
Orphans, Corruption, Careful Write,
and Logging,
or
Gfix says my database is CORRUPT
or
Database Integrity - then, now, future

Ann W. Harrison
James A. Starkey

A Word of Thanks to our Sponsors

And to Vlad Khorsun

Core 4562
Some errors reported by database validation (such

as orphan pages and a few others) are not
critical for database, i.e. don’t affect query
results and\or logical consistency of user data.
Such defects should not be counted as errors to
not scare users.

Fixed 28 Sept 2014

Questions?

MVCC – Quick Review

Read consistency, undo, and update concurrency
provided in one durable mechanism.

Data is never overwritten.
Update or Delete creates new record version linked

to old.
Transaction reads the version committed when it

started (or at the instant for Read Committed)
Each record chain has at most one uncommitted

version.
Rollback removes uncommitted version.
.

What does Gfix do?

Reads entire database verifying internal
consistency:

Of interest now:
Allocated pages are in use
Unused pages are not allocated
Primary record links to

Fragments
Back versions

Before 28 September 2014, any problem was an
error

Database Integrity

Disasters occur (more often circa 1985)
Database System, O/S, Network, Power, Disk

Classic Solutions
Write Ahead Log
Shadow Pages
After image Log

Firebird Solution
Careful write, multi-version records
Write once

Disk Failure

InterBase V1
Journal

After image
Abandoned by Borland

Shadow
Complete copy on separate disk
Better done in RAID

Careful Write
Order writes to disk (fsync)
Database is always consistent on disk

Rule: write the object pointed to then the
pointer

Record examples: record before index, back
version before main, fragment before main
record

Page examples: mark as allocated before
using, release before marking free

Requires disciplined development

Record Before Index

Indexes are always considered “noisy”
Start at the first value below desired value
Stop at next value above

Index will be written before commit completes
After crash:

New uncommitted records not in index
Uncommitted deleted records stay in index
Gfix reports index corruption

Back Version Before Record

When the back version is on a different page
Write the back version first
Write the record pointing to the back version
next

After crash:
Old record still exists
New back version wastes space
Gfix reports orphan back versions

Fragment Before Record

Record bigger than page size
Write the last page of the record
Write the next to last, point to the last
Write other pages in reverse order, pointing to
prior
Write the first bit, pointing to next page

After crash:
Record fragments are unusable space
Gfix reports orphan record fragments

Page Allocation

Allocation:
Mark page as allocated on PIP
Format page
Enter page in table, index, or internal structure

After crash:
Page is unusable
Gfix reports orphan page

Page Release

Release
Remove page from table or index
Mark page as unallocated

After crash:
Page is unusable
Gfix reports orphan page

Precedence

If index page A points to a record on page B,
page B must be written before page A.

If the record on page B has a back version on
page C, page C must be written before page B.

Firebird maintains a complete graph of
precedence.

If a cache conflict requires writing page A, C and B
must be written first.

If the graph develops a cycle, all pages must be
written.

Downsides of Careful Write

Writes are random.
Precedence may cause multiple writes.
Cycles cause multiple writes.

Design is Balance

Recoverabilit
y

Performance

Disaster Recovery

From DBMS crash
From OS crash
From CPU crash
From Network failure
From Disk Crash

Antediluvian Technology
Long Term Journaling

Before and after page images are journalled
Required a Tape Drive (now extinct)
Recovery

Roll forward from dump
Rollback from the current disk image

Performance bounded by tape speed

JRD’s Across History

1980 20141990 2000 2010

Rdb/ELN
InterBase

Firebird

Netfrastructure

Falcon

NuoDBDevelopme
ntClosed Source
Open Source

AmorphousD
B

Interbase 1.0, 1985
(Actually gds/Galaxy 1.0)

MVCC + Careful Write
Disk shadowing (raid not invented yet)
GLTJ: Long term journal server

Dumped database to journal when enabled
Journalled page changes (or full page)
GLTJ could be shared among databases
Rarely, if ever, used

Performance constrained by disk speed

Falcon

MVCC in memory
Disk used as back-fill for memory
Serial log for recovery

Single log per database
Page changes posted to log
Log written with non-buffered writes
Pages written when convenient

Performance constrained by CPU

NuoDB

DB layered on distributed objects called Atoms
Atoms replicate peer to peer
MVCC at Atom level
Transaction nodes pump SQL transactions
Storage managers persist serialized Atoms
Storage managers use serial log for replication

messages

NuoDB Transactions

DBA has control over commit policy:
Commit when transaction node sends commit

messages
Commit when <n> storage managers

acknowledge commit messages
Commit when <n> storage managers have

written commit messages to serial log

Performance Implications
Disk Based MVCC

Many disk writes per transaction
Batch commit is possible
Performance is dozens of transactions per second

with forced write
Higher transaction rate with buffered writes, but at

risk of data loss
SSDs are a big win

Performance Implications
Serial Log

With fine granularity threading and 8 cores,
benchmarked at 22,000 TPS

Serial log management is critical
Requires substantial non-interlocked data

structures

Performance Implications
NuoDB

Bench marked at 3,000,000 TPS running on 40
commodity processors

Read only TPS is theoretically infinite

Questions?

