
Firebird Conference 2019, Berlin

Inside Firebird transactions

Vlad Khorsun,
Firebird developers team

Firebird Conference 2019
Berlin, 17-19 October

Firebird Conference 2019, Berlin Overview

What we will speak about:

● Transaction start
● transactions markers

● COMMIT
● ROLLBACK
● Savepoints and undo log
● Retaining transaction context
● Resource usage by transaction

4Firebird Conference 2019, Berlin Transaction start

● Get own unique number
● Create own copy of TIP

● snapshot transactions
● Update shared TIP cache

● read-committed transactions
● Evaluate markers OAT, OST and OIT
● Run auto-sweep if necessary

Transaction start actions:

5Firebird Conference 2019, Berlin Transaction start

Transactions markers

firebird>gstat -h A.FDB

Database header page information:
 Flags 0
 Generation 6
 System Change Number 0
 Page size 4096
 ODS version 12.0
 Oldest transaction 1
 Oldest active 2
 Oldest snapshot 2
 Next transaction 3
 Sequence number 0
 Next attachment ID 3

6Firebird Conference 2019, Berlin Transaction start

Get own unique number

● Lock Header page for write
● Read and increment Next transaction marker
● Extend TIP if necessary
● Write new value of Next back to the Header page
● Release Header page

7Firebird Conference 2019, Berlin Transaction start

● Snapshot transactions uses its own copy of TIP
● Only active part of TIP contents is copied
● The low bound is current OIT value

● All transactions below OIT considered committed
● The high bound is Next value

● All transactions above Next considered active

Create own copy of transactions inventory (TIP)

Size of active part of the TIP in bytes is
(Next – OIT) / 4

It affects memory usage !

Size of active part of the TIP in bytes is
(Next – OIT) / 4

It affects memory usage !

8Firebird Conference 2019, Berlin Garbage collection

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16

32

48

64

80

96

112 122

128

144 156

Create own copy of transactions inventory (TIP)

OIT Next

Active part of TIP contains transactions 123 – 156
Its size is 10 bytes

9Firebird Conference 2019, Berlin Transaction start

● Read-committed transactions uses common shared
cache of transactions inventory (TIP cache):
● Committed and rolled back transactions can't

change its state, no verification is required
● Active transaction is verified additionally:

– If transaction is alive – it is really active
– Else fetch state from disk and update TIP cache

Update shared cache of transactions inventory

Read-committed transaction could be less efficient
when reads many records updated by active

transactions

Read-committed transaction could be less efficient
when reads many records updated by active

transactions

10Firebird Conference 2019, Berlin Transaction start

● For each snapshot transaction engine maintains stable
view of database

● Transaction can not see record versions created by
another active transaction

● Transaction should walk backversions chain looking
for committed backversion

Record versions visibility

11Firebird Conference 2019, Berlin

R1

R2

R3

R4

R5

Transaction start

Record versions visibility

TIP contents for Tx 20

Tx
№ Tx state

... committed

11 committed

12 committed

13 committed

14 active

15 committed

16 committed

17 rolled back

18 active

19 committed

20 active

... active

Tx 16Tx 18

Record versions or versions chain

Tx 11 Tx 10Tx 20

Tx 14

Tx 14Tx 25 Tx 12

Tx 12 Tx 20 can seeTx 20 can see

Tx 20 can seeTx 20 can see

12Firebird Conference 2019, Berlin Transaction start

● Engine should not remove backversions if primary
record version I see is active

● Records, which primary version is created by any
active transaction I know, must be preserved for me

● Records, which primary version is created by
transaction younger then oldest active transaction I
know, must be preserved for me

● Oldest Active Transaction defines transaction's private
snapshot

Transaction's private snapshot of database

13Firebird Conference 2019, Berlin Transaction start

● OAT is the first transaction in TIP which state is
“active”

● Evaluation
● Scan TIP starting from current OAT value looking

for “active” transaction
● Save found value in transaction's lock data
● Save found value as new OAT marker

