
Optimizing Queries and Transactions
This is a paper based on the talk given at the Firebird Conference 2016 that includes

substantial information not mentioned in the actual presentation.

Tutorial application

This paper references a fairly simple tutorial application created specially to show several

points of interest. This application is included with IB Objects following Oct 12th, 2016.

The TransOAT project is found in the ..\ibo5\tutorials\TransactionOAT folder.

Here are screen shots of the application's forms:

Above is the main form that shows the status of the application's transaction. Multiple

dataset forms can be open at a time by clicking the Open Dataset button.

Above is the dataset form that allows you to experiment with various dataset properties.

Tutorial database

The database for this tutorial is very simple with two generators and one table with a

trigger and a stored procedure to do the initial load of its test data:

CREATE GENERATOR GEN_TESTDATA_ID;
CREATE GENERATOR GEN_TESTDATA_CHANGE_ID;
SET GENERATOR GEN_TESTDATA_ID TO 99999;

CREATE TABLE TESTDATA
(ID INTEGER NOT NULL
, COL1 VARCHAR(10) NOT NULL
, COL2 VARCHAR(10)
, LASTUPDATED TIMESTAMP
, CHANGE_ID INTEGER DEFAULT 0 NOT NULL
, CONSTRAINT PK PRIMARY KEY (ID));

CREATE TRIGGER TEST_TRIG FOR TESTDATA
BEFORE INSERT OR UPDATE
AS
BEGIN
 IF (NEW.ID IS NULL) THEN
 NEW.ID = GEN_ID(GEN_TESTDATA_ID, 1);
 NEW.CHANGE_ID = GEN_ID(GEN_TESTDATA_CHANGE_ID, 1);
 NEW.LASTUPDATED = CURRENT_TIMESTAMP;
END;

CREATE PROCEDURE LOAD_DATA
AS
DECLARE VARIABLE TMP1 INTEGER;
DECLARE VARIABLE TMP2 INTEGER;
DECLARE VARIABLE TMP3 INTEGER;
BEGIN
 TMP1 = 0;
 TMP2 = 0;
 TMP3 = 0;
 WHILE (TMP1 < 100000) DO
 BEGIN
 INSERT INTO TESTDATA(ID, COL1, COL2)
 VALUES(:TMP1, :TMP2, :TMP3);
 TMP1 = TMP1 + 1;
 TMP2 = TMP2 + 1;
 IF (:TMP2 = 10) THEN
 BEGIN
 TMP2 = 0;
 TMP3 = TMP3 + 1;
 END
 END
 EXIT;
END;

The TransOAT.ddl script is found in the ibo5\samples\data folder. This is also where the

database itself will be created. When the application is ran the first time, the database will

be automatically created and the LOAD_DATA procedure will populate TESTDATA.

Part 1: How fetching query results impacts transactions

A transaction is required in order to submit and return the results of a query. When a

query statement that can return multiple rows is executed on the server it must open what

is called a "cursor" so that it can span the individual records and deliver them to the

client. When the query executes and is fetched, the transaction tells it what the record's

isolation level is. You might want a snapshot view of the data or you might want to see

whatever the current, and possibly changing, committed state of the data is.

So, a transaction handle is required in order to maintain a server cursor. Therefore, the

query itself requires a transaction handle to be acquired and held for as long as that query

is opened and it remains with some records yet to be fetched. Once all of the query's

records have been fetched, the server cursor used to fetch the records can be released and

the transaction used to deliver the server cursor can also be ended via commit or rollback.

This doesn't require that your dataset be closed since it is maintaining a buffer of those

records that were fetched. This issue merely pertains to how server resources are used.

Note: This issue of server cursors requiring transactions is the reason why the BDE

would sometimes seem to lockup the application. If the BDE needed to end a transaction

it would attempt to fetch all of the records of the query in order to do so. If that query was

very large then this would be like having your user walk into a booby-trap. Avoiding this

problem imposed a rather annoying limitation on what your application could safely do.

So, if a query returns a large amount of records, this can cause a transaction handle to be

allocated for a long period of time. If the dataset does not fetch all of the records then the

cursor would remain open and the transaction could be opened up indefinitely. Thus, the

server would have to allocate resources to maintain this transaction. This could seriously

degrade your server's performance if your application has several of these types of

queries or if you have several instances of the application open that do this. The fewer

transactions you have open at a time the better. And, it is especially important that a

transaction remain open only for a short time if possible. The longer a transaction

remains open the more resources it requires on the server to maintain it. It also can

prevent garbage collection from taking place, which adds to the overhead of the server.

One of the internal statistics the server keeps track of is called the Oldest Active

Transaction. That is where the OAT abbreviation comes from in this tutorial. You want

this OAT number to remain as close to the newest transaction possible. The more

transactions exist between the newest transaction and the oldest active transaction, the

more overhead there is for the server to keep everything accurate and tidy.

So, if a transaction gets started and is then stuck open in your application, this gap

between the newest transaction and the oldest active transaction will grow wider and

wider as other transactions come and go. Eventually, the gap increases to a point where

the server starts to have degraded performance because there is such a wide gap of

transactions to keep sorted out. This tutorial will focus on how to avoid this happening.

IBO optimizes transactions for queries large and small

The tutorial application allows you to simulate a dataset with queries of various numbers

of records to be returned: 10, 100, 1000, 10000 and 100000 records. It will let you adjust

the various properties within IB Objects that are intended to help you avoid having long

running transactions while working efficiently with large datasets. I will demonstrate

various combinations of these properties to showcase the way IBO deals with each case.

When a query is opened in IBO a transaction handle is automatically started in order for

records to be fetched. So, when you first open the dataset by clicking on the button bar on

the main form to open the dataset, you should notice "Started = True" in the Transaction

Properties section. It also shows how long in seconds the transaction has been started.

Transaction isolation matters

If a query has read committed isolation IBO can automatically close that transaction

because reopening a new transaction later delivers the exact same visibility of the records

as it had originally. However, if the transaction's isolation is set to be a snapshot

isolation, IBO will not have the ability to automatically close the transaction because this

would take away the consistent snapshot view of the database you have requested. Thus,

this tutorial application is showing the read committed transaction isolation only. You

must explicitly control your transactions when you use a snapshot isolation!

