
www.firebase.com.br © 2014 – Carlos H. Cantu1

Understanding Numbers
in Firebird

Carlos H. Cantu
www.firebase.com.br
www.firebirdnews.org

http://www.firebase.com.br/
http://www.firebirdnews.org/

www.firebase.com.br © 2014 – Carlos H. Cantu2

Who am I?

• Maintainer of www.firebase.com.br and
www.firebirdnews.org

• Author of 2 Firebird books published in Brazil
• Software developer for about 30 years
• Organizer of the Firebird Developers Day

conference
• Firebird consultant

www.firebase.com.br © 2014 – Carlos H. Cantu3

Do you wanna go crazy?!

www.firebase.com.br © 2014 – Carlos H. Cantu4

Warnings!

1. Internal storage type depends on database
dialect

2. The dialect has influence in the precision of
some types and in the results of
calculations

3. Depending on the datatype used, the
retrieved value can be different from the
original value!!

4. Decimal separator is always the dot “.”

www.firebase.com.br © 2014 – Carlos H. Cantu5

INTEGER types

• SMALLINT
– 16 bits
– between -32.768 and 32.767

• INTEGER
– 32 bits
– between -2.147.483.648 and 2.147.483.647

• BIGINT
– 64 bits
– between -9.223.372.036.854.775.808 and

9.223.372.036.854.775.807
– Only available in dialect 3

www.firebase.com.br © 2014 – Carlos H. Cantu6

FLOATING POINT types

• FLOAT
– 32 bits: 1 for signal, 8 for exponent and 23 for

the mantissa.
– 7 digits of precision
– Between -3.4 x 1038 and 3.4 x 1038

• DOUBLE PRECISION
– 64 bits: 1 for signal, 11 for exponent and 52 for

the mantissa.
– 15 digits of precision
– Between -1.7 x 10308 and 1.7 x 10308

www.firebase.com.br © 2014 – Carlos H. Cantu7

Pros and cons of floating types

• Stored following the standard defined by the
IEEE (Institute of Electrical and Electronics
Engineers), with an approximated
representation of the real number.

• Calculations uses the math co-processor
(faster).

• Not recommended due to lack of
precision.

http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers

www.firebase.com.br © 2014 – Carlos H. Cantu8

Accuracy in FLOAT/DOUBLE (1/2)

SQL> select cast(1234567.1234 as float)
from rdb$database;

CAST
==============

1234567.1

Result displayed by IBExpert:

1234567.125

www.firebase.com.br © 2014 – Carlos H. Cantu9

Imprecision in FLOAT/DOUBLE (2/2)

SQL> select cast(1234567.4321 as float)
from rdb$database;

CAST
==============

1234567.4

Result displayed by IBExpert:

1234567.375

www.firebase.com.br © 2014 – Carlos H. Cantu10

Fixed point

• NUMERIC (p,s) / DECIMAL (p,s)
• Is stored occupying either 16, 32 or 64 bits
• p = precision (total digits) [1 <= p <= 18]

s = scale (number of digits after the “comma”)
• s must be always lower or equal to p
• If p and s is not informed, the internal type will be

INTEGER
• In FB, p always determinates the minimum

number of stored digits (not follow the standard)
• The retrieved value is always exactly equal to

the original value!

www.firebase.com.br © 2014 – Carlos H. Cantu11

Internal storage of NUMERIC and DECIMAL

PRECISION INTERNAL TYPE DIALECT 3 DIALECT 1
1..4 NUMERIC SMALLINT (*) SMALLINT
1..4 DECIMAL INTEGER (*) INTEGER

5..9 NUMERIC e
DECIMAL INTEGER INTEGER

10..18 NUMERIC e
DECIMAL BIGINT DOUBLE

PRECISION(!)

In Firebird, DECIMAL and NUMERICs are the same thing, if p <
10.

(*) In this case, the range of supported values are different
compared to NUMERIC and DECIMAL

www.firebase.com.br © 2014 – Carlos H. Cantu12

Determining the capacity of chosen numeric/decimals

1. Check the internal type used depending on
the precision (p) of the field.

2. Check the range of values supported by the
internal type.

3. Divide the min and max values by 10s to
know the effective range of accepted values
for the field.

www.firebase.com.br © 2014 – Carlos H. Cantu13

Determining the capacity of chosen numeric/decimals

Example:

1. NUMERIC (9,2) or DECIMAL (9,2)
2. Internally stored as INTEGER
3. Integer = -2.147.483.648 to 2.147.483.647
4. As s = 2, divide by 102

5. Accepted range for a field declared as
NUMERIC/DECIMAL (9,2) =
-21.474.836,48 to 21.474.836,47

www.firebase.com.br © 2014 – Carlos H. Cantu14

Testing the limits of numeric/decimal
SQL> select cast(-21474836.48 as numeric (9,2)),

cast(-21474836.48 as decimal (9,2)) from rdb$database;

