
nbackup evolutionnbackup evolution

Prague 2016 Prague 2016 nbackup nbackup2

Backup and restore: overview
● Database backup and restore

● “Logical”
– Backup: export all data and metadata
– Restore: create new database and populate it with

metadata and data from backup file
● “Physical” at OS\filesystem level

– Backup: create copy of database file(s) at filesystem level
– Restore: no need - filecopy is ready to use

● “Physical” at page-level
– Backup: create page-by-page copy of database file(s)
– Restore: copy is ready to use

Prague 2016 Prague 2016 nbackup nbackup3

Backup and restore: overview
● Logical (gbak) backup\restore

● Pros
– Restored database is always in newest format (ODS)

supported by the engine
– Useful for migration between engine versions

● Both upgrade and downgrade is possible
– New (restored) database could occupy less space,

data is not fragmented
● Cons

– Performance is far from optimal
– Restore must build all indices
– Whole database is processed

Prague 2016 Prague 2016 nbackup nbackup4

Backup and restore: overview
● Physical backup\restore at OS\filesystem level

● Pros
– Fastest

● Cons
– Impossible for active database – filecopy will not be

consistent
– Whole database should be copied
– Rumors: original database could be damaged

● Never confirmed

Prague 2016 Prague 2016 nbackup nbackup5

Backup and restore: overview
● Physical backup\restore using volume snapshots

● Pros
– Fast
– Differential\incremental backups (if supported by OS)

● Cons
– Requires support from engine to make consistent on-disk

image
– Restored whole volume
– Whole volume is processed
– Whole database is processed

Prague 2016 Prague 2016 nbackup nbackup6

Backup and restore: overview
● Physical backup\restore at page-level

● Pros
– As fast as file-level copy
– Incremental backup is possible
– No need to build indices at restore

● Cons
– Not applicable for migration between engine versions
– Database is not compacted
– Data is not defragmented

Prague 2016 Prague 2016 nbackup nbackup7

Physical backup
● nbackup

● Original idea is of Sean Leyne
● Designed and implemented by Nickolay Samofatov
● Funded through a grant from BroadView Software, Inc.
● Introduced in Firebird 2.0

Prague 2016 Prague 2016 nbackup nbackup8

Physical backup
● Main goals:

● Possibility to “freeze” database file on-disk contents
while backup working
– Any existing utility could copy database file
– File on disk should be consistent
– File copy is ready to use database

● Make differential\incremental backup
● Safety

– Server shutdown and\or crash during backup should not
corrupt database

– After restart server should be able to continue to work
with database

Prague 2016 Prague 2016 nbackup nbackup9

Physical backup
● IO redirection, delta file

● During backup all writes (and some reads) are
redirected into separate file

● Delta file contains:
– Changed database pages
– Mapping table between delta and database

Prague 2016 Prague 2016 nbackup nbackup10

Physical backup
● Physical backup state

● Needs to make IO redirection work correctly
● Possible values

– Normal
– Stalled
– Merge

● Stored at Header page
– gstat

Prague 2016 Prague 2016 nbackup nbackup11

Physical backup: Backup State
● Normal

● Backup is not running
● IO is not redirected
● No delta file

Prague 2016 Prague 2016 nbackup nbackup12

Physical backup: Backup State
● Stalled

● Backup is in progress
● IO is redirected into delta-file:

– All writes go to delta-file
– Changed pages are read from delta file
– Not changed pages are read from database file

Prague 2016 Prague 2016 nbackup nbackup13

Physical backup: Backup State
● Merge

● Backup is finishing
● Changes are merged into main database file

– All changed pages are copied from delta to database file
● IO is still redirected:

– Changed pages are written to both database and delta
– Not changed pages are written to database file only
– Changed pages are read from delta file
– Not changed pages are read from database file

Prague 2016 Prague 2016 nbackup nbackup14

Physical backup: Allocation Table
● How to detect IO read source\write target ?