OAT - Oldest Active Transaction

OAT is really an oldest active transactionOAT is really an oldest active transaction

14Firebird Conference 2019, Berlin Transaction start

● Sample of transactions flow and evaluation of OAT

Tx 1, OAT = 1

Tx 2, OAT = 1

Tx 3, OAT = 1

Tx 4, OAT = 2

Tx 5, OAT = 4

time

OAT - Oldest Active Transaction

15Firebird Conference 2019, Berlin Transaction start

● Engine maintains snapshots for every active snapshot
transaction

● Snapshot of oldest of currently active transactions is
an oldest snapshot in database

Oldest snapshot in database

16Firebird Conference 2019, Berlin Transaction start

● Oldest Snapshot Transaction (OST) marker is the
value of the OAT recorded when oldest of currently
active transactions was started

● Get min value of stored in transactions lock's data
● Save found value as new OST marker

OST - Oldest Snapshot Transaction

time
Tx 1, OAT = 1

Tx 2, OAT = 1

Tx 3, OAT = 1

Tx 4, OAT = 2

Tx 5, OAT = 4

OST = 1 OST = 2

17Firebird Conference 2019, Berlin Transaction start

● Oldest Snapshot Transaction (OST) marker is the
value of the OAT when oldest of currently active
transactions was started

OST - Oldest Snapshot Transaction

time
Tx 1, OAT = 1

Tx 2, OAT = 1

Tx 3, OAT = 1

Tx 4, OAT = 2

Tx 5, OAT = 4

OST = 1 OST = 2

OST value often is not an alive transactionOST value often is not an alive transaction

18Firebird Conference 2019, Berlin Transaction start

● OST marker defines a garbage collection threshold:
records, created by transactions >= OST can not be
garbage collected

OST - Oldest Snapshot Transaction

time
Tx 1, OAT = 1

Tx 2, OAT = 1

Tx 3, OAT = 1

Tx 4, OAT = 2

Tx 5, OAT = 2

OST = 1

Long running transactions will “stuck” OST and delay GCLong running transactions will “stuck” OST and delay GC

19Firebird Conference 2019, Berlin Transaction start

● Read Committed transaction don't require stable
snapshot of database

● Oldest Active value for Read Committed transaction is
an own number of such transaction

● Read Committed Readonly transaction can't create
record versions, is pre-committed at start and have no
impact on OST

OST and Read Committed

Read Committed Readonly transaction could run forever
and do not delay garbage collection

Read Committed Readonly transaction could run forever
and do not delay garbage collection

20Firebird Conference 2019, Berlin Transaction start

Tx 1, OAT = 1

Tx 2, OAT = 2

Tx 3, OAT = 3

Tx 4, OAT = 4

Tx 5, OAT = 5

OST = 1 OST = 4

Tx 1, OAT = 1

Tx 2, OAT = 1

Tx 3, OAT = 2

Tx 4, OAT = 2

Tx 5, OAT = 4

OST = 1 OST = 2

time

time

OST = 2

Snapshot Snapshot

Read committedRead committed

21Firebird Conference 2019, Berlin Transaction start

● Oldest Interesting Transaction (OIT) marker is
necessary to know to separate old not active part of
TIP from currently used active part

● OIT points before a first transaction in TIP which state
is not committed

● Evaluation:
● Scan TIP starting from current OIT value looking for

first not committed transaction

OIT - Oldest Interesting Transaction

22Firebird Conference 2019, Berlin Transaction start

● Run sweep if necessary:
● sweep_interval > 0, and
● sweep_interval < OST – OIT

● Mark READ_COMMITTED READONLY transaction as
committed in TIP

● Run ON TRANSACTION START triggers
● For user transactions (including autonomous) only

Transaction start: final actions

23Firebird Conference 2019, Berlin Transaction commit

● Run ON TRANSACTION COMMIT triggers
● User and autonomous transactions

● Commit EXTERNAL transaction's
● Finish DDL work items
● Flush dirty pages to disk
● Set transaction state in TIP to committed
● Post EVENTS
● Release transaction and its resources

