
 Firebird Conference 2019, Berlin Firebird Conference 2019, Berlin

Transaction parameters, multi-
versioning, some transaction

internals

Vlad Khorsun, Firebird Project,
Dmitry Kuzmenko, IBSurgeon

1

 Firebird Conference 2019, Berlin

Firebird Conference 2019
Berlin, 17-19 October

 Firebird Conference 2019, Berlin

All options

• SET TRANSACTION
– [READ WRITE | READ ONLY]

– [WAIT | NO WAIT]

– [[ISOLATION LEVEL]
 {SNAPSHOT [TABLE STABILITY]

 | READ COMMITTED [[NO] RECORD_VERSION]}]

– [RESERVING <reserving_clause>]

 <reserving_clause> = table [, table …]

 [FOR [SHARED | PROTECTED] {READ | WRITE}]

 [, <reserving_clause>]

[LOCK TIMEOUT <seconds>]

3

 Firebird Conference 2019, Berlin

Transaction’s parameters

Combinations

Read commited

rec_version no_rec_version

Snapshot
Snapshot table

stability

shared protected

SNAPSHOT/READ COMMITED/SNAPSHOT TABLE STABILITY
WAIT/NO WAIT
READ WRITE / READ ONLY

4

 Firebird Conference 2019, Berlin

Transaction Parameter Block

• Transaction Parameter Block (TPB)

• TPB specifies transaction’s parameters when
client application starts transaction

• isc_tpb_*

5

 Firebird Conference 2019, Berlin

Firebird API Equivalents

• READ WRITE = isc_tpb_write
• READ ONLY = isc_tpb_read
• WAIT = isc_tpb_wait
• LOCK TIMEOUT = isc_tpb_lock_timeout
• NO WAIT = isc_tpb_nowait
• SNAPSHOT = isc_tpb_concurrency
• READ COMMITTED = isc_tpb_read_committed

– NO RECORD VERSION = isc_tpb_no_rec_version
– RECORD VERSION = isc_tpb_rec_version

• SNAPSHOT TABLE STABILITY = isc_tpb_consistency
– isc_tpb_lock_read, isc_tpb_lock_write, isc_tpb_shared,

isc_tpb_exclusive

6

 Firebird Conference 2019, Berlin

mon$transactions
• MON$TRANSACTION_ID - transaction ID

• MON$ATTACHMENT_ID - attachment ID

• MON$STATE - transaction state

– 0: idle

– 1: active

• MON$TIMESTAMP - transaction start date/time

• MON$TOP_TRANSACTION top transaction MON$OLDEST_TRANSACTION - local OIT number

• MON$OLDEST_ACTIVE - local OAT number

• MON$ISOLATION_MODE - isolation mode

– 0: consistency

– 1: concurrency

– 2: read committed record version

– 3: read committed no record version

• MON$LOCK_TIMEOUT - lock timeout

– 0: no wait

– 1: infinite wait

– N: timeout N

• MON$READ_ONLY - read-only flag 0/1

• MON$AUTO_COMMIT - auto-commit flag

• MON$AUTO_UNDO - auto-undo flag

• MON$STAT_ID - statistics ID

7

 Firebird Conference 2019, Berlin

Default (API, some components)

• wait

• write

• concurrency

• READ WRITE WAIT SNAPSHOT

• Surprise for the novice developer, when
application “does not see changes made to
the database until application restart”

8

 Firebird Conference 2019, Berlin

Read Committed

• write

• nowait

• read_committed

• rec_version

• Typical Read Committed isolation level,
allowing to read other concurrent committed
changes

9

 Firebird Conference 2019, Berlin

Read Read Committed

• Introduced in InterBase 6.0
– All Firebird versions support it

• Marked committed on its start, but visible in
mon$transactions

• mon$transactions
mon$timestamp = datetime when transaction started
mon$isolation_mode = 2
mon$read_only = 1

• Can continue (be active) forever, not affecting garbage
collection (not holding versions to be garbage
collected)

10

 Firebird Conference 2019, Berlin

Read commited no_rec_version

• write

• nowait

• read_committed

• [no_rec_version] by default in many drivers

• Shows DEADLOCK when trying to read
changed but not committed data

– Can be used to check for not yet committed data

11

 Firebird Conference 2019, Berlin

Read commited no_rec_version

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 15
commit

Insert into T1(i1)
values (100);

Tx 10
commit

SELECT i1
FROM T1 read commited

no_rec_version
nowait

lock conflict on no wait
transaction
deadlock.

concurrent transaction
number is 15

12

 Firebird Conference 2019, Berlin

SNAPSHOT TABLE STABILITY

• Locks table (whole) on first access
• With TABLE RESERVATION option - reserves specified tables on

transaction start
– Nowait causes deadlock at start, if other transactions reads or changes

these tables
– Wait causes transaction to wait for other transactions releasing locks

• consistency

lock_read=CUSTOMERS
lock_write=ORDERS
exclusive

• All transactions can read CUSTOMERS, except those who try lock
CUSTOMERS in shared_write or protected_write

• Nobody can read ORDERS

13

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx11

UPDATE T2

Tx 12
commit

UPDATE T1

consistency

UPDATE T2

lock conflict on no wait
transaction.

