Firebird Conference 2012

Firebird Conference Luxembourg 2012

Firebird in virtual environment

by

Claus Heeg Transfertex, Germany

Firebird at Transfertex

Interbase User since 1993! HP-UX IB3.3D

Interbase 4.0 and Powerhouse 7.33 under HP9000

HP-UX ca. 120 Users

- IB6/Firebird1.0 HP-UX since ca. 2003
- Firebird2.x on Suse-Linux since ca. 2007
- Other databases used MS SQL Server,
 Oracle8 (2 Users), MySQL, Adv.DbServer

Details

- FB2.x is installed on 10 servers, most Suse Linux
- Main DB SERVER has 24 database files. The biggest is about 16 Gigabyte (BLOBs).
- FB 2.1.3 CS 64bit is running on a dedicated "open Suse Linux 11.3" box, 64bit. *DBServer*

HP DL380G7 Xeon E5660 2,8Ghz 6 cores

CPUs, 24GB Ram, Raid1+0, 4 x500 GB 10k

SATA disks

 Approx. 40GB database, 100 Users, 3 application servers separated.

Why Virtualization of Servers?

- Main reason consolidate servers from 18 → 8,
 4...
- Easier administration, backup and recovery!
- Less hardware, less investments, "right sizing"?
- Better usage/load of the server
- More security, better fail-over prevention.
- Energy savings!
- better performance ???

Measuring performance!

- Complex and difficult topic
- Try a real daylife situation.
- My own approach: what users do in Transfertex : get spotlight of most busy data
- → order management orderheader and -details
- Select, update, delete randomly or bulk
- → Use comparable hardware *), software , office times
- (SuseLinux,FB2.1.3 CS, Coldfusion Appl. Server using pure JDBC driver)
- →Test the same database (cold -copy).
- → Make sure the "biggest" difference is the VM.

The champion and the challenger!

- DBSERVER:

DL380G7 Xeon 2,8Ghz 6 core, 24 GB RAM, RAID1+0, 4 x 10k disks, Raid Controller P410i 256MB cache

Suse 11.3 64 bit FB2.1.3 CS 64bit

- VMSERVER vSphere 5 Essential:

DL380G7 Xeon 2,53 Ghz 6 core, 24 GB RAM RAID1+0, 4 x 7.5k disks, RaidController P410i 256 MB cache

Suse 11.3 64 bit FB2.1.3 CS 64bit

advantage for DBserver ?!

- faster CPU
- faster disks
- dedicated machine
- → should be match winner hands down

VM is known to take "admin charge" some % slower should be the result ...maybe 25% ...

LET'S SEE?

Testing a gbak -restore ...of 6 gb gbak-data

Dbserver: 8' 50' VM Server: 24' 17"

near 3x slower - what is going on?

How about RAID CACHE?

The raid controller's hardware cache was disabled at the VM Server. This is not fair!

Switch off, change bios settings.. restart box... run gbak again...

Testing a gbak -restore ...of 6 gb gbak-data

Dbserver: 8' 50" VM Server: 8' 17"

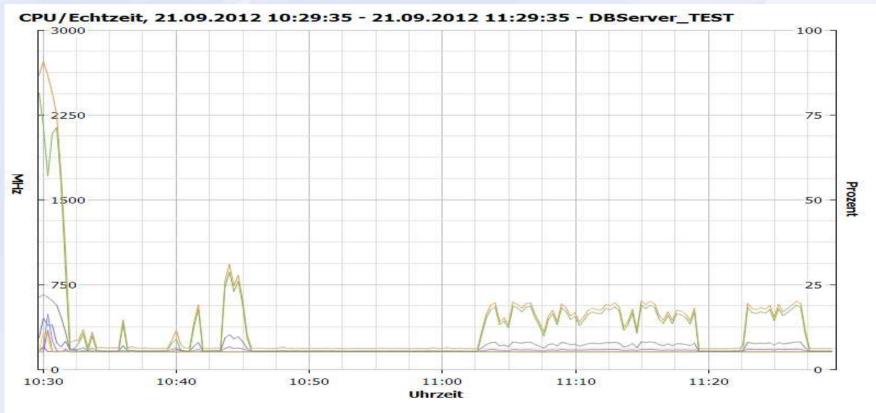
WOW - not bad!!!

Test I ColdFusion Application

- Java application server "JRUN"
- Coldfusion7 application server installed on my desktop PC and on a production ColdFusion server
- running agaist DBSERVER and VMSERVER
- so each Firebird server / database is handled as source in a ReadCommitted transaction model, no query caching in application server is enabled!
- database connections are maintained/shared for coldfusion attachments (makes sense not connect new for any new query ...)

