
CloudaIDE
web framework for

database developers

CloudaIDE – web framework for database
developers

Database and User Interface – common
denominators of web applications

The idea of CloudaIDE – use the database
development methods to design a web
application

Reasons (among many others)

easy to learn
fast to develop
ergonomy – mouseless data entry
easy migration of Oracle Forms applications
easy deployment
scalability
extensibility
mobile apps

Goals

Removal of the Java plug-in (applets) support from
browsers

Three-tier architecture

Application
server

User
Interface

Database
• Data Storage
• Application logic implemented using Stored

Procedures

• Security tasks. Checking validity of client requests
• Translating request/response between client and

server
• Application logic – gateway between MT and Java (in

case of not sufficient power of database Stored
Procedures)

• Layout – Screen Editor
• User and Server Interaction– “triggers”. Programs in

MT a simple language resembling PSQL

Components of the CloudaIDE

CloudaIDE Designer – an Eclipse plug-in

CloudaIDE applications:
  Administration Console

 User self-service

CloudaIDE database supporting objects

CloudaIDE Designer

Screen Editor

Outline View

Miniature View

Package Explorer

Properties View

Tool Palette Data Source Explorer

Fast-Track Development
To develop a screen a programmer can drag a database view or table
from the Data Source Explorer and drop onto the Screen Editor

Fast-Track Development

Creates one of two selectable layouts – Table or Form
Creates screen items based on columns and gives

them properties
Binds screen items with database columns
Provides the programmer with default CRUD and

QBE

Screen Editor -
Tool to sketch of screen layout

Features:
Drag and Drop
Undo Redo
Cut and Paste
Drop from Data

Source Explorer

Properties View

Properties View displays properties
of a selected object

Block is UI representation of a
database table

Item is a client object that
corresponds to a database
column

Properties View - Block

DML Table Name
Query Table Name
Different tables for DML and Query can be specified in order
to facilitate updates on unupdatable views.
Instead of Insert, Instead of Update, Instead of

Delete
Programmer can define own procedures to handle DML.
Updates can be replaced by application specific processing.
Similar to database triggers. They give extra flexibility. For
example – Instead of Delete can in fact mark a row as
deleted without deleting a database row. The “Instead”
procedures can also disallow performing DML o perations or
add extra database processing to UI events.

Properties View - Item

Item is a client object that
corresponds to a database column

Master Item – each item can have
a master item, an Item in the
master block. This allows to
express arbitrarily complex master-
detail relationships between
blocks

SALES
ORDER
HEADER

REGISTER
HEADER

INSTALLMENTS

ORDER DETAILS

Properties View – Item
Query Only – if set to yes then the item belongs only to

Query table (not to DML table). Because of this Query
Only Item does not take part in DML operations.

Returnable – Similar to SQL return column. After any
DML operation this item is returned to the client.

Tab Index – programmer can statically arrange any
sequence of cursor navigation. The programmer can
dynamically set next navigation item and also force
cursor navigation using:
set_item_property(next_item,'BLOCK_NAME.ITEM_NA
ME');

LOV call Programmer can specify the name of a Form
with parameters. This turns Textbox into a List Item.

Tool Palette

Tool Palette serves to create/select
screen elements

It has two layout elements:
Grid – to place other elements

in HTML table
Table – to place other elements

in a table of horizontal rows
(spreadsheet like)

Outline View

Tree structure of the form. Using it the
programmer can see all the data
elements of the form. Blocks, items
and code

Through Outline View the programmer
has also access to non UI elements:
Off-Screen items – items that are

never displayed
Triggers – pieces of code reacting to

client events
Procedures

MT Triggers Language

Isolates the programmer from the complexity of
asynchronous nature of screen interaction and AJAX
calls

No callbacks
Close to PL/SQL. Key differences:

no SQL
case sensitive
datatypes

MT Triggers Language

Data Types of MT

• text
• number
• date (timestamp)
• oidn – encrypted

number
• etext – encrypted

text

Main constructs

• Procedures
• Triggers
• Loops
• Conditionals
• Exceptions

Trigger Types

Depending on the declaration level

Form •PRE_FORM, NEW_FORM

Block
•VALIDATE_RECORD, NEW_RECORD_INSTANCE,

PRE_DELETE, PRE_INSERT, PRE_UPDATE,
POST_DELETE, POST_INSERT, POST_UPDATE

Item
•VALIDATE_ITEM, KEY_DUPLICATE_RECORD,

BUTTON_PRESSED, KEY_NEXT_ITEM,
KEY_LIST_VALUES

Example trigger

Example procedure

What the client-side code is?