Dataset Size = 10 records

With the dataset configured to fetch 10 records, all of its records are returned because the

grid shows more than 10 records. Because of this, when 5 seconds has passed, the

transaction will be automatically closed by IBO. This is a result of the AllowCheckOAT

setting being set to 5. This means as soon as a transaction has been started for 5 seconds

it will begin to see if that transaction can be safely closed. In this case, since the query

has fetched all of its records, IBO was able to go ahead and close the transaction.

Dataset Size = 100 records

Now click on the 100 Dataset Size radio group option and the dataset will be

reconfigured to refresh with 100 records which will require a new transaction to be

allocated. After refreshing it will only have part of the records of the dataset fetched

because the grid only requires a few records to be painted. This can be confirmed by it

showing "Rec 1 of 11+" right below the grid. It says 11+ because there are currently 11

records in the buffer but the dataset's query hasn't fetched all of the records from the

server.

The remaining records of the dataset will be fetched automatically due to the Attempt

transaction timeout option being set to 10 seconds and the AttemptMaxRows option

being set to 250 records. When this happens "Rec 1 of 100" indicates all of the records

were brought into the buffer even though the user didn't scroll to the end of the dataset.

This means when the transaction gets 10 seconds old IBO will begin making attempts to

see if it can create the conditions necessary to close the transaction. In this tutorial's case,

the dataset will have additional records fetched into its buffer up to the maximum of 250

records. This happens via idle CPU cycles without the user knowing that it is happening.

Dataset Size = 1,000 records (natural order)

Now click on the 1,000 option. This will put the dataset size beyond the number of

records it is configured to attempt to fetch in. Thus, we will be left with a dataset size that

is beyond the configured range that automatic fetches can reach. This is a dataset that we

are stuck with. This requires us to explore other possible options to keep the transaction

from being stuck. Selecting this option sets the query to the natural order.

Another way IBO can free up a transaction is to Refresh the dataset that it cannot fetch

all of the records for. However, you can't be in an edit state and a new transaction handle

will be acquired and there will be the overhead of fetching the records all over again. But,

it allows the old transaction to go away and be replaced with a newer transaction. Thus, it

will prevent the transaction from getting too old and stuffing things up on the server.

This even works on several datasets at a time because the Refresh is broken up into two

phases. All datasets are closed and the transaction handle is released and then the datasets

have their Refresh completed with the new transaction. This can be verified by opening a

second dataset form and setting them both to this dataset size using the natural order.

This Refresh can cause a slight flicker in the user controls that the user might notice and

it will also create a repeating cycle of refreshes. You will want to set the duration of this

to a higher amount than what this tutorial application is demonstrating. You want to keep

this kind of overhead to a minimum and prevent the users from seeing too frequent of

flickering as their datasets are refreshed. You will have to choose how to balance it out.

You may have noticed IBO keeps the record pointer on the same record when performing

a Refresh. This is because the dataset is configured to the RefreshAction of

raKeepDataPos or raKeepRowNum. If you move this over to raOpen then the refresh

may not take place and the transaction could be stuck open. However, if you have

raOpen but KeyLinks are also configured then it will go ahead and do a RefreshKeys.

The concern is because a user will not want their record position in the dataset moved

unexpectedly to a different record or to a different row number. So long as the dataset is

configured to keep the record pointer on the same record or row when refreshing, it will

go ahead and use refresh as a mechanism to free up the transaction handle. Otherwise, the

dataset is stuck open and the transaction will remain allocated until all of its records are

fetched or until at least that dataset is closed.

You can open up a second dataset form and delete a record or two and watch what

happens in the other window when the Refresh happens in order to emulate how it will

behave in a multi-user environment where the committed view of the data is subject to

change. This will show you that it is much safer to use raKeepDataPos than to use

raKeepRowNum. You must have a valid KeyLinks setting in your query for the

bookmark to be made up of relevant data so that this will work. If you don't have valid

KeyLinks for your dataset then it will use an arbitrary counter for the bookmark and

behave much as if it is just keeping the same record pointer number.

Dataset Size = 1,000 records (sorted order via OrderingLinks)

Please click on the ID column header on the grid and sort the results by the ID column to

observe the characteristics of a dataset this size that is sorted. Sorting the result set

enables the cursor to be closed so that the transaction can also be released. Thus, the need

for the afore mentioned refresh cycle is eliminated. The cursor will simply be revived

when the time comes that more records are needed again. It uses the sort criteria in order

to efficiently revive the cursor where it previously had left off.

This will all happen quietly in the background, so far as the user is concerned. They will

simply see their full dataset and not be aware that there have been potentially multiple

cursors involved in delivering it to them. If you watch carefully in the SQL trace monitor

you can catch it syncing up to the previous record stream because when reviving a new

cursor it starts with the last record fetched in and fetches it again with all of the records

that follow after it in the sort order.

Thus, there is potential overlap between the cursors and there will always be overlap of at

least one record. But, this is okay because when the cursors are syncing up I turn on a

check to make sure that no duplicate records are received into the buffer. So, those first

few overlapping fetches are simply ignored because they are already in the buffers.

I do it this way because the dataset may not always be sorted by values that are unique for

each record of the dataset. In the future I will enhance IBO to detect if the sort criteria is

unique or not and if so then I can make things a little bit more efficient for that case. As it

is now, there will always be only 1 overlapping fetch and this is easily afforded.

But, until I make that improvement, I simply do what needs to be done in case the sort

criteria allows many records with duplicate values. The important thing is that no records

are overlooked and it is really inexpensive to scan my buffers for a raw key value to

avoid having duplicate records.

Please follow these steps to see the details of how this works:

Select 1000 record dataset size option.

Click on the ID column header to sort the dataset by ID.

Observe how it says "Rec: 1 of 11+" after it refreshes.

Then, watch the transaction get 10 seconds old and attempt to fetch to the end.

You will end up seeing it show something like: "Rec: 1 of 250+" give or take.

Now, after it fails to reach the end of the record stream, the cursor is killed.

This is why the transaction remains unallocated and the time remains at 00:00:00.

Now you can scroll the grid down carefully until it reaches where it was truncated.

Use Page-Down and the down arrow and get to where you are sitting on the last row.

It will say "Rec: 250 of 250+" when you are right on the cusp of reviving the cursor.

Then, hit the down arrow once and bump it over the line and a record appears as normal.

However, you should notice that the transaction goes active again due to the new cursor.

The transaction will timeout and kill the cursor again and revive it again as needed.

Please notice the records have no gaps in the sequence so it is effectively one dataset.

