
 Firebird Conference 2019, Berlin Firebird Conference 2019, Berlin

All About Transactions
workshop

Vlad Khorsun, Firebird Project,
Dmitry Kuzmenko, IBSurgeon

1

 Firebird Conference 2019, Berlin

Firebird Conference 2019
Berlin, 17-19 October

 Firebird Conference 2019, Berlin

Transaction

• Transaction as a general concept of dynamic
system

• Classic example

– begin

• -- move money from account1 to account2

• Decrease account1

• Increase account2

– end – commit/rollback

– Transaction Managers

3

 Firebird Conference 2019, Berlin

Database transaction

• a unit of work performed against a database,
and treated in a coherent and reliable way
independent of other transactions.

• A database transaction, by definition, must be
atomic, consistent, isolated and durable

4

 Firebird Conference 2019, Berlin

How we will present transactions

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Timeline

5

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11

Transaction’s
number

Start End

How we will present transactions

6

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11
commit

Tx 12
rollback

Transaction’s
result

Transaction’s
result

How we will present transactions

7

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11
commit

snapshot

Transaction’s
parameters

How we will present transactions

8

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11
commit

Insert into T1(i1)
values (100);

snapshot

Operation in the frames of
transaction

How we will present transactions

9

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11
commit

Insert into T1(i1)
values (100);

SELECT i1 FROM
T1

snapshot

i1
100

Result of operation

How we will present about
transactions

10

 Firebird Conference 2019, Berlin

ACID

ACID properties are abstract constraints that any
transaction must fulfill to comply with definition
of transaction.

• A: Atomic

• C: Consistency

• I: Isolation

• D: Durability

11

 Firebird Conference 2019, Berlin

Transactions: Atomic

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11
commit

Insert into T1(i1)
values (100);

Insert into T1(i1)
values (200);

Insert into T1(i1)
values (300);

success success success

12

 Firebird Conference 2019, Berlin

Transactions: Atomic

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11
commit

Insert into T1(i1)
values (100);

Insert into T1(i1)
values (200);

Insert into T1(i1)
values (200);

success success failure

?

Most servers does not allow to commit, if any operator inside transaction
returned an error. Firebird allows that, you may apply commit, it’s your decision.

13

 Firebird Conference 2019, Berlin

Transaction: Atomic

• 2 levels of Atomic

• Atomic operator: always atomic

– UPDATE t1 – update all or nothing

• Atomic group of operators (in the frame of
transaction)

– UPDATE t1

– UPDATE t2

– …depends on business logic and application
developer

14

 Firebird Conference 2019, Berlin

Transaction: Atomic

• Atomic means that all operations and their
results will be processed together

• Atomic gives an ability to commit or rollback
group of operations in the frames of transaction,
according to the business logic you need to
implement

• In wrongly designed system money transfer can
be like this:
– Begin transaction

• Decrease money on account 1…. Success
• Increase money on account 2… Failure

– Commit

15

 Firebird Conference 2019, Berlin

Transaction: Consistency

• A transaction enforces consistency of the
system state by ensuring that at the end of
any transaction the system is in a valid state.

• 2 levels of consistency:

– Database level - enforced by database constraints

– Application (business) level - enforced by
application developer, with support from database
engine

16

 Firebird Conference 2019, Berlin

Transaction: Isolation

• Isolation refers to the requirement that other
operations cannot access or see the data in
an intermediate state during a transaction.
This constraint is required to maintain the
performance as well as the consistency
between transactions in a database. Thus,
each transaction is unaware of another
transactions executing concurrently in the
system.

• Supported by isolation levels concept

17

 Firebird Conference 2019, Berlin

Transaction: Isolation (RC)

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 11
commit

Insert into T1(i1)
values (100);

Tx 12

SELECT FROM
T1

i1

commit

i1
100

SELECT FROM
T1

read commited

18

 Firebird Conference 2019, Berlin

Transactions: Durability

• The concept of durability allows the developer
to know that a completed (committed)
transaction is a permanent part of the system,
regardless of what happens to the system
later on.

• Commit, then Reset.

19

 Firebird Conference 2019, Berlin

ACID: Summary

• ACID are requirements for implementation of
transactions in specific database engine

• Atomic
– Operators are atomic
– Group of operators can be atomic, supported by

transactions

• Consistency
– 2 levels of consistency: database constraints and

application

• Isolation
– Supported by transaction mechanism almost 1:1

• Durability
– All commited data becomes permanent.

20

 Firebird Conference 2019, Berlin Firebird Conference 2019, Berlin

Transaction parameters:
read/write, wait/nowait

21

 Firebird Conference 2019, Berlin

Write/Read-only

• Write is default

• Read-only

– Cannot write

– Read-only Read Commited is optimized to run
eternally (see Firebird 4 notes)

– Can write to temporary tables!

