

APPL-R01104-R

Firebird clients and Firebird clients and
system tablessystem tables

Björn Reimer, Dirk Baumeister

Who we are?

Björn ReimerBjörn Reimer
● Working as DBA at

the Friedrich-
Alexander-Universität
Erlangen Nürnberg

● Independent software
developer

Dirk BaumeisterDirk Baumeister
● Working as

Computer Scientist at
the Language Centre
of the Friedrich-
Alexander-Universität
Erlangen Nürnberg

● Independent software
developer

motivation
● real 2-tier applications

How are the duties
distributed?

● A real db is more than
a replacement for
dBase files

● Access from Web and
 Windows

● simple clients
● easy administration

content
● infos out of db

– data type of a field
● jobs for db

– Handling permissions
● Am I member of a

role?
● Am I allowed to do

something?
● Generate random pws

– Handling primary keys

● The missing
information
– Who is logged in?
– config settings for

users
● Gadgets

– Care of primary keys
– Gbak bug

Tables in a db

SELECT RDB$RELATION_NAME,
RDB$DESCRIPTION,
RDB$FIELD_ID AS "ColCount"
FROM RDB$RELATIONS R
WHERE RDB$SYSTEM_FLAG = 0
AND RDB$VIEW_BLR IS NULL
ORDER BY 1

Fields of a table

Fields of a table, e. g. of table 'ABC':
SELECT RDB$FIELD_NAME,
RDB$FIELD_SOURCE, RDB$DESCRIPTION
FROM RDB$RELATION_FIELDS
WHERE RDB$RELATION_NAME = 'ABC'
ORDER BY RDB$FIELD_POSITION;

Data type of a field
– Infos in Table RDB$FIELDS for each column and

each domain:
SELECT RF.RDB$FIELD_NAME, RF.RDB$FIELD_SOURCE,
RF.RDB$DESCRIPTION,
F.RDB$FIELD_LENGTH, F.RDB$FIELD_SCALE,
F.RDB$FIELD_TYPE, F.RDB$FIELD_SUB_TYPE,
F.RDB$NULL_FLAG, F.RDB$DEFAULT_SOURCE,
F.RDB$VALIDATION_SOURCE,
F.RDB$COMPUTED_SOURCE,
RDB$CHARACTER_LENGTH
FROM RDB$RELATION_FIELDS RF
JOIN RDB$FIELDS F ON F.RDB$FIELD_NAME =
RF.RDB$FIELD_SOURCE
WHERE RF.RDB$RELATION_NAME = 'ABC'
ORDER BY RF.RDB$FIELD_POSITION;

F.RDB$FIELD_TYPE
● Type of a field:

– 7: SMALLINT
– 8: INTEGER
– (9: QUAD)
– 10: FLOAT
– (11: D_FLOAT)
– 12: DATE (dialect 3)

– 13: TIME
– 14: CHAR
– 16: INT64
– 27: DOUBLE
– 35: TIMESTAMP

(DATE in older
versions)

– 37: VARCHAR
– (40: CSTRING)
– 261: BLOB

F.RDB$FIELD_SUB_TYPE
● BLOBs:

– 0: unspecified
– 1: text
– 2: BLR
– 3: access control

list
>= 0: reserved for firebird
< 0: user defined types

● NUMBERS
(SMALLINT,
INTEGER, INT64)
– 0 or NULL: the field

type
– 1: numeric
– 2: decimal

F.RDB$FIELD_LENGTH
● Field length

important for size of
index
– CHAR, VARCHAR,

NCHAR - maximum
length of text in bytes
Max. char length in
RDB$CHARACTER_LENGTH

– 4: FLOAT
– (8: D_FLOAT)
– 8: DOUBLE

– 2: SHORT
– 4: LONG
– 8: QUAD
– 8: INT64

– 4: DATE
– 4: TIME
– 8: TIMESTAMP

– 8: BLOB

Where to find what?
● Precision of numeric

and decimal types:

F.RDB$FIELD_PRECISION

● Scale for numeric and
decimal types:

