.com
mailto:support@ib-aid.com