Acquire lock for relation
(mmm) failed.

Lock conflicts with SNAPSHOT TABLE STABILITY

14

 Firebird Conference 2019, Berlin

• consistency
lock_write=CUSTOMERS
shared
lock_write=ORDERS
exclusive

• Table CUSTOMERS can be changed only by
read_committed and concurrency
transactions

15

 Firebird Conference 2019, Berlin

MULTI-VERSIONING

16

 Firebird Conference 2019, Berlin

Locking in lock engines

TR2

write

TR1

read

Lock TR1 or lock TR2

17

 Firebird Conference 2019, Berlin

What you need to know

• Everything is done within transaction

• Each transaction get it’s own incremented
number
1, 2, 3, … etc

• All changes, made within transaction, are
marked by it’s number

• ! Since any operation with the database must
be done within transaction, Header Page is
the most changed page in the database file.

18

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into T1(i1)
values (100);

How versions appear

19

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into T1(i1)
values (100);

Tx50
commit

SELECT i1
FROM T1

i1
100

How versions appear

20

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into T1(i1)
values (100);

Tx50
commit

SELECT i1
FROM T1

i1
100

Tx60
commit

UPDATE T1
SET i1=200

How versions appear

new version

21

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into T1(i1)
values (100);

Tx50
commit

SELECT i1
FROM T1

i1
100

SELECT i1
FROM T1

Tx60
commit

UPDATE T1
SET i1=200

SELECT i1
FROM T1

i1
100

i1
200

How versions appear

22

 Firebird Conference 2019, Berlin

What is stored on data page?
Transaction marks own changes by its number

TR50

read

N Tx Data

1 10 100

...

23

 Firebird Conference 2019, Berlin

N Tx Data

1 10 100

...

TR50
TR60

write

read

24

 Firebird Conference 2019, Berlin

N Tx Data

1 10 100

60 200

...

TR50
TR60

read

write

25

 Firebird Conference 2019, Berlin

TR50
TR60

read

N Tx Data

1 10 100

60 200

...

read

write

26

 Firebird Conference 2019, Berlin

Some facts

• No “locks” to lock the record
• Only one non-committed version can exist for the

record
– 2 transactions can’t update same record

• There can be lot of committed versions for one
record – up to 1.5 million and more
– If version size is 20 bytes, 1.5mln versions will occupy

30mb

• Performance degrade is not proportional to the
number of versions

• Versions may be needed or not. If not, they can
be considered as “garbage”.

27

 Firebird Conference 2019, Berlin

How server knows about transaction states?

• TIP – Transaction Inventory Pages

– Linear list of transaction states, from 0
to last transaction number

– Stored in the database

28

 Firebird Conference 2019, Berlin

Transaction’s states

• Each transaction is
represented by it’s state
– 00 – Active

– 01 – Committed

– 10 – Rolled back

– 11 – Limbo (distributed 2-
phase transactions)

– 2 bits for each transaction
state

TIP contents

Tx
№

Tx state

…

10 committed

11 committed

12 committed

13 rolled back

14 committed

15 committed

16 committed

17 rolled back

18 active

19 committed

20 active

29

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx10 commit

Insert into T1(i1)
values (100);

Tx50
commit

SELECT i1
FROM T1

i1
100

SELECT i1
FROM T1

Tx60
commit

UPDATE T1
SET i1=200

SELECT i1
FROM T1

i1
100

i1
200

TIP

Tx State

10 Commited

Tx State

10 Commited

50 Active

60 Active

Tx State

10 Commited

50 Commited

60 Commited

30

 Firebird Conference 2019, Berlin

Read Committed and Snapshot

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10

Read Committed transactions “see” global TIP.
That’s why they can read other committed changes

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10

Snapshot copies TIP on it’s start. Thus it does not see any changes made by
other committed transactions after snapshot start

31

 Firebird Conference 2019, Berlin

TIP for Read commited

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 15
commit

Insert into T1(i1)
values (100);

Tx 10
commit

SELECT i1
FROM T1

SELECT i1
FROM T1

read commited

i1
100

i1

Tx State

10 Active

Tx State

10 Active

15 Active

Tx State

10 Active

15 Commited

32

 Firebird Conference 2019, Berlin

TIP for Snapshot

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 52
commit

Insert into T1(i1)
values (100);

Tx 51
rollback

Insert into T1(i1)
values (200);

Tx 10
commit

SELECT FROM T1 SELECT FROM T1

snapshot

i1

Tx State

10 Active

Tx State

10 Active

51 Active

52 Active

Tx State

10 Active

51 Rollback

52 Commited

Tx State

10 Active

33

 Firebird Conference 2019, Berlin

What transaction can see?