Code of coldfusion test ...partly...

<cfloop index="i" from="#a#" to="#n#" step="#s#"> <cfset aufnr= #RandRange(lowrange, highrange, "SHA1PRNG")#> <cfset t0a= gettickcount()> <cftransaction action="BEGIN" isolation="READ COMMITTED"> <cfquery name="q_aufpos" datasource="#dbsrcfds#" result="r_aufpos"> select a.stat nr, a.auf nr, a.dess nr, a.col nr, a.lief dat, b.lag abw info, c.kd kurzbez, cast ('now' as timestamp) dbzeit from auf aufpos a join auf auftrag b on b.auf nr=a.auf nr and b.firmen nr=a.firmen nr ioin auf kd c on c.kd nr=b.kd nr and c.firmen nr=b.firmen nr where a.auf nr=#aufnr# order by a.auf nr, a.auf pos nr </cfquery> <cftransaction action="COMMIT"/> </cftransaction>

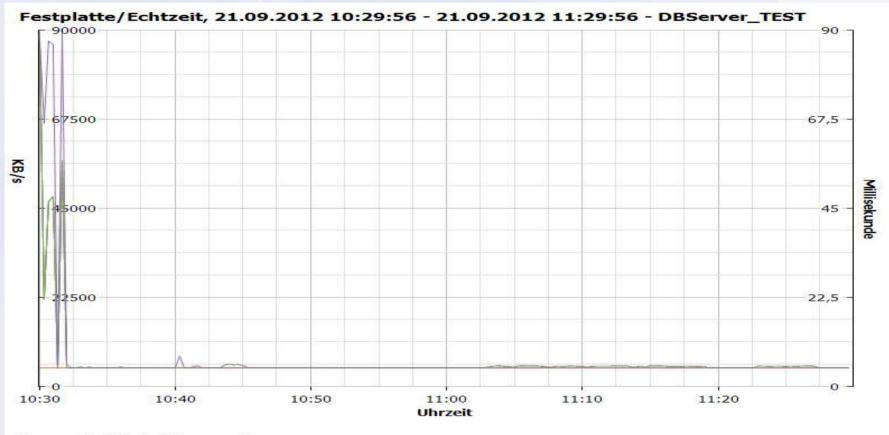

</cfloop>

What was measured?

The QUERY TIME IN TOTAL qttotal_db in milliseconds qtotal_vm in milliseconds

Did we consider the load ? CPU, DISK, RAM Yes ... for the servers it did not bother or you can simply to ignore!

Example of the load on VM gbak done----- test -----

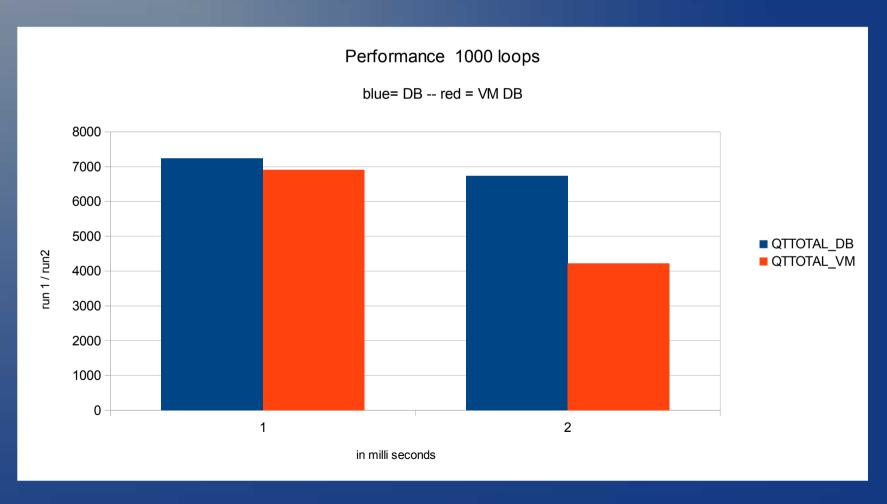


Legende für Leistungsdiagramm

Schlüsse	l Obje <mark>kt</mark>	Messung	Rollup	Einheiten
	4	Nutzung in MHz	average	MHz
	5	Nutzung in MHz	average	MHz
	DBServer_TEST	Nutzung in MHz	average	MHz
100	DBServer_TEST	Nutzung	average	Prozent
	0	Nutzung in MHz	average	MHz
	1	Nutzung in MHz	average	MHz
	2	Nutzung in MHz	average	MHz
	3	Nutzung in MHz	average	MHZ