F.RDB$FIELD_SCALE

Where to find what?
● Is a field NOT NULL:
F.RDB$NULL_FLAG

Values:
– 0 or NULL: don't care
– 1: NOT NULL

● Default value
F.RDB$DEFAULT_SOURCE
with the word
“DEFAULT” in front

Where to find what?
● Checks for fields
F.RDB$VALIDATION_SOURCE

● COMPUTED BY
F.RDB$COMPUTED_SOURCE

Where to find what?
● Character set
F.RDB$CHARACTER_SET_ID

● Colation
F.RDB$COLLATION_ID

The real info
● Some infos (same field names) are also in

RDB$RELATION_FIELDS
This infos are winning!

Permissions: Member of a role
● Which roles are valid?

SELECT RDB$ROLE_NAME FROM RDB$ROLES ORDER BY 1;
● Am I member of a role?

SELECT RDB$USER, RDB$RELATION_NAME
FROM RDB$USER_PRIVILEGES
WHERE RDB$PRIVILEGE = 'M'

More information:
RDB$GRANTOR: Who has granted the role
RDB$GRANT_OPTION: 0=no; 2=yes

Permissions: Am I allowed?
● How to get permissions in a db:

– Direct permission for user
– Permission for role of an user
– Permission for special user “public”

● Saved in
CREATE TABLE RDB$USER_PRIVILEGES (
 RDB$USER CHAR(31) CHARACTER SET UNICODE_FSS,
 RDB$GRANTOR CHAR(31) CHARACTER SET UNICODE_FSS,
 RDB$PRIVILEGE CHAR(6) CHARACTER SET NONE,
 RDB$GRANT_OPTION SMALLINT,
 RDB$RELATION_NAME CHAR(31) CHARACTER SET UNICODE_FSS,
 RDB$FIELD_NAME CHAR(31) CHARACTER SET UNICODE_FSS,
 RDB$USER_TYPE SMALLINT,
 RDB$OBJECT_TYPE SMALLINT);

●

Valid privileges
● M: Member (for Roles)
● S: Select
● I: Insert
● U: Update
● D: Delete
● A: Select AND Insert AND Update AND Delete
● E: Execute (Stored Procedures)

The procedure AmIAllowed (1)
CREATE PROCEDURE "PROC_AmIAllowed" (

"Right" CHAR(1),
"Relation" VARCHAR(62))

RETURNS (
"Status" SMALLINT)

AS
DECLARE VARIABLE "IStatus" BIGINT;
begin
 "Status" =-1;
...

The procedure AmIAllowed (2)
SELECT count(RDB$RELATION_NAME) FROM
RDB$USER_PRIVILEGES
WHERE ((RDB$USER = current_user) or
(RDB$USER = current_role) or
(RDB$USER = 'PUBLIC')) AND
RDB$RELATION_NAME = :"Relation" AND
RDB$PRIVILEGE = UPPER(:"Right")
INTO "IStatus";

 -- Check for A!
 if ("IStatus" >= 1) then "Status" = 1;
 else "Status" = 0;
 suspend;
end;

Performance: allowed for all procs
CREATE PROCEDURE "PRC_AmIAllowedProc" (
 "ProcNamePart" VARCHAR(31))
RETURNS (
 "Name" VARCHAR(84),
 "Status" SMALLINT)
AS
begin
 "ProcNamePart" = RTRIM(LTRIM("ProcNamePart"));
...

Performance: for all procs (2)
 if ("ProcNamePart" <> '') then begin
 FOR SELECT distinct(P.Rdb$Relation_Name)

FROM RDB$USER_PRIVILEGES P
 WHERE P.Rdb$Relation_Name CONTAINING :"ProcNamePart"
 AND P.RDB$OBJECT_TYPE = 5 -- procedures
 INTO :"Name"

 DO BEGIN
 "Name"=RTRIM(LTRIM("Name"));
 SELECT "Status" FROM "PRC_AmIAllowed"('X', :"Name")

 INTO :"Status";
 suspend;
 END
 end else ...