● Page Allocation Table
– Contains numbers of pages changed since backup start
– Stored in delta-file
– Fully cached in memory

● Read page N:
– Lookup for N in Allocation Table

● Found: read page from delta
● Not found: read page from database

● Write page N:
– Lookup for N in Allocation Table

● Not found: store N into Allocation Table
– Write page into delta (and into database)

Prague 2016 Prague 2016 nbackup nbackup15

Physical backup: kind of backups
● Full backup

● Backup all pages in database
– Could be done using any file copy utility

● Differential backup
● Backup pages changed since some previous full backup

● Incremental backup
● Backup pages changed since some previous backup of

any level
● Multilevel

– Full backup is level 0 backup
– Increment since full backup is level 1 backup
– Increment since level N backup is level N+1 backup

Prague 2016 Prague 2016 nbackup nbackup16

Physical backup: System Change Number
● Is page changed ?

● System Change Number (SCN)
– Incremented when Backup State is changed
– Stored at Header page
– Every database page is marked with current SCN value
– Current SCN value is assigned to the page when it

changed
● Compare SCN of given page with SCN of previous

backup
– After each successful backup record about it is put into

RDB$BACKUP_HISTORY
– Each backup is marked by SCN that was current before

backup started

Prague 2016 Prague 2016 nbackup nbackup17

Physical backup: operations
● Begin of backup

● Utility (nbackup, isql, etc)
– Attach to database
– Run ALTER DATABASE BEGIN BACKUP statement

● Engine
– Create delta file
– Page cache(s) is flushed to disk
– Backup State is changed from “normal” to “stalled”

● Utility
– Detach from database (optional)

Prague 2016 Prague 2016 nbackup nbackup18

Physical backup: operations
● Produce backup

● copy, xcopy, etc – full backup
● nbackup

– Full backup (level 0)
● Copy database file page by page

– Incremental backup of level L > 0
● Query RDB$BACKUP_HISTORY for SCN of previous

backup with level L - 1
● Read database file and put into backup pages with SCN

greater than found SCN of previous backup

Prague 2016 Prague 2016 nbackup nbackup19

Physical backup: operations
● End of backup

● Utility
– Attach to database (if not attached)
– Put record into RDB$BACKUP_HISTORY
– Run ALTER DATABASE END BACKUP statement

● Engine
– Backup State is changed from “stalled” to “merge”
– Copy (merge) pages from delta into database
– Backup State is changed from “merge” to “normal”
– Delta file is deleted

● Utility
– detach from database

Prague 2016 Prague 2016 nbackup nbackup20

Physical backup: recovery
● Every new attachment look at backup state

● Normal, Stalled
– No extra actions needed

● Merge
– Run “merge” part of end backup process

● Copy (merge) pages from delta into database
● Backup State is changed from “merge” to “normal”
● Delta file is deleted

– Only one attachment
– Run synchronously

Prague 2016 Prague 2016 nbackup nbackup21

Physical backup: synchronization
● Backup State lock

● Control changes of Backup State
● Fix Backup State while IO is in progress

● Allocation Table lock
● Guard access to the Allocation Table

● End Backup lock
● Allow only one process to end backup

● Implemented in Firebird Lock Manager
● Supports different lock modes (Shared, Exclusive)
● Supports lock caching and cross-process notifications

(via AST handlers)

Prague 2016 Prague 2016 nbackup nbackup22

Physical backup: synchronization
● Backup State lock

● Shared mode
– While IO operation is in progress

● IO direction should not be changed
– While dirty page exists in cache

● Consistency of database file on disk
● Exclusive mode

– When Backup State is changing

Prague 2016 Prague 2016 nbackup nbackup23

Physical backup: synchronization
● Allocation Table lock

● Shared mode – read Allocation Table from delta file
● Exclusive mode – add entry into Allocation Table

● Usage depends on Backup State
● Normal: not used
● Stalled: both Shared and Exclusive
● Merge: Shared only

Prague 2016 Prague 2016 nbackup nbackup24

Physical backup: synchronization
● End Backup lock

● Used in Exclusive mode only
● Normal end of backup
● Recovery check by every new attachment

