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Transaction 

• Transaction as a general concept of dynamic 
system 

• Classic example 

– begin 

• -- move money from account1 to account2 

• Decrease account1 

• Increase account2 

– end – commit/rollback 

 

– Transaction Managers 
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Database transaction 

• a unit of work performed against a database, 
and treated in a coherent and reliable way 
independent of other transactions. 

• A database transaction, by definition, must be 
atomic, consistent, isolated and durable 
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How we will present transactions 

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Timeline 
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx 11 

Transaction’s 
number 

Start End 

How we will present transactions 
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx 11 
commit 

Tx 12 
rollback 

Transaction’s 
result 

Transaction’s 
result 

How we will present transactions 
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx 11 
commit 

snapshot 

Transaction’s 
parameters 

How we will present transactions 
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx 11 
commit 

Insert into T1(i1) 
values (100); 

snapshot 

Operation in the frames of 
transaction 

How we will present transactions 
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx 11 
commit 

Insert into T1(i1) 
values (100); 

SELECT i1 FROM 
T1 

snapshot 

i1 
100 

Result of operation 

How we will present about 
transactions 
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ACID 

ACID properties are abstract constraints that any 
transaction must fulfill to comply with definition 
of transaction.  

 

• A: Atomic  

• C: Consistency 

• I: Isolation 

• D: Durability 
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Transactions: Atomic 

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx 11 
commit 

Insert into T1(i1) 
values (100); 

Insert into T1(i1) 
values (200); 

Insert into T1(i1) 
values (300); 

success success success 
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Transactions: Atomic 

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx 11 
commit 

Insert into T1(i1) 
values (100); 

Insert into T1(i1) 
values (200); 

Insert into T1(i1) 
values (200); 

success success failure 

? 

Most servers does not allow to commit, if any operator inside transaction 
returned an error. Firebird allows that, you may apply commit, it’s your decision. 
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Transaction: Atomic 

• 2 levels of Atomic 

• Atomic operator: always atomic 

– UPDATE t1 – update all or nothing 

• Atomic group of operators (in the frame of 
transaction) 

– UPDATE t1 

– UPDATE t2 

– …depends on business logic and application 
developer 
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Transaction: Atomic 

• Atomic means that all operations and their 
results will be processed together 

• Atomic gives an ability to commit or rollback 
group of operations in the frames of transaction, 
according to the business logic you need to 
implement 

• In wrongly designed system money transfer can 
be like this: 
– Begin transaction 

• Decrease money on account 1…. Success 
• Increase money on account 2… Failure 

– Commit   
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Transaction: Consistency 

• A transaction enforces consistency of the 
system state by ensuring that at the end of 
any transaction the system is in a valid state.  

 

• 2 levels of consistency:  

– Database level - enforced by database constraints  

– Application (business) level - enforced by 
application developer, with support from database 
engine 
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Transaction: Isolation 

• Isolation refers to the requirement that other 
operations cannot access or see the data in 
an intermediate state during a transaction. 
This constraint is required to maintain the 
performance as well as the consistency 
between transactions in a database. Thus, 
each transaction is unaware of another 
transactions executing concurrently in the 
system. 

• Supported by isolation levels concept 
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Transaction: Isolation (RC) 

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx 11 
commit 

Insert into T1(i1) 
values (100); 

Tx 12 

SELECT FROM 
T1 

i1 

commit 

i1 
100 

SELECT FROM 
T1 

read commited 
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Transactions: Durability 

• The concept of durability allows the developer 
to know that a completed (committed) 
transaction is a permanent part of the system, 
regardless of what happens to the system 
later on. 

 

• Commit, then Reset. 
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ACID: Summary 

• ACID are requirements for implementation of 
transactions in specific database engine 

• Atomic 
– Operators are atomic 
– Group of operators can be atomic, supported by 

transactions 

• Consistency 
– 2 levels of consistency: database constraints and 

application 

• Isolation 
– Supported by transaction mechanism almost 1:1 

• Durability 
– All commited data becomes permanent. 
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Transaction parameters: 
read/write, wait/nowait 
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Write/Read-only 

• Write is default 

• Read-only 

– Cannot write 

– Read-only Read Commited is optimized to run 
eternally (see Firebird 4 notes) 

– Can write to temporary tables! 