Permissions: Generate PWs
CREATE PROCEDURE "PROCi_GetRandPassword"

RETURNS (
"AutoPasswort" VARCHAR(20)
)

AS
DECLARE VARIABLE "SollLang" INTEGER;

DECLARE VARIABLE "Wert" INTEGER;
DECLARE VARIABLE "Last" INTEGER;

begin
 "SollLang" = 20;
 "AutoPasswort" = '';
 "Last" = 0;
 "Wert" = 0;
 ...

Permissions: Generate Pws (2)
...
while (STRLEN("AutoPasswort") < "SollLang") do begin
 while ((not "Wert" between 33 and 122) or

 ("Wert" = "Last")) do begin
 "Wert" = RAND()*89+33;
 end
 "AutoPasswort" = "AutoPasswort" ||ASCII_CHAR("Wert");
 "Last" = "Wert";
 end
 suspend;
end

Handling primary keys

Via trigger
CREATE TRIGGER KM_4PERSON_KATEGORIE_BI0 FOR KM_4PERSON_KATEGORIE
ACTIVE BEFORE INSERT OR UPDATE POSITION 0
AS
BEGIN
 IF ((NEW."Id" IS NULL) OR (NEW."Id" <= 0)) THEN
 NEW."Id" = GEN_ID(GEN_KM_4PERSON_KATEGORIE_ID,1);
 ...

Trigger Part 2 – care about logging
 NEW."LastModifiedAt" = current_timestamp;
 NEW."LastModifiedFrom" = current_user;
 if (inserting) then begin
 NEW."CreatedAt" = current_timestamp;
 NEW."CreatedFrom" = current_user;
 end else if (updating) then begin
 NEW."CreatedAt" = OLD."CreatedAt";
 NEW."CreatedFrom" = OLD."CreatedFrom";
 end
END

Who is logged in?

Sorry, no system table for that (not yet!)
Solution
● Insert record in table when logging in with at

least user name and client machine
● Update that record, when logging off
● Regularly mark records of crashed clients

Config settings for a user
● Table CNF for config settings
● Table CONFTYP for grouping config settings

Access config settings
● API with five Stored Procedures

– PROC_CNFAddValue for adding new values
– PROC_CNFGetInteger for getting numbers
– PROC_CNFSetInteger for setting numbers
– PROC_CNFGetString for getting strings
– PROC_CNFSetString for setting strings

Special user
● Username is login name
SELECT current_user FROM RDB$DATABASE;

● User: <GLOBAL> for global settings
● When reading infos and nothing for current user

is found, then search for settings of user
<GLOBAL>

● No access for normal user to table CNF!
Access only via SPs!

Care of primary keys
● Not for regularly

usage!
● for use after cleaning

the db or to produce a
shipping version

● Problem: No meta
data link between
generator and table

● Solution: naming
convention for
generator,
e. g.
GEN_<table
name>_ID

Care of primary keys (2)
● Guess matching

names for PK
● Get max value for PK
● Get value of

generator
● Compare and

increase or decrease
generator

● Combine all duties in
a procedure

gbak-bug: too long identifier
● Identifier mustn't be longer than 27 chars.

Otherwise granting may fail when restoring data
:-(

● Registered as bug CORE-82.
http://tracker.firebirdsql.org/browse/CORE-82

● Result of gbak:
...
gbak: restoring privilege for user PROC_KennungGetId
gbak: ERROR: action cancelled by trigger (0) to
 preserve data integrity
gbak: ERROR: could not find table/procedure for GRANT
gbak: Exiting before completion due to errors

http://tracker.firebirdsql.org/browse/CORE-82

Gbak-bug: avoid it
● Take care of too long role identifiers
● Take care of too long procedure names
● ...
It's not practicable in real live.
Better check your db regularly with a procedure.

Sources and references
● FirebirdRefGuide.pdf from ibphoenix
● UsingFirebird.pdf from ibphoenix
● Helens book
● Google :-)

The END
● Contact for questions and improvements:

Björn Reimer (reimer@softbaer.de)

Dirk Baumeister (baumeister@softbaer.de)