It will pull another 250 records into the buffer before it is killed off a second time.

Dataset Size = 10,000 records (unsorted and sorted)

Pushing the dataset size up to 10,000 unsorted records puts us into a dataset size that

could become a concern for performing a refresh to allow the transaction handle to be

released. If the dataset is sorted then IBO will kill and revive the cursor as necessary, but

you may want more efficient refreshes anyway. So, for natural order queries, we need to

explore some additional parameters that can be used when dealing with larger datasets.

IBO gives you the ability to submit a query in such a way that it uses an underlying query

of just the key values only and then it will bring in single records only when the other

columns' values are required. This is called Vertical Refinement and it is configured

simply by setting the query's FetchWholeRows property to false and IBO does the rest.

So, instead of submitting a single query like this:

select t.*
from testdata t
WHERE t.ID < 10000
ORDER BY t.ID ASC

The request gets broken up into two queries:

SELECT t.ID
from testdata t
WHERE t.ID < 10000
ORDER BY t.ID ASC

and

select t.*
from testdata t
WHERE t.ID = ?/* BIND_0 */

This allows dataset rows to be fetched very quickly because it is bringing in row keys

only. Then, as needed, the individual whole records will be brought in based upon the key

values already fetched in. This behavior can be verified by looking at the SQL trace

monitor. I call this Vertical Refinement because the dataset is split vertically.

This makes your Refresh of the dataset far more efficient when you have scrolled

somewhere deep inside of the 10,000 records. You could, for example, do a Locate() by

typing 5555 into the Locate ID edit box and hitting ENTER to make it do the search. It

should immediately jump to that position in the dataset. Then, the automatic Refresh to

free up the transaction handle involves mostly keys only instead of the whole dataset.

The Locate() operation is also very quick because only the keys of the rows are fetched

and not the individual records in between when jumping to the record found. IBO avoids

pulling in the individual rows because it submits a query to the server to return the key

value of the record that matches the criteria. With the key of the matching record IBO can

do a fast search in the buffer's list of keys for the key value only. Thus, it jumps very

quickly to the record of interest and then only the records that appear in the grid are

fetched. Also, if the record's key hasn't been fetched yet, the cursor that brings in the keys

is advanced until the key is fetched. Then, the individual whole row of the matching

record is fetched and the Locate() is confirmed to be correct with the whole row's data.

So, if you are using a rather random and sporadic navigation pattern in a relatively large

dataset that has a lot of columns, this method of structuring your dataset would be

beneficial. But, for example, if you are running a report where you are certain all the

records of the dataset will be accessed, you won't want to use a dataset with vertical

refinement. It is much more efficient, in terms of network packets, to have the server send

the whole rows because it can bundle many of them together in a single network data

packet. Using Vertical Refinement imposes the down-side of requiring an individual

network request for each individual record that ends up being needed.

So, for example, a query like this one in the tutorial application, that only has 4 columns,

doesn't reap a significant improvement, if any, from vertical refinement. This feature is

more appropriate for a query that has several columns with random navigation through

spread out ranges of records that cover a relatively small percentage of the whole dataset.

Another aspect of configuring your dataset this way is once the individual records are

fetched they remain associated to their key value and are cached. So, when a query is

refreshed, the individual records already fetched are preserved. As each key is brought

back from the server it checks to see if it has its record's whole value stored in the cache.

So, when you call RefreshKeys, you won't lose the individual records. This is the same

system that keeps track of cached updates and cached blobs as well. So, it is possible to

refresh a dataset and still keep all of your cached updates and fetched blobs.

It is possible to see how individual record caching works by following these steps:

Click ID column header so the dataset is sorted and we get cursors that go away.

Locate ID 5555, 7777, 5555 and 7777 again and wait for the transaction to flush out.

Do a RefreshKeys on the update bar and wait for the transaction to flush out again.

Locate ID 5555 again and notice no new transaction or fetches were performed.

If you scroll to a row not yet shown in the grid, it starts a new transaction and fetches it.

For a bit of an additional test, turn on CachedUpdates and edit some records and then

refresh the dataset. You can even use the button bar to toggle the dataset open and closed

as well. The edited records remain viable even though the dataset was closed. In fact, you

can even close the dataset and leave it closed and the updates will still be processed as

they should be when the transaction is committed.

Dataset Size = 100,000+ records (sorted only)

There are some cases when queries can be put against very large tables. Under this

circumstance it becomes necessary to take an entirely difference approach because even

when fetching just keys it could become a noticeable delay to the user if there is a pause

while it is attempting to free up the transaction handle. We need a solution that allows the

user to have the query give them access to the full range of their huge dataset without

having to fetch in all of the records from the beginning of it to where they have scrolled.

This is where Horizontal Refinement comes into play because the result set is split up

into small and easily manageable horizontal portions, depending upon where the user has

navigated to. However, from their point of view, it appears as one huge dataset.

To see this in action select the 100,000 records dataset size. This will give us a dataset

that is quite large but that also has horizontal dataset refinement available. You can look

in the source code of this tutorial to see how this is done via the OrderingLinks property.

This feature also comes automatically when using the TIBOTable component and if

appropriate ascending and descending indexes are created on the OrderingField column.

This feature exists in IBO because to a limited extent the BDE also attempted to deliver

this capability. So, in order to have full BDE emulation, IBO has duplicated and

improved upon this feature. The improvements have gone far beyond what the BDE

allowed as this tutorial will demonstrate. It extends to having complete integration with

Filter, Locate(), Refresh(), Bookmarks, variations of columns indexed vs. the column or

columns being searched on, and much more. In all cases possible, IBO uses the server's

resources to perform the searching with minimal records actually being brought to the

client. And, at the same time, transactions will not be stuck because the cursors used for

fetching are able to be killed and revived on demand as a part of the horizontal dataset

refinement algorithms. Thus, refreshing is not required to release a transaction handle

when in this dataset mode, even when the dataset is in an edit state.

Keep a close eye on the status indicator that tells us how many records have been fetched.