CAST CAST
============ ============
-21474836.48 -21474836.48

SQL> select cast(-21474836.49 as numeric (9,2)),
cast(-21474836.49 as decimal (9,2)) from rdb$database;

CAST CAST
============ ============
Statement failed, SQLSTATE = 22003
arithmetic exception, numeric overflow, or string truncation
-numeric value is out of range

www.firebase.com.br © 2014 – Carlos H. Cantu15

Testing the limits of numeric/decimal
SQL> select cast(32768 as decimal(4,0)) from
rdb$database; --integer

CAST
============

32768

SQL> select cast(32768 as numeric(4,0)) from
rdb$database; --smallint

CAST
=======
Statement failed, SQLSTATE = 22003
arithmetic exception, numeric overflow, or string
truncation
-numeric value is out of range

www.firebase.com.br © 2014 – Carlos H. Cantu16

Moving from dialect 1 to 3

• Is there any field declared as NUMERIC or DECIMAL
with p > 9?
– No: there will be no problem at all
– Yes: you may have problems!

• NUMERIC and DECIMAL with p > 9 are stored as double
precision in dialect 1 and the existing fields will stay like this
if the DB is “migrated” to dialect 3 using gfix -sql_dialect 3.

• New fields declared as NUM/DEC with p > 9, created after
the DB was converted to dialect 3 will use BIGINT
internally.

• Recommended solution: create a new DB using a script
and pump the data from old to new database.

www.firebase.com.br © 2014 – Carlos H. Cantu17

Integer divisions

• Dialect 1, dividing int by int results in double
precision

I.e.: 1/3 = 0,3333333333333

• Dialect 3, divide int by int results in integer

I.e.: 1/3 = 0

www.firebase.com.br © 2014 – Carlos H. Cantu18

Division/Multiplication of fixed point numerics

• In dialect 1, the division will always return a
double precision.

• In dialect 3, the result will be a type with
p = 18 and s = sum of the scales of the
involved types.

SQL> select cast(0.33 as numeric (9,2))/
cast (1 as numeric(9,2))

from rdb$database;
DIVIDE

=====================
0.3300

www.firebase.com.br © 2014 – Carlos H. Cantu19

Division/Multiplication of fixed point numerics

SQL> select (3.00/1.00*3.5)*2.00 as total
from rdb$database;

TOTAL
=====================

21.0000000

SQL> select (3.00/1.00/3.5)/2.00 as total
from rdb$database;

TOTAL
=====================

0.4285700

www.firebase.com.br © 2014 – Carlos H. Cantu20

Division/Multiplication of fixed point numerics

• There can be overflows, specially with
calculations involving multiple arguments!

select cast(1 as numeric(15,6))*
cast(1 as numeric(9,8)) *
cast(1 as numeric(15,5)) from
rdb$database
~ 1.000000 * 1.00000000 * 1.00000
Integer overflow. The result of an
integer operation caused the most
significant bit of the result to carry.

www.firebase.com.br © 2014 – Carlos H. Cantu21

Addition/Subtraction of fixed point numbers

• Result will have s equal the biggest scale of the bigger
member of the operation.

• In dialect 1, result will always have p = 9
• In dialect 3, result will always have p = 18

SQL> select cast(1 as numeric(9,2)) +
cast(2 as integer) from rdb$database;

ADD
=====================

3.00
SQL> select cast(0.5 as numeric(9,2)) –

cast(1 as numeric(9,3)) from rdb$database;
SUBTRACT

=====================
-0.500

www.firebase.com.br © 2014 – Carlos H. Cantu22

Tips summary

• Always create the database in dialect 3, and
connect to it using the same dialect.

• For “monetary” fields, choose numeric or
decimal to guarantee the accuracy.

• When need to store numbers with variable
scale (s), choose double precision.

• To migrate a DB from dialect 1 to 3, prefers
to PUMP the data instead of using gfix.

• Take care with overflows in calculations
involving numeric/decimal.

www.firebase.com.br © 2014 – Carlos H. Cantu23

Curiosities

INDEXES
• Numbers are stored in keys as double precision (exception

to the rule is BIGINT)
• Pros:

– For numeric/decimal, allows changing p or s without needing to
reindex

– For smallint/integer, allows converting between the types or to a
type having a scale (s) without need to reindex

• Obs: Due to lack of precision of the double precision, the
search if done in an interval between the bigger previous
value and the lower next value related to the searched
value.

GENERATORS
• Dialect 1 = integer
• Dialect 3 = bigint

www.firebase.com.br © 2014 – Carlos H. Cantu24

Curiosities (do you wanna go more crazy??)

CHECK CONSTRAINTS and CLIENT DIALECTS
The rules applied by a check constraint are based on the
dialect used by the client connection in the time the constraint
was created.