• Of course, it’s own created records and
versions

– Insert, Update, Delete

• If it is Read Committed, it can see every
changes that was made by committed
transactions, because it checks global TIP

• If it is Snapshot, it can see own changes and
record versions commited to the moment of
its start, because it checks it’s own copy of TIP

34

 Firebird Conference 2019, Berlin

Example

• TABLE have 100 records, committed

• start Read Committed transaction 1

• start transaction 2

• tr2: delete 5 records

• start Snapshot transaction 3

• tr1: insert 4 records

• How many records will see select count
in each transaction?

104

95

100

Commit

 99

How many versions? 100+ 5 + 4 = 109

35

 Firebird Conference 2019, Berlin

WHERE DO THE TRANSACTIONS
COME FROM

36

 Firebird Conference 2019, Berlin

Where transactions can be initiated

• In application

• System transaction № 0 –

– used for DDL changes

– Reading system queries

• Garbage collector’s transaction

– Read commited read-only

• Transactions for triggers ON CONNECT/ON
DISCONNECT

– concurrency write wait (default snapshot)

37

 Firebird Conference 2019, Berlin

Autonomous transactions

• PSQL (triggers, procedures, blocks)
• create trigger tr_connect on connect

as
begin
 in autonomous transaction do
 insert into log (msg) values ('User ' || current_user || ' connects.');
 if (current_user in (select username from blocked_users)) then
 begin
 in autonomous transaction do
 begin
 insert into log (msg) values ('User ' || current_user || ' refused.');
 post_event 'Connection attempt by blocked user.';
 end
 exception ex_baduser;
 end
end

38

 Firebird Conference 2019, Berlin

• Code running in an autonomous transaction will be
committed immediately upon successful completion,
regardless of how the parent transaction finishes.

• Autonomous transactions have the same isolation
level (and other parameters) as their parent
transaction

• Because the autonomous transaction is completely
independent of its parent, care must be taken to avoid
deadlocks

• If an exception occurs within the autonomous
transaction, the work in autonomous transaction will
be rolled back

39

 Firebird Conference 2019, Berlin

Triggers on transaction start/end

• CREATE TRIGGER ABC
ON TRANSACTION START |
TRANSACTION COMMIT |
TRANSACTION ROLLBACK
 as
 begin
 …
 end

• Fired on user and autonomous transactions

40

 Firebird Conference 2019, Berlin

• TRANSACTION triggers are executed within the same
transaction. The actions taken after an uncaught
exception depend on the type:
– In a START trigger, the exception is reported to the client

and the transaction is rolled back.
– In a COMMIT trigger, the exception is reported, the

trigger's actions so far are undone and the commit is
canceled.

– In a ROLLBACK trigger, the exception is not reported and
the transaction is rolled back as foreseen.

• you can't start any transaction if a TRANSACTION START
trigger causes an exception, so, you may lock DB
completely. In this case use isql –nodbtriggers and fix
or drop the wrong trigger.

41

 Firebird Conference 2019, Berlin

Context

• What is the context?

• 3 namespaces of context
– SYSTEM – read-only

• Info about connection and engine

– USER_SESSION
• For storing user variables at connection level

– USER_TRANSACTION
• For storing user variables at transaction level

• rdb$get_context

• rdb$set_context

42

 Firebird Conference 2019, Berlin

Transaction context variables

• rdb$set_context(‘USER_TRANSACTION, ‘abc’, 555)
• …
• Myvar = rdb$get_context(‘USER_TRANSACTION’, ‘abc’)

• select rdb$get_context('SYSTEM', ‘ISOLATION_LEVEL')

from rdb$database
– READ COMMITED
– SNAPSHOT
– CONSISTENCY

• select rdb$get_context('SYSTEM', ‘TRANSACTION_ID')
from rdb$database
– CURRENT_TRANSACTION

43

 Firebird Conference 2019, Berlin

CURRENT_TRANSACTION usage

• SELECT FROM MON$STATEMENTS

 WHERE MON$TRANSACTION_ID = CURRENT_TRANSACTION

44

 Firebird Conference 2019, Berlin

NEXT …

45