If you click on the Last button on the dataset navigation bar you should notice it jump

immediately to the end of the dataset. But, it will still show only 11 records have been

brought into the buffer. This is because it made use of one of the 4 internal cursors that

are used to virtualize the entire dataset for immediate navigation throughout as follows:

select t.* select t.*
from testdata t from testdata t
/* no where clause */ WHERE t.ID >= ?/* OLNK_ID */
ORDER BY t.ID ASC ORDER BY t.ID ASC

select t.* select t.*
from testdata t from testdata t
/* no where clause */ WHERE t.ID < ?/* OLNK_ID */
ORDER BY t.ID DESC ORDER BY t.ID DESC

As you can see, there is an ascending and a descending query each with and without

WHERE clause criteria for OLNK_ID. This enables us to navigate to either end of the

dataset or to a point within the dataset indicated by the value of OLNK_ID.

One of the oddities of having record navigation virtualized in this manner is how the row

numbers become assigned. When you are using this feature of IBO you should not rely

upon the row numbers (record numbers) remaining consistent to their associated data.

Each time the horizontal dataset refinement criteria is adjusted, because you jumped to

the First or the Last record or a call to Locate() is made or a Refresh is performed, the

row numbers are all reset. Record number 1 or 0 is always the point of primary interest of

the refinement, depending on if it is in the ascending or descending orientation.

So, for example, if you do a call to Locate(), the record of interest will most likely be at

row number 1, if it is found. I say "most likely" because there are some cases when you

are able to use partial refinement criteria. But, that goes to a level of detail beyond the

scope of this paper. When another call to Locate() with different lookup criteria is made,

the record number 1 would most likely be pointing to a new record entirely, if found.

You can test this out by putting the number 5000 in the Locate ID edit field and pressing

ENTER. It will say Rec: 1 of 11+. Then, replace 5000 with 5555 and press ENTER again

and it will still say Rec: 1 of 11+. In both cases it was at record number 1 but the

underlying data is different because the horizontal refinement criteria was changed from

5000 to 5555. You should also notice that the user is at liberty to scroll to records before

or after the one located and then, on an as-needed basis, additional records are fetched in

so that the surrounding records in the dataset can appear in the grid.

You may have noticed that there are negative row numbers possible now that someone

can scroll the record pointer to records previous to the one located. Or, if you call the

Last method and scroll back toward the beginning of the dataset, as you navigate to

previous records you will be moving in the negative direction where negative numbers

are getting more and more negative as you go.

The point of origin for the record numbering scheme depends upon what horizontal

refinement mode and criteria are in effect. You have the top, middle and bottom modes,

depending on if you just opened the dataset, or if you located a record within the dataset

or refreshed or if you scrolled directly to the end of the dataset. When in the middle zone

there is also the value of the refinement criteria that the horizontal split is based upon.

This value gets changed when a Locate() is performed or a Bookmark is referenced. This

is how a Locate() or Bookmark can be executed and come up with an immediate answer.

So, the work of finding records in the dataset is offloaded to the server by making use of

specially prepared internally maintained SELECT statements based upon your query.

This feature is what enables applications using InterBase/Firebird to approach the speed

of XBASE applications in dataset navigation. This is why I claim IB Objects is an

excellent tool for converting BDE or XBASE applications. Most of the work of having

highly efficient and fast performing datasets is taken care of for you automatically.

Part 2: How performing updates impacts transactions

When designing how your application will process its updates, you will need to choose

between the two basic approaches of Direct Updates and Cached Updates. I will do my

best to give you a clear picture of how each of these methods works and the strengths and

disadvantages of each. This isn't an easy decision to make as there are very important

consequences that are associated with each. There is a significant amount of complexity

that most people don't fully notice that has to get figured out one way or another. Doing

things correctly so that they are not only efficient, but most important of all, so that they

are free of harmful update conflicts, is more akin to an art than a science, as you will see.

Direct Updates Introduction

Direct updates is where each update posted goes directly to the server and is immediately

executed in the database. The advantage to this is you get to rely upon the excellent row

level locking mechanisms of the database, if it has such. And, fortunately, InterBase and

Firebird have excellent row-level locking from the very beginning.

Unlike most all of InterBase's early competitors, true row-level locking was almost

unheard of. This is one reason why it was such a shame that InterBase didn't get more

attention and patronage in its early times. Other databases used the database page lock as

a means to help avoid update conflicts but this had very undesirable side effects. Where

things that should have been available for modification, if they were sharing the same

database page as something else, there could arise a needless conflict the user could do

nothing about. Senseless deadlocks were a serious problem in the early days.

Because of this problem in many popular databases, the approach of direct updates hasn't

really been all that popular because with direct updates, to resolve this problem, they

would have to do a rollback and start their work over again. Thus, the user would lose all

of their work so far with no way to recover it. The application would need a way to keep

the changes made so that they could be re-applied, which is what has given rise to the

cached updates approach because by design it overcomes this particular weakness.

Not only were users subject to possible conflicts, senseless or otherwise, there is also the

issue of having some kind of fault with your connection to the database. If your network

went down then your connection to all of your updates posted so far is lost. When the

user got reconnected they would have to start their work over in a new transaction.

All during the time that a user is working with direct updates there is a transaction

allocated so that all of those changes will either commit together or be rolled back as one

unit of work. That's the beauty of transactions is if you suffer some kind of a loss, at least

you can be certain that everything either succeeded together or that it failed together. This

greatly simplifies our job as database programmers. However, this means your

application is keeping a transaction open for an indefinite period of time putting a

significant workload on the server to mitigate all of this potential complexity.

Another thing that is an excellent feature of InterBase and Firebird is stored procedures

and triggers. This enables the database to become directly involved in ways that were

unthinkable with simple flat file database systems. One of the greatest benefits of using

direct updates is you can put a lot of your logic directly inside of database programming

and you can access it directly as you go along making your changes.

So, each time a post is made, programming in the database can react and do things on its

own and those actions will then be immediately visible to the client even before the

transaction is committed. So, database programming can be a direct part of applications

that use direct updates. Otherwise, the database programming will only be executed at the

time the updates are all being applied because they have been cached and kept from the

database purposely. This is one of the major trade-offs between the two modes.

Cached Updates Introduction

Cached Updates is where all of the user's updates are kept in a local buffer or buffers of

some kind in waiting for when the user has completed all of their work and then they

wish to submit the whole batch of changes together. These updates are typically stored in

each individual dataset within a record-level update cache.

A major reason why the cached updates model has been given a lot of use is because it

holds all of your changes and safeguards you against senseless update contentions and

failed connections. It allows you to start a fresh new transaction to attempt to post all of

your changes in one go of things. If for some reason there is a problem and it fails,

everything posted in its attempt to apply the updates is rolled back and you are put right

back to where you were prior to attempting to submit your updates. If there is success

then a commit is performed and everything is kept together as a whole unit of work.

