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Backup and restore: overview
● Database backup and restore

● “Logical” 
– Backup: export all data and metadata
– Restore: create new database and populate it with 

metadata and data from backup file
● “Physical” at OS\filesystem level

– Backup: create copy of database file(s) at filesystem level
– Restore: no need - filecopy is ready to use

● “Physical” at page-level
– Backup: create page-by-page copy of database file(s) 
– Restore: copy is ready to use
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Backup and restore: overview
● Logical (gbak) backup\restore

● Pros
– Restored database is always in newest format (ODS) 

supported by the engine
– Useful for migration between engine versions

● Both upgrade and downgrade is possible
– New (restored) database could occupy less space, 

data is not fragmented
● Cons

– Performance is far from optimal 
– Restore must build all indices 
– Whole database is processed
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Backup and restore: overview
● Physical backup\restore at OS\filesystem level

● Pros
– Fastest

● Cons
– Impossible for active database – filecopy will not be 

consistent
– Whole database should be copied
– Rumors: original database could be damaged

● Never confirmed
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Backup and restore: overview
● Physical backup\restore using volume snapshots 

● Pros
– Fast
– Differential\incremental backups (if supported by OS)

● Cons
– Requires support from engine to make consistent on-disk 

image
– Restored whole volume
– Whole volume is processed
– Whole database is processed
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Backup and restore: overview
● Physical backup\restore at page-level

● Pros
– As fast as file-level copy
– Incremental backup is possible
– No need to build indices at restore

● Cons
– Not applicable for migration between engine versions
– Database is not compacted
– Data is not defragmented
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Physical backup
● nbackup

● Original idea is of Sean Leyne
● Designed and implemented by Nickolay Samofatov 
● Funded through a grant from BroadView Software, Inc.
● Introduced in Firebird 2.0
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Physical backup
● Main goals:

● Possibility to “freeze” database file on-disk contents 
while backup working
– Any existing utility could copy database file
– File on disk should be consistent 
– File copy is ready to use database

● Make differential\incremental backup
● Safety

– Server shutdown and\or crash during backup should not 
corrupt database

– After restart server should be able to continue to work 
with database
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Physical backup
● IO redirection, delta file

● During backup all writes (and some reads) are 
redirected into separate file

● Delta file contains:
– Changed database pages 
– Mapping table between delta and database
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Physical backup
● Physical backup state

● Needs to make IO redirection work correctly 
● Possible values

– Normal
– Stalled
– Merge

● Stored at Header page
– gstat
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Physical backup: Backup State
● Normal

● Backup is not running
● IO is not redirected
● No delta file
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Physical backup: Backup State
● Stalled

● Backup is in progress
● IO is redirected into delta-file:

– All writes go to delta-file
– Changed pages are read from delta file
– Not changed pages are read from database file



Prague 2016 Prague 2016     nbackup    nbackup13

Physical backup: Backup State
● Merge 

● Backup is finishing
● Changes are merged into main database file

– All changed pages are copied from delta to database file
● IO is still redirected:

– Changed pages are written to both database and delta
– Not changed pages are written to database file only
– Changed pages are read from delta file
– Not changed pages are read from database file
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Physical backup: Allocation Table
● How to detect IO read source\write target ?

● Page Allocation Table
– Contains numbers of pages changed since backup start 
– Stored in delta-file
– Fully cached in memory

● Read page N:
– Lookup for N in Allocation Table

● Found: read page from delta
● Not found: read page from database

● Write page N:
– Lookup for N in Allocation Table

● Not found: store N into Allocation Table
– Write page into delta (and into database)
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Physical backup: kind of backups
● Full backup

● Backup all pages in database
– Could be done using any file copy utility

● Differential backup
● Backup pages changed since some previous full backup

● Incremental backup
● Backup pages changed since some previous backup of 

any level
● Multilevel

– Full backup is level 0 backup 
– Increment since full backup is level 1 backup
– Increment since level N backup is level N+1 backup
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Physical backup: System Change Number 
● Is page changed ?

● System Change Number (SCN)
– Incremented when Backup State is changed
– Stored at Header page
– Every database page is marked with current SCN value
– Current SCN value is assigned to the page when it 

changed
● Compare SCN of given page with SCN of previous 

backup
– After each successful backup record about it is put into 

RDB$BACKUP_HISTORY
– Each backup is marked by SCN that was current before 

backup started
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Physical backup: operations
● Begin of backup

● Utility (nbackup, isql, etc) 
– Attach to database
– Run ALTER DATABASE BEGIN BACKUP statement

● Engine
– Create delta file
– Page cache(s) is flushed to disk
– Backup State is changed from “normal” to “stalled”

● Utility 
– Detach from database (optional)
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Physical backup: operations
● Produce backup

● copy, xcopy, etc – full backup
● nbackup

– Full backup (level 0)
● Copy database file page by page

– Incremental backup of level L > 0
● Query RDB$BACKUP_HISTORY for SCN of previous 

backup with level L - 1
● Read database file and put into backup pages with SCN 

greater than found SCN of previous backup
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Physical backup: operations
● End of backup

● Utility 
– Attach to database (if not attached)
– Put record into RDB$BACKUP_HISTORY
– Run ALTER DATABASE END BACKUP statement