Commit actions

24Firebird Conference 2019, Berlin Transaction commit

● User: CREATE INDEX
● Engine:

– Generate index name, if needed
– Checks logical validity
– INSERT INTO RDB$INDICES
– INSERT INTO RDB$INDEX_SEGMENTS

● User: COMMIT
● Engine:

– Reads all metadata necessary to build index
– Checks logical validity of metadata entered
– Acquires Protected Read lock(s) for table(s)
– Build an index B-Tree

DDL statements execution

25Firebird Conference 2019, Berlin Transaction rollback

● Run ON TRANSACTION ROLLBACK triggers
● User and autonomous transactions

● Rollback EXTERNAL transaction's
● If rollback is forced or there are many data to undo:

● Set state in TIP to rolled back
● Not forced and no or few data to undo:

● Undo changes
● Write dirty pages to disk and flush OS file cache
● Set state in TIP to committed

● Release transaction and its resources

Rollback actions

26Firebird Conference 2019, Berlin Transaction rollback

UPDATE

Record 1

Record 2

...

Record N

Undo data

Record 1

Record 2

...

Record N

Success
Undo data can be

discarded

Failure
Undo data used to

undo changes

Savepoints

● Every statement is enclosed into own savepoint which
contains data used to undo statement changes

27Firebird Conference 2019, Berlin Transaction rollback

Savepoints

● Group of statements could be enclosed into common
savepoint:
● BEGIN … END

● User also could set savepoints and rollback all work
done after savepoint was set:
● SAVEPOINT <name>
● RELEASE SAVEPOINT <name>
● ROLLBACK TO [SAVEPOINT] <name>

● Transaction also could have savepoint

28Firebird Conference 2019, Berlin Transaction rollback

Transaction Savepoint

START
TRANSACTION UPDATE T1 INSERT T2 ROLLBACK

Undo data Undo data

Undo data Undo dataUndo data

Merge
Merge

Transaction level

Statement level

29Firebird Conference 2019, Berlin Transaction rollback

● When undo log have reasonable small size it could be
used to undo all changes in transaction:
● Pluses

– No garbage is left in database
– Transaction state in TIP set to “committed”
– OIT is not stuck

● Minuses
– Longer time of rollback

● Undo log reside in memory and overflows to disk
● TempCacheLimit setting in firebird.conf

Rollback using undo log

30Firebird Conference 2019, Berlin Transaction rollback

“No undo log” option

● isc_tpb_no_auto_undo
● It does not cancel usage of undo log !
● It just cancel accumulation of changes by different

statements at transaction level
● Allows to use less memory when transaction run

more than one DML statement
● Makes rollback using undo log impossible

31Firebird Conference 2019, Berlin Transaction rollback

No transaction savepoint

START
TRANSACTION UPDATE T1 INSERT T2 ROLLBACK

Undo data Undo data

Transaction level

Statement level

32Firebird Conference 2019, Berlin Transaction rollback

● Used when engine process exits and there is no time
for long actions (forced), or

● When there are too much work to undo, or
● There is no undo data at transaction level

Rollback “via TIP”

33Firebird Conference 2019, Berlin Transaction rollback

● The fastest way to do rollback
● No changes is undone by rollback itself

– Someone after me should undo my changes
● Dirty pages are not flushed to disk

– Often leads to “orphan” pages
● Transaction state in TIP is set to “rolled back”

Rollback “via TIP”

Rollback “via TIP” make OIT stuckRollback “via TIP” make OIT stuck

34Firebird Conference 2019, Berlin Retaining transaction context

● Retaining ends transaction and starts a new one
● Old transaction is marked in TIP as committed\

rolled back
● New transaction keeps context of old transaction
● Old snapshot is preserved, i.e. new transaction

have the same OAT value as the old one
● New transaction will see changes of the old one as

committed

Retaining transaction context

35Firebird Conference 2019, Berlin Retaining transaction context

● Pluses
● One network roundtrip instead of two
● Client recordsets survive transaction end

