
Some studies in
Firebird Performance

Paul Reeves
IBPhoenix

mail: preeves at ibphoenix.com

About the speaker

I work for IBPhoenix providing technical support.

I maintain the windows installer for Firebird and
do the Windows builds.

Introduction

Using benchmarking to study performance in a
multi-user environment.
Does the improved multi-threading of Firebird 3
bring benefits ?
How do the different architectures compare in
Firebird 3?
Does database encryption sacrifice speed for se-
curity ?
Building a test harness

About the test harness

Modest hardware.
Largely isolated from outside interference
It provides multi-user activity to exercise fb lock-
ing, cpu synchronisation, and memory and disc
access.
It isn’t designed to test internal features of Fire-
bird.
The main aim is to provide a stable platform. By
changing one parameter at a time we can build a
database of performance statistics to understand
how different configurations impact on perform-
ance.

So, is FB3 faster than FB2.5 ?

Is FB 3.0 faster than Fb 2.5?

We seem to have a clear winner

Firebird Configuration

Each arch has had buffers optimised
SS uses 16K or 32K buffers
SC uses 2K buffers
CS uses 1K buffers

Hash Slots for FB 2.5 were increased to 8191
Page sizes of 8KB and 16KB were tested.
Connection pools consisted of 5 to 15 users

Other Config Notes

Test Harness configured for durability, not
performance
No attempts made to overload the system
All tests are multi-user, but connections de-
liberately kept low.
Defaults are used, except where specified.

Let's look at each architecture

And for Super Server

SuperClassic

About the tests

The tests are built around tpc-c which has
some limitations
Can the benchmark be trusted ?
Can any benchmark be trusted ?
Important to understand limitations of a
benchmark implementation
Building a test harness and benchmark is
quite expensive in development time and
time required for subsequent analysis.

The limitations of TPC-C

Too simple.
Most real world applications are a lot
more complex.

Small records, no blobs, SPs, triggers
Bad design (like a lot of databases :-))
Locking anomalies which distort consist-
ency of results.
Not representative of a typical firebird data-
base (But what is?)

But it is not all bad….

Tests, although imperfect, do place stress
on Firebird and the underlying hardware.
A benchmark app is only a small part of the
test harness.
More importantly, multiple tests can be run
and the results stored for analysis
Hundreds of tests are executed. Thereby
limiting the errors caused by anomalous test
runs.
Analysis of trends in the data should be
valid. (I hope.)

Performance under Linux

And what about windows?

Hmmm…. Slightly worse than Linux
But maybe insufficient data?

OK, we get the picture.

FB 3 is faster than FB 2.5
Before you all die of boredom, let's dig
deeper

3 different database sizes have
been tested

Small DB – fits easily into available ram. Takes
full advantage of database and file system cache.
Medium DB – too big to fit into memory, but lots
of data is served from cache.
Large DB – lots of cache misses.

These sizes are relative. For the tests:
Small DB - ~ 1 GB
Medium DB - ~10 GB
Large DB - ~50 GB

Breakdown By Database Size

Performance drops heavily as data-
base size increases

What can be done to alleviate this?

What is the influence of Page Size on
Database Size?

Note: Data derived from a meta analysis from FB2.5 tests

Page Size and Small databases

Page Size and Medium databases

Page Size and Large databases

Page Size - summary

Page size can make a big difference
avg txn times don’t match changes in page size

Using Benchmarking as a guide to
server provisioning

Connections and user equivalents
Connections in a multi-user benchmark are not
equivalent to users.
It is difficult to gauge equivalent number of con-
current users
It is more accurate to think of a connection pool
The pool must be sized for the hardware
Overloading the system kills performance
But SuperServer seems to support heavier loads
in an overloaded system
My current test harness can only support a pool
of 15 to 20 users

Performance impact of different pool sizes

Cost per connection

Pool sizing summary

Choosing a smaller pool size for Large Dbs
would make sense
It would also be interesting to try much lar-
ger buffer sizes for a smaller number of
connections

Reducing contention with
LockHashSlots

The LockHashSlots parameter can improve
queueing for locks under heavy concurrent
load.
Default for LHS increased to 8191 in FB3,
from 1009 in FB2.5
How has this affected performance?

Hash Slots

Database encryption

Yep, there is a cost
Avg txn times are ~15% slower for the encrypted LDB
This cost is outweighed by overall perf improvement in FB3

Nbackup performance
No hard data available. Testing Nbackup
broke the server.
Again db size is a major factor
Small dbs are no problem

I had hoped to test the following :

Difference between internal and external backup

Impact of backup on active Large Dbs

Is it quicker to take the database off-line to per-
form the backup?

Building a Test Harness

All benchmarks are artificial.
The only way to reliably benchmark your ap-
plication is to build your own test harness.
At least 2 computers required.
Ideally no other activity should be running on
the server, unless they are part of the test.
The test app runs on the client and generates
threads to simulate multi-user activity.
The results are stored in a separate database.

Identify your workloads
For example, in TPC-C there are five, re-
lated to new orders, payments, delivery, or-
der and stock checking.
Each workload is weighted for frequency.
Roughly a third each for orders, payments
and delivery (which all include writes). Just a
few percent each for the status checks.
These weights are configurable.
Jobs are assigned to available connections
according to the weighting.
A certain percentage of workloads must fail
(rollback).

Only test ONE thing at a time

Each of the following is a single test
for OS in linux, windows
for FBVER in fb25, fb30

for ARCH in superclassic, classic, superserver
for DISC in ssd, hdd

for PAGE_SIZE in 4,8,16
for TERMINALS in 5,10,15,20 etc

Obviously some of the above can be elim-
inated.

Before a test session starts

Database is swept.
Gstat -r is run (and results saved.)

Track the results

As each txn completes some info is stored
Type of workload
Success or failure
Update of min, average and max txn times

When the session finishes

Lots of data is saved into the results database…
Benchmark configuration
Stats from MON$DATABASE
Number of TXNs executed
App specific stats such as New Orders placed.
Gstat -r is run to see how much garbage has built up in the db. In
the event of anomalies we can compare with the gstat -r from be-
fore the session starts.

About the results database

Obviously some views and stored pro-
cedures are added to aid analysis

Important to store as much data about
a test run as possible, so that trends
can be identified and questions
answered that hadn’t been thought of
when the project started.

Conclusions

Benchmarks are about as reliable as the weather
forecast.
Sometimes they are correct.
Firebird 3 would seem to be faster than Firebird
2.5 if we can believe this benchmark.
In a multi-user environment changing one para-
meter has side effects if other factors change.
The only reliable benchmark is your own app run-
ning on your own test harness. (And even then...)

Questions?

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