Transactions greatly simplify one of the most complex aspects of database programming.

When I worked at U-Haul International there was a lot of difficult code written just to try

and clean up the fall-out of failed so-called "transactions". We were using an XBASE

database and true transactions were non-existent. Thankfully, those days are behind us.

Thanks to true transactions, the cached updates model becomes even easier to use

because one single transaction can be used to apply all of the updates or your application

can do a rollback to clean everything up as if you had never made any updates.

So, if there is a conflict in the database when applying updates, it could indicate what it

was and allow just that specific item to be addressed and then submit all of the updates

again with the new changes to address the problem. This cycle could be repeated as many

times as necessary until the user is successful at applying their updates.

Upon a successful applying of all of the cached updates, the update buffers can be cleared

out and all of the new changes will be available for the queries to refresh directly from

the server. Any database programming invoked in triggers and/or stored procedures then

becomes visible and the datasets can be refreshed to reflect all of the new results.

Performing Updates Introduction

There are actually a number of ways updates can be submitted to the server:

• Edits and deletes can be performed on records positioned by the server's cursor.

• Edits and deletes can use a search by key columns alone or with all others.

• Edits can use a search by key columns plus columns that have been modified.

• All updates can be a prepared statement or an immediately executed statement.

• Edits and inserts can have a RETURNING clause to get values from the server.

• Edits can synchronize with the server upon going into edit state and after posting.

• Inserts can synchronize the record inserted with the server after posting.

Using direct updates favors a different way of performing updates than the way cached

updates favors. There are some important technical reasons for this I hope to

demonstrate. The main difference revolves around addressing update conflicts.

We want to be made aware when an update conflict happens so that our application

doesn't accidentally overwrite one user's update with another user's update. We also want

our updates to be processed in the most efficient manner possible. So, let's dive in and see

how each way of performing updates looks with our two approaches.

Positioned Updates

What it means when we say "positioned" is the record to be edited or deleted is what the

server's cursor is currently positioned on. This way of performing edits and deletes is

useful when you are scanning a unidirectional cursor with a live cursor via the FOR

UPDATE clause on the SELECT statement. This clause makes the server send only a

single record at a time so that it will keep track of that position in case positioned updates

are desired. You would also need this if you want a live query that involves a SELECT

statement with a JOIN. InterBase and Firebird are able to deliver such queries as live.

So, when using positioned updates, it becomes possible to identify the record of interest

simply by using the following clause with your UPDATE or DELETE statement:

DELETE FROM MYTABLE WHERE CURRENT OF <<CURSOR NAME>>

This statement will delete the most recent record fetched from that cursor in that table.

In IBO the TIB_Cursor component uses positioned updates by default by having the

SearchedEdits and SearchedDeletes properties set to false. Though this is the default, it

may still make sense to use searched edits and deletes because putting a SELECT

statement in the FOR UPDATE mode makes it much less efficient at fetching records.

I'm not going to say much more about this updates method because it isn't a mainstream

way of handling updates with higher level buffered datasets, even though it does work

with a TIB_Query component. What happens is IBO opens a cursor for the single record

of interest and then allows the update to take place relative to that single record's cursor.

There is substantial overhead to make a cursor for each individual record to be updated.

Searched Updates

This method of performing updates is the most straight forward because we are directly

in control of the record selection criteria. And, as I will show you, we have quite a bit of

flexibility to safeguard against record update contention by way of using regular column

values in addition to key column values when performing them.

If you are using direct updates and relying wholly upon the database server to prevent

update conflicts, it is acceptable to just use the key columns as the record selection

criteria in your update statements, as long as you have PessimisticLocking set to true.

This is possible because InterBase/Firebird has true row-level locking. Once your

transaction has an update or a delete posted to the server it remains locked until your

transaction is committed or rolled back. If any other user attempts to lock or update that

record they will receive a deadlock exception. Thus, you can be assured that until your

work is completed, nobody else is going to overwrite your update.

This is what a searched edit and delete statement will look like:

UPDATE TESTDATA T
 SET T.ID = ?/* T.ID */
 , T.COL1 = ?/* T.COL1 */
 , T.COL2 = ?/* T.COL2 */
WHERE T.ID = ?/* OLD.ID */

DELETE FROM TESTDATA T WHERE T.ID = ?/* OLD.ID */

This is the most basic method of applying updates and it will get the job done. But, to be

sure you are avoiding update conflicts, I highly recommend putting additional measures

in place. The reason for this is, for example, a user could have opened up a form and then

leave the room for a while. The data displayed on their screen is the old version of the

record. In the meantime, another user could have modified that same record and

committed their change. However, when the first user posts their change after returning,

their update could overwrite an update that they never even knew existed.

So, even with row-level record locking on the server, there is still a weakness where users

could step on one another's toes, so to speak, and wipe out each other's work.

Pessimistic Locking

As I mentioned above, we totally avoid inadvertent update conflicts by placing a lock on

each record at the time it is put into edit state. In this way, you prevent other users with

another instance of your application from even attempting to make a change to that

record until you have finished your work. If they attempt to put that record into edit state

and another user has already done so, then they will get a notification telling them that

this record has been locked by another user.

Obviously, this method of preventing update conflicts requires you to be operating in the

direct updates mode, as opposed to the cached updates mode. This is the only way to

have the server involved in fully locking down your records when at the same time you

are only using key columns as the searched update record selection criteria. This also

does not mean other applications won't be able to go into their own edit state of some

kind and attempt to post changes based on out of date information.

In IBO there are two properties you need to use in order have this increased level of

conflict avoidance in your application. You need to set the PessimisticLocking property

to true in order to have the record locked upon going into edit mode. If you also want to

have that record refreshed with its most recent data from the server, you need to include

the bsBeforeEdit flag in the BufferSynchroFlags property. This prevents you from

editing the record with data that has become out of date.

You can observe how this works by setting the PessimisticLocking and bsBeforeEdit

options and by watching what happens in the SQL monitor when a record is put into edit

state. You should see a statement executed like this to acquire the record lock:

UPDATE TESTDATA T
 SET T.ID = T.ID
WHERE T.ID = ?/* OLD.ID */

And, you should also see a statement like this executed for the record level refresh:

select t.*
from testdata t
WHERE t.ID = ?/* BIND_0 */

Perhaps it appears that the UPDATE statement doesn't actually do anything because it

just sets the T.ID column to its current value. But, even if the value does not change, and

we really don't want it to anyway, the server still flags that record as having been

updated. This update functions as a lock and is sometimes called a "dummy update".