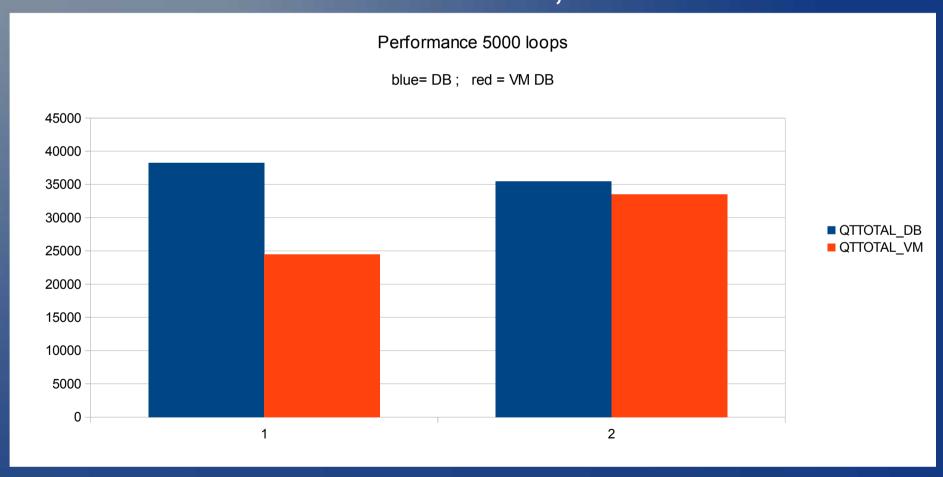
Disk load VM

gbak done -----Test -----

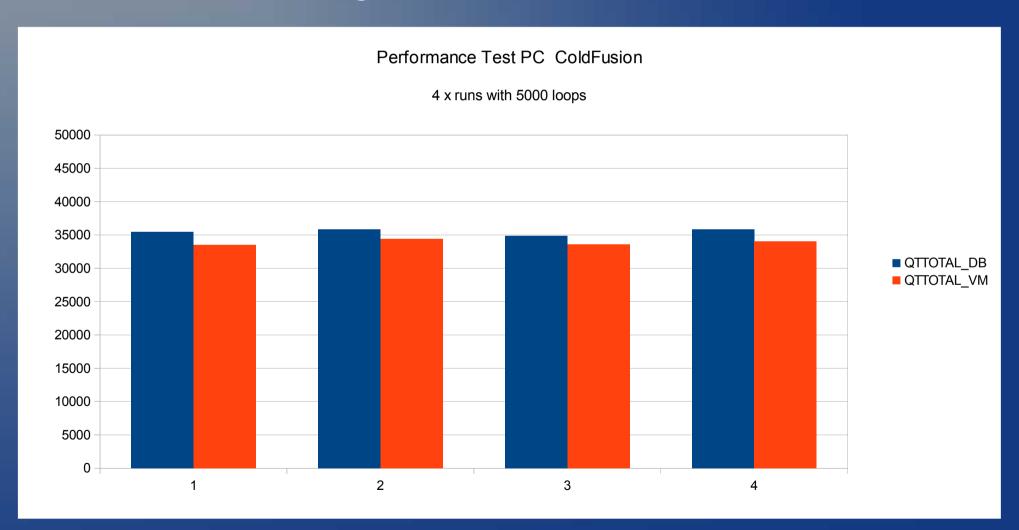

Legende für Leistungsdiagramm

Schlüss	sel Objekt	Messung	Rollup	Einheiten
	DBServer_TEST	Schreibrate	average	KB/s
	DBServer_TEST	Leserate	average	KB/s
	naa.600508b1001c6ec4c69af0d87db4ffaF6		average	KB/s
	DBServer_TEST	Nutzung	average	KB/s
	naa.600508b1001c6ec4c69af0d8 73db4fbb7f ate		average	KB/s
	DBServer_TEST	Höchste Latenz	latest	Millisekunde