– Can change generators 

– Can produce temporary blobs (concatenation, list 
function, etc) 
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Wait  

• Wait is default transaction mode 

• Wait without parameter – endlessly wait 

• Wait with parameter – wait till the timeout 

• Nowait: timeout = 0 
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx11 

UPDATE T1  

Tx14 
commit 

UPDATE T1  
wait 
read commited 

commit 

Tx20 

UPDATE T1 

rollback 

UPDATE T1  

Update conflict 
with concurrent 

update 
Successful update Wait  
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx11 

UPDATE T1  

Tx14 
commit 

UPDATE T1  

Wait = 2 sec 

commit 

Tx 20 

UPDATE T1 

rollback 

UPDATE T1  

Lock timeout Successful update Wait 2 sec 2 sec 2 sec 
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx11 

UPDATE T1  

Tx14 
commit 

UPDATE T1  

nowait 

commit 

Tx20 

UPDATE T1 

rollback 

UPDATE T1  

Lock conflict 
on nowait  

Lock conflict 
on nowait  Nowait 
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx11 

UPDATE T1  

Tx 12 
commit 

UPDATE T1  

wait 

UPDATE T1  

Deadlock 
(true!) 

wait 

Record 10 

Record 20 

UPDATE T1  

Record 10 

Record 20 
10 sec 

? 

True deadlock on records 

After timeout server turns one of these transactions to nowait, allowing it to return an error 
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Isolation levels 
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Standard isolation levels 

• Based on locking engines (too old) 
• READ UNCOMMITTED 

– Or Dirty Read, like DBF 

• READ COMMITTED 
– Reading new committed changes 

• REPEATABLE READ 
– Allows phantoms – re-reading can show new committed 

changes 

• SERIALIZABLE 
– All transactions goes serial, no conflicts 

 
• A Critique of ANSI SQL Isolation Level – 1995 

– Repeatable read -> snapshot 
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Firebird and Standard isolation levels 

ANSI Isolation Levels Firebird Isolation Levels 

Read Uncommitted n/a 

Read Commited Read Commited 

Repeatable Read Snapshot 

Serializable SNAPSHOT WITH TABLE 
STABILITY 
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Read commited: simple example 

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx 15 
commit 

Insert into T1(i1) 
values (100); 

Tx 10 
commit 

SELECT i1  
FROM T1 

SELECT i1 
FROM T1 

read commited 

i1 
100 

i1 
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx11 
Insert into T1(i1) 

values (100); 

Tx 14 
commit 

SELECT FROM 
T1 

read commited 

Tx18 
Insert into T1(i1) 

values (200); 

commit 

commit 

SELECT FROM 
T1 

SELECT FROM 
T1 

i1 i1 
100 

i1 
100 
200 

Read commited: example with 2 transactions 
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Snapshot 

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx 15 
commit 

Insert into T1(i1) 
values (100); 

Tx 10 
commit 

SELECT i1 
FROM T1 

SELECT i1 
FROM T1 

snapshot 

i1 i1 
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SNAPSHOT WITH TABLE STABILITY 

• SNAPSHOT + Exclusive lock for table for read 
or write 

• Let’s consider wait/nowait before going into 
details 
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SNAPSHOT TABLE STABILITY 

• SNAPSHOT TABLE STABILITY 
– Lock the whole table – prevent write or read 

access 

• Without explicit table reservation: 
– Lock tables at first access, not at the start of 

transaction.  
• Deadlock! 

• TABLE RESERVATION option  
– Locks specific table at the start of transaction 

– Wait option is recommended 
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t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx 5 
commit 

Tx 7 
commit 

Tx 9 
commit 

Queue with Sequential transactions 
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SNAPSHOT WITH TABLE STABILITY 
WITH explicit TABLE RESERVATION 

t0 t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Tx 5 
commit 

Tx 7 
commit 

Tx 9 commit 
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Snapshot Table Stability: Examples 

• Queue implementation 
– With TABLE RESERVATION 

– Short “wait” transactions will be put in queue 

– Locks will be resolved on transaction level – i.e., 
there will be no lock conflict on record levels   

• Tables as locks 
– Use locked table as flag for other transactions 

• Rebuilding table in exclusive mode 
– Engine use Table Stability  for when building 

indices 
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Summary 

• ACID is requirement for implementation 

• Transaction is a basis and great support of 
logic implementation 

• Most useful isolation levels in Firebird are 
Read Commited and Snapshot 

• Default parameters are “snapshot”, “wait”, 
“write” 

• Defaults of the components/drivers may be 
different! 
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NEXT… 
Next… 
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