When this lock operation is performed, your database triggers will be executed so you

will want to be aware of how this will affect things. As a rule of thumb, your triggers

should always look for actual changes in the data to react to. By doing this, you will

avoid having this lock operation make it look like the record was actually changed.

This lock will remain in place until your transaction is committed or rolled back. So, if a

user puts a lock on a record and then cancels the edit state, IBO sees if it is possible to go

ahead and release the lock immediately by performing a Rollback or RollbackRetaining,

depending on if there are open cursors that need to be kept alive. However, if there are

already other updates posted to the server in this transaction that are waiting to be

committed, then I am not at liberty to release the lock because those changes would also

be lost. So, in this case, the lock remains bundled into whatever work is going on.

Let's experience some conflict

If you click on the "Trans" button you can open up a new transaction form with a second

dataset form for that other transaction below it. In this way, you can simulate another user

and actually test how the record locking mechanisms work. You should also open up the

SQL Monitor by clicking on the TIB_UtilityBar button that launches it.

Put both datasets in PessimisticLocking mode and try and edit the same record in each

transaction's dataset form. You should see the following message appear when you

attempt to put the second dataset in edit state:

This message is generated from the default application handler so it is a bit more friendly

and informative than the standard default error message. At some point you will want to

examine the OnUpdateError event handler in the ApplicationHandler as it demonstrates

many useful tools for handling exceptions when performing locks and updates. More will

be said of it later.

Let's look at what can still go wrong. Set PessimisticLocking to true and bsBeforeEdit to

false. Also, make sure both datasets are refreshed to show the current latest committed

data. Now, in the first dataset form do an update and post it. Then, you will see that you

can do an update in the second dataset form and post it as well, except that it never was

aware that another user had posted a change. That other user's update was never brought

to their attention prior to posting their changes. Allowing a user to trample over the work

of another user like this could be a problem. This is what I call an inadvertent conflict.

To cure this set the bsBeforeEdit option on each dataset form and proceed to make the

same changes as was done before. You should notice when the second dataset goes into

edit mode that it grabs the most recent version of that record from the server. So, the

change you just made and posted in the first form is now visible in the edit mode of the

second form. Thus, we have made it so that it is not possible for users to trample over

each other inadvertently. As they lock the record they also get it's most current value.

While this method of conflict resolution is very thorough and secure, it comes with a

rather high price tag, in terms of server resources. This is mostly because it requires

potentially long-running transactions. You would need to put safeguards in your

application against them being too long. IBO has mechanisms that allow you to configure

timeout parameters for your transactions. You can use the TimeoutProps property to

determine when they are prompted and forced if necessary.

This style of long-running transactions in order to rely fully on the server to prevent

update conflicts could affect your database environment in a way that makes other

operations, such as batch processes, prone to interruption. This is because the records

they need access to for processing could be locked down for an indefinite period of time.

Fortunately, this update mode doesn't affect long-running reports because they start a

transaction with a snapshot view of the database ignoring any new locks/changes. It is

easy to take this for granted but there were competing databases that had "readers"

blocking "writers" in order to deliver a stable snap-shot view. InterBase/Firebird has

never had this problem because of its multi-generational record versioning capabilities.

So, using direct updates with row-level record locking can be a workable and reasonable

approach to developing your application. It gives you direct access to all of the server's

programming as you perform your drawn out transactions. Unless you know of a good

reason not to use this approach, this is what you will want to do. Direct updates is a very

easy method to implement but it can have some draw backs as well.

Optimistic Conflict Resolution

Let's take a look at another way to resolve the above mentioned problem of a user posting

a change that was based on data that became out of date during the time they were

working with their data. We will solve this in a way that does not require any long-

standing transactions.

The simplest way of detecting update conflicts is to modify our record selection criteria

of our UPDATE and DELETE statements so that we will only take action on a record

that yet has the same original values in the database as we were working with as we

performed our edits, etc. In this way, we can detect if another user has put in some

changes during the time we fetched our data and then submitted our changes.

Here is an example of a searched update designed to detect update conflicts:

UPDATE TESTDATA T
 SET COL1 = ?/* NEW.T.COL1 */
WHERE T.ID = ?/* OLD.T.ID */
 AND T.COL1 = ?/* OLD.T.COL1 */
 AND T.COL2 = ?/* OLD.T.COL2 */
 AND T.LASTUPDATED = ?/* OLD.T.LASTUPDATED */
 AND T.CHANGE_ID = ?/* OLD.T.CHANGE_ID */

In this example we not only have the key column to uniquely pinpoint the record we are

interested in, but we have also included the other columns of the table and plugged into

them the original values we had. Therefore, if there was a change to any of those other

columns' values then this update will actually fail to select and update the record and it

will give a RowsAffected result of 0. Using UpdateMode umAllWhereAll does this.

Follow these steps to see how conflict detection based on Rows Affected works:

Click on the button that says "Trans" to get a second transaction form/context.

Set the UpdateMode property to umAllWhereAll on each dataset form.

Make some changes in each dataset that will conflict with the other.

A form like this should appear showing the values involved in the conflict:

This says column COL1 had a value of '0' and User2 was trying to change it to 'User2' but

User1 managed to change the value to 'User1' in the meantime.

Clicking OK acknowledges the exception and the post or commit is interrupted.

Clicking Ignore pushes your change through and ignores the changes on the server.

You will want some way like this form to show the difference between what is on the

server and what the original old values were. Unfortunately, the data bound controls don't

show the server's current values or the old values. But, be sure to examine the tutorial

app's source code and IB_VCL.pas to see how this works. The primary properties

involved are AsString, OldAsString, CurAsString, CurIsAbsent, CurValue, etc.

The way the ability to ignore the changes on the server works is in the OnUpdateError

event the UpdateAction is set to uacIgnore rather than just uacRetry. Think of it as a

retry that washes out the original values updating them to the current values. This makes

it so the update being attempted will be successful because when it is attempted again the

RowsAffected will be 1. This makes the OLD value parameters in the WHERE clause

align with the server's current values for it to successfully apply the update.