● Engine
– Backup State is changed from “stalled” to “merge”
– Copy (merge) pages from delta into database
– Backup State is changed from “merge” to “normal”
– Delta file is deleted

● Utility 
– detach from database
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Physical backup: recovery
● Every new attachment look at backup state

● Normal, Stalled
– No extra actions needed

● Merge
– Run “merge” part of end backup process

● Copy (merge) pages from delta into database
● Backup State is changed from “merge” to “normal”
● Delta file is deleted

– Only one attachment 
– Run synchronously
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Physical backup: synchronization
● Backup State lock

● Control changes of Backup State
● Fix Backup State while IO is in progress

● Allocation Table lock
● Guard access to the Allocation Table

● End Backup lock
● Allow only one process to end backup

● Implemented in Firebird Lock Manager
● Supports different lock modes (Shared, Exclusive)
● Supports lock caching and cross-process notifications 

(via AST handlers)
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Physical backup: synchronization
● Backup State lock

● Shared mode
– While IO operation is in progress

● IO direction should not be changed
– While dirty page exists in cache

● Consistency of database file on disk
● Exclusive mode

– When Backup State is changing
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Physical backup: synchronization
● Allocation Table lock

● Shared mode – read Allocation Table from delta file
● Exclusive mode – add entry into Allocation Table

● Usage depends on Backup State
● Normal: not used
● Stalled: both Shared and Exclusive
● Merge: Shared only
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Physical backup: synchronization
● End Backup lock

● Used in Exclusive mode only
● Normal end of backup
● Recovery check by every new attachment

– Actually, run almost the same code as normal end of 
backup

– Only one attachment performs merge
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Physical backup: evolution
● Firebird 1.5

● Initial development, private builds, no public releases

● Firebird 2.0
● First public release
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Physical backup: evolution
● Firebird 2.1

● Synchronization reworked
● Support for RAW devices on Linux
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Physical backup: evolution
● Firebird 2.5

● Synchronization reworked
– Backup State lock is acquired early - for every page fetch, 

to avoid deadlocks
– Attachment-private counters for state lock

● Direct IO for database file scan
● Forced Writes setting for delta file 
● Support in Services API
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Physical backup: evolution
● Firebird 2.5.1, many bugs fixed

● CORE-3466 : Some changes could be lost during the 
merge of delta file into main database file

● CORE-3521 : Delta file contents is not flushed to disk
● CORE-3535 : Write target of dirty page could be 

undefined if error happens when nbackup state is 
changed. Also prevent overwriting of first page of 
allocation table by data page contents.
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Physical backup: evolution
● Firebird 2.5.3, bugs fixed, improvements

● CORE-4431 : Reduce contention for allocation table 
lock while database is in stalled physical backup state

● CORE-4432 : Let attachments to not block others when 
allocation table is read first time

● CORE-4444 : Engine could hung and block all 
attachments in out of disk space condition during 
physical backup

● CORE-4445 : Extend main database file faster when 
physical backup state changed from stalled to merge

● Flush delta file implicitly before closing it.
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Physical backup: evolution
● Firebird 3.0

● Synchronization... is not reworked ;-)
● Introduced SCN's inventory, allow to read pages  

changed since previous backup only and to not scan 
whole database

● CORE-4462 : Make it possible to restore compressed 
.nbk files without explicitly decompressing them (Linux 
only)

● CORE-4939 : Make IO operations with backup file 
aligned at page size boundary
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Physical backup: evolution
● Firebird 3.0.1

● Synchronization reworked, yes again ;-)
– Backup State lock : in most cases local RW lock could be 

used instead of heavy LM's lock
– No need to acquire Backup State lock at every page fetch
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Physical backup: evolution
● Firebird 4.0

● GUID-based backup and in-place restore
– Allows to continuously “apply” increments to the read-only 

database
– Not need to keep and apply all increments since full 

backup
– Do not affect existing multilevel backup scheme
– Could be used as kind of “physical replication”
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Physical backup: evolution
● GUID-based backup...

● Use backup GUID of target database as GUID of 
previous backup
– gstat -h <target database>

● Create backup
– nbackup -B <GUID> <source database> <backup file>

● Locate record in RDB$BACKUP_HISTORY using GUID of 
previous backup

● Create backup using SCN from found history record
● ...and in-place restore

● Apply backup to the target database
– nbackup -R -INPLACE <backup file> <target database>
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Physical backup: evolution
● Firebird 4+ : what else could be done

● Re-think “direct IO” option, consider backup file too
● Try to avoid state locking for dirty pages
● Try to avoid cache flushing when backup state changing
● Develop standby (cold- or even hot-) solution based on 

shipping and applying increments
– Garbage collection and metadata consistency problems 

should be solved
● Ship increments using network only
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Questions ?Questions ?

Firebird official web site

Firebird tracker

THANK YOU FOR ATTENTIONTHANK YOU FOR ATTENTION

hvlad@users.sf.net

http://www.firebirdsql.org/
http://tracker.firebirdsql.org/
mailto:hvlad@users.sf.net?subject=6th%20Firebird%20Developers%20Day
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