Single page architecture - everything is downloaded as
a single page

Javascript:
Creates HTML
Reacts for events
Executes AJAX to communicate with the server

Downloaded once for a compilation
Downloaded incrementally – minimizing initial

download

What the client-side code is?

This way screen layout and behaviour is supplied to
the client only once.

The main network traffic after initial download is
data.

The layout and behaviour code is cached on the client
(until next release)

Code splitting

The application is built of forms
Following this, code also is split into forms
Code delivery to the client is split into engine

(common functionality) initial download and form
(on demand) downloads. This helps to minimize
network traffic because no monolithic initial
download is carried out and unused code never gets to
a client

Code is loaded in gzipped form (most browses handle
this)

Demo Application code splitting report

Report integration

CloudaIDE is integrated with BIRT – Business
Intelligence and Reporting Tool

CloudaIDE can call a BIRT report using:
Parameters
SQL where phrase of a query last executed on a selected

database block

Report integration
In the last case a

programmer can
use the clause in
a query in the
report

The execution of
the report is
protected by a
checksum and
can be carried
out only once for
a call

Report integration - sequence of events

•The client asks the server for a URL

•The server prepares the URL and writes its sequence number and MD5 hash to the database

•The client receives the URL and sends it to the report server

•Reports server calculates the MD5 hash of the URL and checks if there is match between sequence
number and the MD5 hash of the URL. If there is not – HTML error 404 is reported

•Reports server deletes the URLs hash in order to disable recurring reports call (from the browser
history)

•Reports server executes the report

Lists of Values

Lists of Values

Realized as forms

Items of called form bound to Calling form items by a
naming convention

Automatic (in the background) selection of a list
element (item List validable property)

Possibility to enter missing list elements on the fly
Using the list to drill/navigate data – after the

selection is made

Menus
Come in two flavours:

Vertical

Horizontal
Application – wide choice

Menus
Forms create stack
Each Form can contribute options to the menu
These options stay in the menu, until the form is closed
If an option belonging to a particular form is clicked, all

forms above the form are closed, with one exception
An option resulting in opening a form stores reference

to the opened form
When clicked again the menu system closes all forms

above the called form and displays the form opened by
this option (not the one that has opened it). It gives an
effect similar to a breadcrumb navigation

Built-in Security features

Built-in authentication:
Table
Database Account
CAS

Authorizations – definable by the administrator
Protection against injection
Object protection

Protection against injection

Protection against injection

The application server knows application metadata.
No direct SQL statements, phrases and procedure calls
are passed to the server. Everyone of those are handled
indirectly against application metadata

Object protection
CloudaIDE uses encrypted numbers and texts. The

encrypted data contains information about the source
of this data. The system analyses the graph of possible
assignments. The data of oidn and etext types is sent
to a client in encrypted form. No other processing
than assignments of this data is possible. When the
server receives this data back from the client it checks
whether it conforms to the assignment graph.
Whether the target entity can be reached by the
source. If not, then security exception is reported,
otherwise the data after decryption goes to further
processing.

Locks
System uses connection pooling. Because of this every

server call (default block DML, or a Stored Procedure
call) constitutes a separate transaction

Locking within the Updates are of two kinds:
Last in wins (no locking)
Optimistic locking

More information on:

cloudaide.org

QUESTIONS

?

	Slide 1
	CloudaIDE – web framework for database developers
	Reasons (among many others)
	Three-tier architecture
	Components of the CloudaIDE
	CloudaIDE Designer
	Fast-Track Development
	Fast-Track Development
	Screen Editor - Tool to sketch of screen layout
	Properties View
	Properties View - Block
	Properties View - Item
	Slide 13
	Properties View – Item
	Tool Palette
	Outline View
	MT Triggers Language
	MT Triggers Language
	Trigger Types
	Example trigger
	Example procedure
	What the client-side code is?
	What the client-side code is?
	Code splitting
	Demo Application code splitting report
	Report integration
	Report integration
	Report integration - sequence of events
	Lists of Values
	Lists of Values
	Menus
	Menus
	Built-in Security features
	Protection against injection
	Protection against injection
	Object protection
	Locks
	More information on:
	Slide 39