Allowing the user to ignore the new values on the server should be acceptable since the

dialog presented the other value or values being wiped out. The decision to overrule those

old values was an informed one. I even convert the edit into an insert if it detects the

record was removed from the server. And, if a delete detects a record was already

deleted, it will just mark itself as having been applied. And, if an insert detects that a

conflicting record with a duplicate key has already been inserted it will give you the

opportunity to simply edit that existing record and retain the current insert as a success.

UpdateMode

IBO takes care of the chore of putting together your SQL statements to apply your

updates to the server. Setting the UpdateMode property has some potentially significant

effects on how your application will work. It is important to understand this property.

The default mode for TIB_Query is umAllWhereKey and for the unidirectional

TIB_Cursor it is umAllCursorPos. We also experimented with umAllWhereAll above.

Let's take a look at the other modes that are available.

umAllWhereKey All the query's columns. Searched by keys only.

umModWhereKey Only modified columns. Searched by keys only.

umModWhereMod Only modified columns. Searched by keys and modified columns.

umAllWhereAll All the query's columns. Searched by all the query's columns.

umModWhereAll Only modified columns. Searched by all the query's columns.

umAllCursorPos All the query's columns. References server's cursor position.

umModCursorPos Only modified columns. References server's cursor position.

The preface of these is either umAll or umMod. What this means is it determines what

columns are included in the insert or update statement. Does it put all of them in the

statement or does it only include the columns that have had a new value assigned to them.

There is a tradeoff between these two styles. On the one hand, by always including all of

the columns your statement remains consistent from one update to the next, regardless of

what changes are taking place in the query. This allows your statement to be prepared

once and then kept on hand to be used quickly and immediately for each succeeding

update you are posting. This reduces the level of network chatter significantly.

However, if your query has a large number of columns and you are only updating a few

values here and there at a time it can put a lot of data over the wire that doesn't actually

have to be transmitted to the server. If you have only changed the values of a couple of

columns you really don't want to have an update statement send 50 or a hundred column's

values in order to perform the update. So, it can also backfire and cause waste too.

The suffix of these is Key, Mod, All or Pos. This tells how the record being updated is

selected and acted upon. Pos means it is using the server's unidirectional cursor position

and so no other record selection criteria matters. The others all refer to how the searched

mode of updates works. It will either use just the keys or just the keys plus any values

that have changed or it will use all of the columns. Each of these has a purposes for how

data conflicts can be handled.

Even though it is the default for buffered queries, I discourage using the keys only

modes. This is the default because it is the simplest to use. Users will rarely see

deadlocks, key violations, conflicts, etc. because most of what one user does just

overwrites what the other users have done. A professional application should do more.

The tutorial application uses a buffered query so it isn't really practical to show how to

use the cursor position modes. These are really only ideal for working with unidirectional

datasets. But, it will actually work with a buffered query too. What happens is it will

fetch the individual record of interest in a live cursor and then apply the update to that

special cursor provided just for the update. However, the overhead required to do this

isn't really worth it since you can just do a searched update directly without wrapping it

all inside of a cursor on the server. Therefore, I won't go into this mode any deeper.

What remains is to show the difference between using all of the columns vs. using

modified columns. The principle you want to have in mind here is whether or not your

column values are all independent of one another or if they are tied together as a group of

interrelated values that don't really stand on their own.

For example, a person's address is composed of several columns and so if an address is

going to be updated you would want all of those columns to be kept together. You

wouldn't want the street location of one address and the city of another location to be

mixed together. So, if someone has updated an address then you want all of the columns

of the address they have worked with to be posted together as a unit. Depending on how

you configure your UpdateMode, you can allow changes to be mixed together or to block

one another as a group.

Here is how things can be mixed together using the umModWhereMod mode:

Open up the app and click on the Trans button to get a second user transaction going.

Put each dataset's UpdateMode to umModWhereMod.

In the first dataset's form change the value for COL1 in a record.

In the second dataset's form change the value for COL2 in the same record.

Both changes were allowed because this update mode works at the individual column

level. Notice when the second update is posted the value from the first appears. This is

what I call bleeding through. In some cases you may want this and in other cases you

may not want it. Using umAllWhereAll prevents things from bleeding through.

Go ahead and give it a try making the same updates again but with the umAllWhereAll

update mode and see how it reacts. You should see a dialog prompting you to either

cancel what you are attempting to do or to overwrite the entire record with all of its

values, including the ones you have not changed, if you decide to ignore the conflict. In

any case, edits from one user's post and edits from your post will not be allowed to bleed

through with one another. This should conclude the critical differences between modes.

You might wonder why there isn't a umAllWhereMod update mode. I deliberately

omitted it because there is no practical or beneficial use for it. It doesn't make sense to

attempt to modify column values that you have only performed partial checks for

conflicts on. It would make more sense to just use the keys only mode.

Cached Updates

Let's have a look at how cached updates work now. With cached updates the updated and

posted record isn't actually applied on the server until after all of the records of interest

have already been posted. These posted update actions are stored in memory and then

when you are ready they are all applied to the server together in a burst of updates.

This introduces the aspect of performing the ApplyUpdates process when you want

everything to be sent to the server. Now, instead of posting an individual record as before

with direct updates, we are performing a batch of multiple records. All of this takes place

inside of a specially designated transaction that will either end with success and commit

or it will fail and everything will be rolled back.

This is the beauty of cached updates. You only need a transaction to be held open during

the time you are sending all of your updates in a single batch. Otherwise, depending on

what your datasets are doing with their cursors for fetching, there is nothing that should

require a transaction to stay open for very long.

IBO gives you the ability to respond to data conflicts in different ways. You can go ahead

and abort or you can ignore the conflict and override it or you can skip over it and

continue with the remaining items in the batch. Skipped items remain as a cached update

after all of the others are committed. Let's set up some examples to have a look at.

Open a second transaction form so that we have two datasets to work with.

Turn on CachedUpdates and set the UpdateMode to umAllWhereAll in each form.

Edit the COL1 value in 3 consecutive records in the first dataset form.

Edit the COL1 value in one of the 3 records over in the second dataset with a conflict.

Apply the update in the second form to create the data conflict for the first form.

Now attempt to apply the updates in the first form and notice a dialog like this appear:

Buttons will appear allowing us to respond as they are suited to what is going on.

Here is what each button that can potentially appear in this form does:

Clicking Yes causes the item to be skipped. This allows the remaining updates to yet be

committed if no other problems come up that cannot also be skipped. If ApplyUpdates is

ultimately successful, skipped items are put back as they were and the user can continue

to work with those items and attempt to apply them again.