– Can change generators

– Can produce temporary blobs (concatenation, list
function, etc)

22

 Firebird Conference 2019, Berlin

Wait

• Wait is default transaction mode

• Wait without parameter – endlessly wait

• Wait with parameter – wait till the timeout

• Nowait: timeout = 0

23

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx11

UPDATE T1

Tx14
commit

UPDATE T1
wait
read commited

commit

Tx20

UPDATE T1

rollback

UPDATE T1

Update conflict
with concurrent

update
Successful update Wait

24

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx11

UPDATE T1

Tx14
commit

UPDATE T1

Wait = 2 sec

commit

Tx 20

UPDATE T1

rollback

UPDATE T1

Lock timeout Successful update Wait 2 sec 2 sec 2 sec

25

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx11

UPDATE T1

Tx14
commit

UPDATE T1

nowait

commit

Tx20

UPDATE T1

rollback

UPDATE T1

Lock conflict
on nowait

Lock conflict
on nowait Nowait

26

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx11

UPDATE T1

Tx 12
commit

UPDATE T1

wait

UPDATE T1

Deadlock
(true!)

wait

Record 10

Record 20

UPDATE T1

Record 10

Record 20
10 sec

?

True deadlock on records

After timeout server turns one of these transactions to nowait, allowing it to return an error

27

 Firebird Conference 2019, Berlin Firebird Conference 2019, Berlin

Isolation levels

28

 Firebird Conference 2019, Berlin

Standard isolation levels

• Based on locking engines (too old)
• READ UNCOMMITTED

– Or Dirty Read, like DBF

• READ COMMITTED
– Reading new committed changes

• REPEATABLE READ
– Allows phantoms – re-reading can show new committed

changes

• SERIALIZABLE
– All transactions goes serial, no conflicts

• A Critique of ANSI SQL Isolation Level – 1995

– Repeatable read -> snapshot

29

 Firebird Conference 2019, Berlin

Firebird and Standard isolation levels

ANSI Isolation Levels Firebird Isolation Levels

Read Uncommitted n/a

Read Commited Read Commited

Repeatable Read Snapshot

Serializable SNAPSHOT WITH TABLE
STABILITY

30

 Firebird Conference 2019, Berlin

Read commited: simple example

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 15
commit

Insert into T1(i1)
values (100);

Tx 10
commit

SELECT i1
FROM T1

SELECT i1
FROM T1

read commited

i1
100

i1

31

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx11
Insert into T1(i1)

values (100);

Tx 14
commit

SELECT FROM
T1

read commited

Tx18
Insert into T1(i1)

values (200);

commit

commit

SELECT FROM
T1

SELECT FROM
T1

i1 i1
100

i1
100
200

Read commited: example with 2 transactions

32

 Firebird Conference 2019, Berlin

Snapshot

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 15
commit

Insert into T1(i1)
values (100);

Tx 10
commit

SELECT i1
FROM T1

SELECT i1
FROM T1

snapshot

i1 i1

33

 Firebird Conference 2019, Berlin

SNAPSHOT WITH TABLE STABILITY

• SNAPSHOT + Exclusive lock for table for read
or write

• Let’s consider wait/nowait before going into
details

34

 Firebird Conference 2019, Berlin

SNAPSHOT TABLE STABILITY

• SNAPSHOT TABLE STABILITY
– Lock the whole table – prevent write or read

access

• Without explicit table reservation:
– Lock tables at first access, not at the start of

transaction.
• Deadlock!

• TABLE RESERVATION option
– Locks specific table at the start of transaction

– Wait option is recommended

35

 Firebird Conference 2019, Berlin

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 5
commit

Tx 7
commit

Tx 9
commit

Queue with Sequential transactions

36

 Firebird Conference 2019, Berlin

SNAPSHOT WITH TABLE STABILITY
WITH explicit TABLE RESERVATION

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Tx 5
commit

Tx 7
commit

Tx 9 commit

37

 Firebird Conference 2019, Berlin

Snapshot Table Stability: Examples

• Queue implementation
– With TABLE RESERVATION

– Short “wait” transactions will be put in queue

– Locks will be resolved on transaction level – i.e.,
there will be no lock conflict on record levels

• Tables as locks
– Use locked table as flag for other transactions

• Rebuilding table in exclusive mode
– Engine use Table Stability for when building

indices

38

 Firebird Conference 2019, Berlin

Summary

• ACID is requirement for implementation

• Transaction is a basis and great support of
logic implementation

• Most useful isolation levels in Firebird are
Read Commited and Snapshot

• Default parameters are “snapshot”, “wait”,
“write”

• Defaults of the components/drivers may be
different!

39

 Firebird Conference 2019, Berlin

NEXT…
Next…

40