Ex: check (int1 / int2) > 0.5 (rule created with dialect 1
connection)
When connecting to the DB using dialect 3:
Insert ... (int1, int2) values (2, 3); -- Success! ~ 0.66666666

Ex: check (int1 / int2) > 0.5 (rule created with dialect 3
connection)
Insert ... (int1, int2) values (2, 3); -- FAILURE! ~ 0

www.firebase.com.br © 2014 – Carlos H. Cantu25

Changing the scale of numeric/decimal fields

• Raising the scale means shortening the
range of accepted values

I.e.:
numeric (9,2): range -21.474.836,48 to 21.474.836,47
numeric (9,3): range -2.147.483,648 to 2.147.483,647

This operation is not defined for system tables.
Unsuccessful metadata update.
New scale specified for column AFIELD must
be at most 2.

www.firebase.com.br © 2014 – Carlos H. Cantu26

Changing the scale of numeric/decimal fields

• Changing the scale of (9,2) to 3.
• Solutions:

– Create new field declared as (9,3)
– Copy the values to the new field
– Drop the old field
– Rename the new field as the old one

• Changing to (10,3)
– Problem if there are indexes defined for that

field, since the internal type changes to bigint!

www.firebase.com.br © 2014 – Carlos H. Cantu27

Changing the scale of numeric/decimal fields
create table test (afield numeric (9,2));
commit;
insert into test values (10.12); commit;
alter table test alter afield type numeric (9,3);

This operation is not defined for system tables.
Unsuccessful metadata update.
New scale specified for column AFIELD must be at
most 2.

alter table test alter afield type numeric (10,3);
commit;
update test set afield = 10.123; commit;
select afield from test; commit;
Result: 10.123

www.firebase.com.br © 2014 – Carlos H. Cantu28

Changing the scale of numeric/decimal fields
alter table test

alter afield type numeric (10,2); commit;

select afield from test;
commit;
Result: 10.12

alter table test
alter afield type numeric (11,3); commit;

select afield from test;
commit;
Result: 10.123

www.firebase.com.br © 2014 – Carlos H. Cantu29

Changing the scale of numeric/decimal fields
alter table test alter afield type numeric (10,2);
commit;
select afield from test; commit;
Result: 10.12

/* “Dumb” Update */
update test set afield = afield; commit;

alter table test
alter afield type numeric (11,3); commit;

select afield from test; commit;
Result: 10.120

www.firebase.com.br © 2014 – Carlos H. Cantu30

Changing the scale of numeric/decimal fields

“Hardcore” solution:

update RDB$FIELDS set
RDB$FIELD_SCALE = -3
where RDB$FIELD_NAME = 'RDB$nnn';

Warning!
• Be sure that the existing values “fits” in the new

range, otherwise some records will be inaccessible
(corruption).

• Will not work in Firebird 3!

www.firebase.com.br © 2014 – Carlos H. Cantu31

Additional attention!

• When changing the “size” of an existing field,
it can be identified with a different type by
the “language/access technology” used in
the client application.

www.firebase.com.br © 2014 – Carlos H. Cantu32

Roudings

• Firebird uses “standard rounding”:
- Chose what digit will be the limit
- Add 1 if the next digit is >= 5
- Don’t change the digit if the next is < 5

I.e.:
select cast(123.45 as numeric (9,1))
from rdb$database – result: 123.5

select cast(123.42 as numeric (9,1))
from rdb$database – result: 123.4

www.firebase.com.br © 2014 – Carlos H. Cantu33

FIM

Questions?
www.firebase.com.br
www.firebirdnews.org

Thanks to all Conference sponsors:

http://www.firebase.com.br/
http://www.firebirdnews.org/

	Understanding Numbers in Firebird
	Who am I?
	Número do slide 3
	Warnings!
	INTEGER types
	FLOATING POINT types
	Pros and cons of floating types
	Accuracy in FLOAT/DOUBLE (1/2)
	Imprecision in FLOAT/DOUBLE (2/2)
	Fixed point
	Internal storage of NUMERIC and DECIMAL
	Determining the capacity of chosen numeric/decimals
	Determining the capacity of chosen numeric/decimals
	Testing the limits of numeric/decimal
	Testing the limits of numeric/decimal
	Moving from dialect 1 to 3
	Integer divisions
	Division/Multiplication of fixed point numerics
	Division/Multiplication of fixed point numerics
	Division/Multiplication of fixed point numerics
	Addition/Subtraction of fixed point numbers
	Tips summary
	Curiosities
	Curiosities (do you wanna go more crazy??)
	Changing the scale of numeric/decimal fields
	Changing the scale of numeric/decimal fields
	Changing the scale of numeric/decimal fields
	Changing the scale of numeric/decimal fields
	Changing the scale of numeric/decimal fields
	Changing the scale of numeric/decimal fields
	Additional attention!
	Roudings
	FIM