First Test ColdFusion


select statement random

Results: run1= CF on Server; run 2 = CF on PC


2.nd Test ColdFusion

Results: run1= CF on Server; run 2 = CF on PC

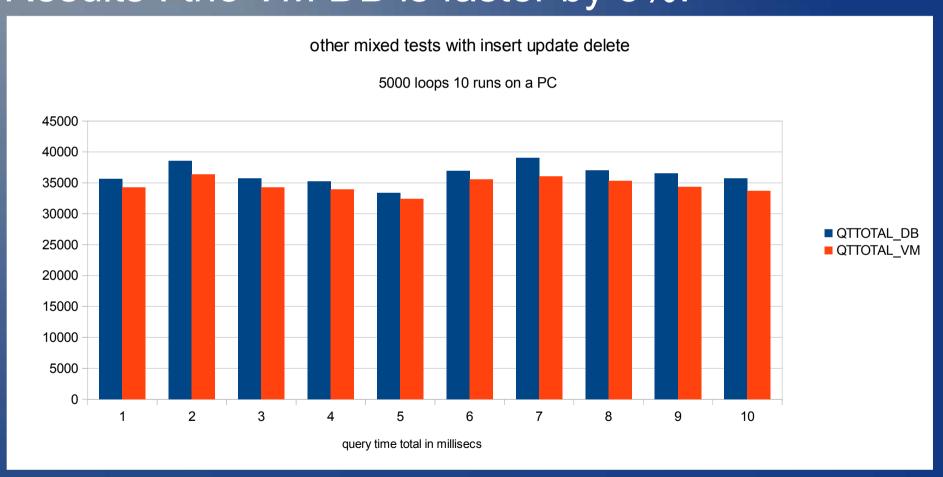
Using the PC and running CF modules for another 4 tests ... we see the

VM DB Blue is avg 5% faster!

How is it with data manipulation?

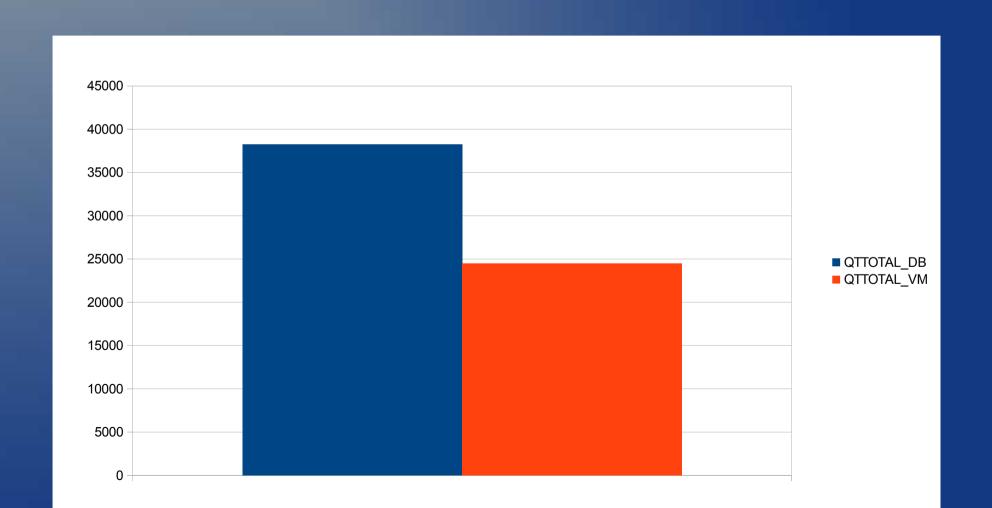
Now I made new script using IBEScript to simulate this was running on my PC against the

Known DB server and VM DB server.


Measured in milliseconds of executed time.

statements: insert, update, delete of random

data from the tables read by key (using a unique index).


Results with data manipulation statements...

Results: the VM DB is faster by 5%!

What happens when both App Server and DB Server are in ONE VM SYSTEM?

Here the same test 5000 loops / random select statement in coldfusion

This is the "real thing"!

Now we have performance gain of ~ 30%! Why?

It is the way the VM can work – instead of using the "real" network - it switches to internal high speed network connections!

Conclusions:

- Firebird CS runs quite well in a VM and it is not slower than a dedicted server.
- You can get the benefits of virtualisation for your database server.
- There is a big boost in performance if the application server and the database server are in one VM system! 30+%!!!

Suggestions for successful VM operating:

- have a "grown up" server box. Redundancy of components (powersupply, controllers etc) are mandatory.
- Dual Intel*) Xeons 6 cores, 40 GB Ram.
- Raid1-0 with fast disks (10k)
- Raidcontroller with cache (enabled!)
- VM Vsphere essentials and VEEAM backup!
- Linux system for firebirdsql classic 2.x! (forced write on for databases).
- *) AMD also possible.

Sparky will like it!

Thank you!