– Actually, run almost the same code as normal end of
backup

– Only one attachment performs merge

Prague 2016 Prague 2016 nbackup nbackup25

Physical backup: evolution
● Firebird 1.5

● Initial development, private builds, no public releases

● Firebird 2.0
● First public release

Prague 2016 Prague 2016 nbackup nbackup26

Physical backup: evolution
● Firebird 2.1

● Synchronization reworked
● Support for RAW devices on Linux

Prague 2016 Prague 2016 nbackup nbackup27

Physical backup: evolution
● Firebird 2.5

● Synchronization reworked
– Backup State lock is acquired early - for every page fetch,

to avoid deadlocks
– Attachment-private counters for state lock

● Direct IO for database file scan
● Forced Writes setting for delta file
● Support in Services API

Prague 2016 Prague 2016 nbackup nbackup28

Physical backup: evolution
● Firebird 2.5.1, many bugs fixed

● CORE-3466 : Some changes could be lost during the
merge of delta file into main database file

● CORE-3521 : Delta file contents is not flushed to disk
● CORE-3535 : Write target of dirty page could be

undefined if error happens when nbackup state is
changed. Also prevent overwriting of first page of
allocation table by data page contents.

Prague 2016 Prague 2016 nbackup nbackup29

Physical backup: evolution
● Firebird 2.5.3, bugs fixed, improvements

● CORE-4431 : Reduce contention for allocation table
lock while database is in stalled physical backup state

● CORE-4432 : Let attachments to not block others when
allocation table is read first time

● CORE-4444 : Engine could hung and block all
attachments in out of disk space condition during
physical backup

● CORE-4445 : Extend main database file faster when
physical backup state changed from stalled to merge

● Flush delta file implicitly before closing it.

Prague 2016 Prague 2016 nbackup nbackup30

Physical backup: evolution
● Firebird 3.0

● Synchronization... is not reworked ;-)
● Introduced SCN's inventory, allow to read pages

changed since previous backup only and to not scan
whole database

● CORE-4462 : Make it possible to restore compressed
.nbk files without explicitly decompressing them (Linux
only)

● CORE-4939 : Make IO operations with backup file
aligned at page size boundary

Prague 2016 Prague 2016 nbackup nbackup31

Physical backup: evolution
● Firebird 3.0.1

● Synchronization reworked, yes again ;-)
– Backup State lock : in most cases local RW lock could be

used instead of heavy LM's lock
– No need to acquire Backup State lock at every page fetch

Prague 2016 Prague 2016 nbackup nbackup32

Physical backup: evolution
● Firebird 4.0

● GUID-based backup and in-place restore
– Allows to continuously “apply” increments to the read-only

database
– Not need to keep and apply all increments since full

backup
– Do not affect existing multilevel backup scheme
– Could be used as kind of “physical replication”

Prague 2016 Prague 2016 nbackup nbackup33

Physical backup: evolution
● GUID-based backup...

● Use backup GUID of target database as GUID of
previous backup
– gstat -h <target database>

● Create backup
– nbackup -B <GUID> <source database> <backup file>

● Locate record in RDB$BACKUP_HISTORY using GUID of
previous backup

● Create backup using SCN from found history record
● ...and in-place restore

● Apply backup to the target database
– nbackup -R -INPLACE <backup file> <target database>

Prague 2016 Prague 2016 nbackup nbackup34

Physical backup: evolution
● Firebird 4+ : what else could be done

● Re-think “direct IO” option, consider backup file too
● Try to avoid state locking for dirty pages
● Try to avoid cache flushing when backup state changing
● Develop standby (cold- or even hot-) solution based on

shipping and applying increments
– Garbage collection and metadata consistency problems

should be solved
● Ship increments using network only

Prague 2016 Prague 2016 nbackup nbackup35

Questions ?Questions ?

Firebird official web site

Firebird tracker

THANK YOU FOR ATTENTIONTHANK YOU FOR ATTENTION

hvlad@users.sf.net

http://www.firebirdsql.org/
http://tracker.firebirdsql.org/
mailto:hvlad@users.sf.net?subject=6th%20Firebird%20Developers%20Day

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Страница 28
	Страница 29
	Страница 30
	Страница 31
	Страница 32
	Страница 33
	Страница 34
	Страница 35