● Minuses
● Open cursors are not closed
● Temporary blobs are not released
● Metadata locks are not released

Hard commit\rollback vs retaining

36Firebird Conference 2019, Berlin Transaction resources

● Metadata locks
● Object existence locks
● Relation locks

● Memory
● Private copy of transactions inventory
● Undo log data
● Temporary blobs data

Resources used by transaction

37Firebird Conference 2019, Berlin Transaction resources

● Used to prevents deletion (DROP) of interesting object
● Tables
● Views
● Indices
● Stored procedures
● Text collations

● Acquired when statement starts its execution
● Released at hard commit or rollback

Object existence locks

38Firebird Conference 2019, Berlin Transaction resources

● Used to implement consistency isolation mode
(protects read\write access to the whole table)

● Acquired:
● When DML statement executed:

– SELECT
● None (read-committed, snapshot)
● Protected Read (serializable)

– INSERT\UPDATE\DELETE\MERGE
● Shared Write (read-committed, snapshot)
● Exclusive (serializable)

● When transaction starts - if explicit table reservation
is used at Transaction Parameters Block

● Released at hard commit or rollback

Relation locks

39Firebird Conference 2019, Berlin Transaction memory usage

● Persistent (or materialized) blobs
● Stored within some table
● All blob data already at some data pages

● Temporary blobs
● Not assigned to any table
● Some blob data (up to DB page size) is kept in

memory
● Released at first event:

– Statement close
– Transaction hard commit or rollback

Temporary blobs

40Firebird Conference 2019, Berlin Transaction memory usage

Temporary blobs

DECLARE Str VARCHAR(255);
DECLARE Blb BLOB;
DECLARE I INTEGER;
BEGIN
 Blb = '';
 FOR SELECT StrField FROM T1 INTO :Str DO
 Blb = Blb || Str;
END

Bad sample: create a lot of temporary blobs

Any “change” of blob creates a new one !Any “change” of blob creates a new one !

41Firebird Conference 2019, Berlin Transaction memory usage

Temporary blobs

DECLARE Blb BLOB;
BEGIN
 SELECT LIST(StrField) FROM T1 INTO :Blb;
END

Much better: just one blob is created

42Firebird Conference 2019, Berlin Transaction memory usage

Temporary blobs

SELECT Fld, LIST(StrField)
 FROM T1
GROUP BY Fld

Could create many temporary blobs, one per group

43Firebird Conference 2019, Berlin Transaction memory usage

Blobs and autonomous transactions

CREATE PROCEDURE ProcA
 RETURNS(Blb BLOB)
AS
BEGIN
 IN AUTOMONOUS DO
 SELECT LIST(StrField) FROM T1 INTO :Blb;

 SUSPEND;
END

Sample: create blob in autonomous transaction

● Autonomous transaction should not release its
temporary blobs to be able to pass it “outside”

● Blobs, created by autonomous transaction, are bound
to a “parent” transaction

44Firebird Conference 2019, Berlin Transaction memory usage

● Blob memory usage:
● Until materialisation engine keeps in memory up to

page_size part of the blob
– Other blob data stored in database pages

● A lot of temporary blobs could use a lot of memory !
● This memory could be overflow to temporary file at

disk (Firebird 2.5)
– TempCacheLimit at firebird.conf

Temporary blobs

Firebird Conference 2019, Berlin

THANK YOU FOR ATTENTION

Firebird official web site

Firebird tracker

hvlad@users.sf.net

http://www.firebirdsql.org

http://tracker.firebirdsql.org

http://www.firebirdsql.org/
http://tracker.firebirdsql.org/
mailto:hvlad@users.sf.net?subject=6th%20Firebird%20Developers%20Day

	Slide 1
	Firebird Conference 2019 Berlin, 17-19 October
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

