
Threading in Firebird and the Future

Ann W. Harrison
James A. Starkey

A Word of Thanks to our Sponsors

Why Threads?

Improve multi-user performance
Utilize multi-processor systems

Databases are too easy to multi-thread

What are Atomic Instructions?

Most machine instructions can be interrupted,
allowing the world to change.

Atomic instructions (e.g. CAS) run to completion.
Essential for multi-thread performance.

Wasn’t Firebird Always Threaded?

Earliest versions of shared server ran query for one
user until it stalled before responding to next
user.

Not friendly.
Multi-threaded server runs to the next wait or for a

fixed period plus the time to make the database
state consistent.

Threads never run concurrently.

Firebird Classic

Designed for VAX Clusters
Multiple independent computers
Shared intelligent disk controller
Cluster-wide lock manager

Firebird Classic Multi-Processor

Single Machine, Multi-Processor
O/S schedules Firebird clients on processors
Clients share

Disk
Lock manager

Clients do not share
Page Cache
Metadata

Non-shared cache

Firebird classic, super classic

Client B wants
page 123

Client A
changed

page 123

Yes, that is really a disk write

Shared cache - Superserver

Client A
changed

page 123

Client B wants
page 123

Client A releases
lock on page

123

Client B locks
page 123

1

2
3

Threading, 101

Thread
PC: Instruction stream of control
Dedicated Stack (1 mb+)
Thread specific data
All threads share process memory
Expensive to create, cheap to use
(If you don’t thrash)

Threading 101

Interlocked Instruction: Atomic compare and swap
Compares given value to value at given

address
If equal, store new value at given address
If not, fails and does nothing

Interlocked instructions are the mortar of multi-
threading

Threading 101

Non-interlocked data structures
Data structures managed only by interlocked

instructions
Completely non-blocking
The fastest – and hardest – form of multi-

programming

Threading 101

RW-lock, aka SyncObject
Can be locked for read/shared
Can be locked for write/exclusive
Blocks until access can be granted
Monitor semantics: Thread doesn’t lock against

itself
Implemented with interlocked CAS

Threading 101

Coarse grain multi-threading
Single mutex controls an entire subsystem
Individual data structures are not interlocked

Fine grain multi-threading
Individual RW-lock per data structure
Allows many threads to share a subsystem

Threading 101

Dedicated Thread
Thread assigned specific task
Garbage collector, network listener, etc.

Client thread
Thread executing user request

Worker Thread
Thread idle or executing user request

Thread pool
Manages worker threads

Threading Models

Thread per connection
Worker thread assigned at connection time
Worker thread == Client thread
Idle client threads consume resources
Many connections => high contention

Threading Models

Limited worker threads
Limit active worker threads to approx. number

of processors
User requests queued until work thread

becomes available
If worker thread stalls (page read), thread pool

can release next user request
Utilizes processors without unnecessary

contention

Threading Models

Limited Worker Threads:
Dedicated listener thread waits for readable

socket
Connection object (on listener thread) does

socket read
When packet is complete, connection object

queue to thread pool
When worker thread becomes available,

connection object is executed

Threading Model

Thread per connection is first step
Limited worker threads is essential for scalability

Interbase Threads: The Beginning

The concept of threads was known at the birth of
Interbase, but no implementations existed on
small machines.

SMP didn’t exist in the mini or workstation world
The initial version of Interbase used signals for

communication
User requests executed with “looper”; when a

request stalled, another request could run

Interbase Theads: The V3 Disaster

Apollo was the first workstation vendor with threads
I implemented a VMS threading package
Sun’s first attempt at threads didn’t even compile
Interbase V3 was going to be mixed signals +

threads
Then disaster: Apollo Domain had unfixable

architectural flaw mixing threads and signals
A long slip ensued

Interbase Threads: V3 Reborn

The engine was either threaded or signal based
Dedicated threads for lock manager, event

manager, etc.
Server was thread per client
Engine continued with coarse grain multi-threading

Firebird Threading: Vulcan

Vulcan, now deceased, introduced limited fine
grain multi-threading

Threads synchronized with SyncObject: User mode
read/write locks with monitor semantics

SMP had arrived, followed shortly by processor
based threads

Some Performance Lessons

The goal is to saturate CPU, network, memory, and
disk bandwidth simultaneously.

There is no reason to run more worker threads than
cores (and many reasons not to), but

A stalled thread is an efficient way to maintain
request state (death to “looper”!)

A Winning Architecture

A single dedicated thread waiting for readable
sockets

Request starts are posted to thread manager for
available worker thread

When active worker threads drops below threshold,
a pending request is assigned a worker thread

A stalling thread checks in with thread manager to
drop the number of active worker threads

An unstalled request bumps the number of a.w.t.

