
Encrypting Firebird databases

Alex Peshkov

Firebird Foundation
IbPhoenix

2016



Encrypting Firebird databases

● History of a feature
– Existed (but closed with #ifdef) since IB 6.01.

● No support for initial database encryption
● Crypt key expected to be passed from client in DPB

– Implemented from scratch in FB 3
● SQL support for database encryption / decryption
● Encryption on the fly using background server thread
● Flexible crypt keys control including separate 

KeyHolder plugin



Encrypting Firebird databases

● When NOT use:
– Protect database file 

from being copied 
over network

● Correct solution
– Tune access rights in 

your network

– Share \\server\c with full control
– Everyone – Administrator or same access rights

– Windows trusted authentication, mapping
Domain Admins => SYSDBA (FB 2.1)

● Everyone – SYSDBA?

file://server/c


Encrypting Firebird databases

● When NOT use:
– Let only some users 

attach to specific 
database

● Correct solution
– Use multiple security 

databases

● Pre-FB3 (Encrypt?)

Server (100 users)

DB1
(100

users)

DB2
(5

users)



Encrypting Firebird databases

● When is it useful?

● Protecting databases distributed for fee
– Filled with important data
– With important business logic in metadata

● Protecting databases from being physically 
stolen (HDD or the entire server)



Encrypting Firebird databases

● Compared with use of encrypted disk
– Useless when distributing databases
– Requires offline period to copy database to 

encrypted disk

● What do we crypt
– Data, blob and index pages (except header)
– Subsidiary pages (PIP, TIP, etc.) left not encrypted
– Key correctness is checked using hash providing 

zero-knowledge about a key
– Sensitive data (hash, encryption flags, etc.) are 

protected by additional encrypted checksum



Encrypting Firebird databases

Database pages cache

Physical I/O
(OS-dependent level)

Database encryption

● When are pages encrypted / decrypted?



Encrypting Firebird databases

● How crypt key can be stored?

● Databases distributed for fee
– In special client software

● Database should be accessible only from that software
– Support “developers mode”

● Databases protected from physical loss
– In some secret place (host in security department)

● Database should be accessible from any client, 
including generic purpose tools



Encrypting Firebird databases

● How to store key?

Database crypt plugin
 Load key itself

 
Key holder plugin

 

Get key from key holder

Load key itself

Get key from client

 
Key holder 2

 

Crypt plugin 2
 



Encrypting Firebird databases

● Possible key sources

Database crypt plugin

Key from  
secret place



Encrypting Firebird databases

● Possible key sources

Database crypt plugin
secret place

Key from  
secret place



Encrypting Firebird databases

● Possible key sources

 
Database crypt plugin

secret place

 
Key holder plugin

 

Key transfer

Key from  
secret place



Encrypting Firebird databases

● Possible key sources

 Faked database
crypt plugin 

 
Key holder plugin

 

Key transfer

Dump
a key



Encrypting Firebird databases

● Possible key sources

 
Database crypt plugin

secret place

 
Key holder plugin

 

Key transfer

Key from  
secret place

Faked firebird binaries

Dump a key



Encrypting Firebird databases

● Approximate authorization protocol
– Crypt plugin => Key holder:

● Send me a key
– Key holder:

● Encrypts a key
– Key holder => Crypt plugin:

● Encrypted key
– Crypt plugin:

● Decrypts a key
● Ready to work



Encrypting Firebird databases

● Possible key sources

secret key
Database crypt plugin

secret place

public key
Key holder plugin

 

Crypt key transmission protocol

Key from  
secret place



Encrypting Firebird databases

● Possible key sources

secret key
Database crypt plugin

secret place

public key
Key holder plugin

 

Crypt key transmission protocol

Key from client

Key from  
secret place



Encrypting Firebird databases

● Possible key sources

secret key
Database crypt plugin

secret place

public key
Key holder plugin

 

Crypt key transmission protocol

Key from client

Key from  
secret place

Key from  
secret place



Encrypting Firebird databases

● Possible key sources

secret key
Database crypt plugin

secret place

public key
Key holder plugin

secret key   secret place

Crypt key transmission protocol

Key from client

Key from  
secret place

Key from  
secret place



Encrypting Firebird databases

● Step 1 – select plugin to use
– Not open source – problems with crypt keys

● Write it yourself
● Use trusted third party plugin

● Step 2 – install and check on database copy
– Use SQL statement:

Alter database encrypt with “PluginName”
– Or:

Alter database encrypt with “PluginName” key “Name”

Meaning of key name is plugin-dependent



Encrypting Firebird databases

● Step 3 – backup !!!

● Step 4 – choose off-peak load period and 
encrypt database

– Do not backup database during encryption!
– Use monitoring tables or gstat (may be in services 

API) to monitor encryption progress

SQL: Select MON$CRYPT_PAGE * 100.0 / 
MON$PAGES as Percent from mon$database

gstat -e db_name



Encrypting Firebird databases

● Working with encrypted database
– API fully functional
– Utilities fully functional – except gstat
– Limited gstat functionality – only -e / -h switches
– Backup database

● gbak: encrypt copy (file.gbak) manually
● nbackup: needs full (level 0) copy after encryption



Encrypting Firebird databases

● Known issue
– Encrypted size == initial size
– Use of ECB mode in AES
– Visible repeating sequences on some pages



Encrypting Firebird databases

● Possible solutions
– Use other cipher (RC4)
– Reserve space on pages for IV at database 

creation time

Header

Not encrypted data

Reserve

Header

Encrypted data

Initialization vector



Encrypting Firebird databases

Database pages cache

Physical I/O
(OS-dependent level)

Database encryption

● Performance



Encrypting Firebird databases

● Performance (desktop)
– 8 CPU cores (AMD FX-8120)
– RAM 8 Gb 
– Slow SATA
– 4 connections, 1 minute (TPCC)
– AES, using OpenSSL
– Default cache (16 Mb < DB size)

(tpmC, TPC-C Throughput)

Forced writes Not encrypted Encrypted Performance loss

On 984 740 25%

Off 27062 18453 32%



Encrypting Firebird databases

● Performance (desktop)
– 8 CPU cores (AMD FX-8120)
– RAM 8 Gb 
– Slow SATA
– 4 connections, 1 minute (TPCC)
– AES, using OpenSSL
– Default cache (320 Mb > DB size)

(tpmC, TPC-C Throughput)

Forced writes Not encrypted Encrypted Performance loss

On 1036 882 15%

Off 27793 19170 31%



Encrypting Firebird databases

● Performance (dedicated server)
– 24 (12 with HT) CPU cores
– RAM 32 Gb 
– SSD
– 100 connections, 90 minute
– AES, using OpenSSL
– DefaultDbCachePages = 768K (6Gb > DB size)

(operations / minute)

Forced writes Not encrypted Encrypted Performance loss

On 4491 4152 8%

Off 4346 4183 4%



Encrypting Firebird databases

● Performance – sequential vs. index scan

Header

Decrypted data
All pages are used

Decrypted data

Header
Sequential scan Index 

scan

Decrypted data

Single record is used



Encrypting Firebird databases

● Initial encryption performance (desktop)
– 8 CPU cores (AMD FX-8120)
– RAM 8 Gb 
– Slow SATA
– AES, using OpenSSL
– Default cache (16 Mb < DB size)
– Dedicated use of database

Pages (8k) / second

Forced writes Encryption

On 3964

Off 6378



Thanks for your attention!


	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