Clicking Abort aborts the ApplyUpdates process and puts things back to how it was. This

gives the user everything back to where they were so that they can address the problems

with the whole bundle of updates together.

Clicking Retry simply attempts the same statement over again. This wouldn't be a useful

option for this particular case because there isn't going to be a resolution by waiting a

little while. Thus, this button does not appear here. However, as we saw earlier above, if

there is a deadlock, the user might just need to wait until the lock is released. I also put

into this app a dialog asking if you want to simulate an action of the other user causing

the deadlock so that you can see how this works.

Clicking Ignore allows the update to go ahead and be applied, winning the conflict. This

means the record being updated is refreshed with the values from the server to update its

original data to the new server value. Thus, as was explained above in more detail, the

OLD values were brought into alignment with the server's current values allowing the

update to be successfully applied.

There is a current weakness in that a user could start an apply updates and walk away

from their computer. If this dialog appears and is waiting for them to respond, this has the

unfortunate consequence of holding the transaction open all during the time this form is

waiting. Thus, it is highly advisable to write your own custom OnUpdateError code that

ensures if a user is prompted that there is an adequate timeout mechanism in the event

that the user is unable to respond in a timely manner.

DML Caching

This feature adds a very powerful tool for avoiding data conflicts. It's goal is to have your

buffered datasets pro-actively updated in real-time with whatever changes are taking

place in the data. It is a system of propagating messages throughout your application so

that buffer synchronization can take place as efficiently as possible. Fortunately, it is a

simple feature to use.

A dataset can be configured to announce and/or receive DML caching messages

separately. This can be seen in the tutorial app by opening a second transaction and

dataset and then in the dataset forms click on DML Announce and/or DML Receive so

that the dataset forms will generate and/or listen for the appropriate messages based on

what is going on in the application.

Once this is done then proceed to make edits, inserts and deletes in a dataset form

configured to announce and then observe how those same changes are automatically

applied to the other form that should be configured to receive. You might also notice that

a little pattern of dots will surround the grid cells that are affected. This is based on the

conflict management system keeping track of changes injected from an external source

and attempting to draw special attention to them.

The reason this is called DML "caching" is because there are different scopes in which

the messages generated can be applied. It doesn't make any sense to propagate a DML

message from a transaction that has not yet committed to datasets in other transactions.

They wouldn't be able to see the new changes on the server yet, not until there is a

commit performed.

So, there are some messages cached up until the transaction they took place in performed

a commit. Once this happens then it attempts to announce all of the messages from its

cache to the other transactions in the connection. Also, before the commit takes place, the

DML messages are propagated among the transaction's other datasets right away. We can

see how this works by clicking on the Dataset button to get a second dataset within a

transaction.

Here are some steps to take to see how this works:

Start the application fresh and click on the Trans button and then the Dataset button.

Click on the first transaction form's "StartTransaction" button bar button.

Click on the first transaction form's first dataset form's DML Announce check.

Click on the other two dataset form's DML Receive checks.

Proceed to make edits to records in the dataset configured to announce.

Notice how those changes only show up in its companion dataset form below it.

Notice how those changes are not appearing in the other transaction form's dataset form.

Now click on the first transaction form's "Commit Transaction" button bar button.

Notice how the edits are then synchronized over to the other dataset form.

This feature works with both direct updates as well as with cached updates. Take some

time to play around and experiment and see how it works. For example, batch up some

conflicting cached updates in dataset forms and then apply one of them. When the

changes are synchronized over to the dataset that has active cached updates it will

actually detect update conflicts and highlight them with a subtle red rubber-band around

them. Configure all of the datasets to both send and receive and play around with it.

You can also try different UpdateMode settings to see how the locking mechanisms work

in conjunction with having DML Caching configured. Fortunately, with the DML

caching there will be far fewer conflicts because the data is proactively synchronized in

real-time.

RETURNING clause

An excellent feature in Firebird is being able to put a RETURNING clause on its

UPDATE and INSERT statements. This allows singleton updates and inserts to

immediately return any new affected values from the update or insert. This makes it

efficient to get values from columns affected by triggers, for example. It even becomes

possible to have a primary key value provided in a trigger and given back to the client.

So, this not only eliminates the additional work of fetching a record after the insert but it

can also eliminate the query to acquire new key values from sequences when inserting a

new record. This is also great for getting values from COMPUTED columns or other

columns that the server derives.

This statement clause also helps out in other ways. I generally avoid using the "execute

immediate" mode for posting dataset updates, even though there is a bit of a performance

improvement to just throw a statement to the server in a single go. It is worth it to

allocate a statement handle, submit a statement to be prepared, described and then to be

executed if it means you get confirmation the intended record was actually affected.

Otherwise, we couldn't know and this could be problematic since this is how conflict

resolution is performed.

However, if you include a RETURNING clause on your statement that is executed

immediately, the nature of the statement is changed to behave like a singleton SELECT

statement that expects exactly 1 row to be affected. If there are 0 or 2 or more records

returned by a singleton SELECT then an exception should be raised.

Therefore, it is the same logic when performing an UPDATE with a RETURNING

clause. The question of having a rows affected of 1 becomes an implicit part of

performing an update with a returning clause. And, if the server doesn't give an

exception, I still put a safeguard to check if meaningful values were returned. If NULL is

returned for all of the columns being returned then it did not actually affect the record we

wanted it to and I treat this the same as if it had a rows affected result of 0.

When using the RETURNING clause with cached updates, the values brought back at the

time of applying the updates will be cancelled out if there is a failure somewhere in the

ApplyUpdates process and a subsequent rollback is performed. The goal is to put the user

right back where they were when ApplyUpdates was first called. These values need to get

thrown away because the transaction they represent also went away.

Note: Only later versions of Firebird have support for the RETURNING clause and only

Firebird 3 fully supports it with positioned updates and with the execute immediate

statement execution. InterBase does not support this at all, even though I have been

begging them for years to support it. It is a very nice feature that makes more optimal use

of bandwidth. It's a great way to optimize your application.

Conclusion

Hopefully this paper will have given you a deeper understanding and appreciation of

what all goes into writing efficient and transaction friendly applications that safeguard

your user's updates against conflicts in a way that keeps things convenient for the user.

There is a lot of capabilities build into IBO waiting for you to dive in and explore.

Enjoy!

