
SAS® Software
and Firebird

Firebird Conference 2005

Tom Cole, Platform R&D, SAS Institute Inc.
tom.cole@sas.com

1

SAS® and Vulcan

§ SAS and a new I/O architecture

§ Why Vulcan?

§ How Vulcan and SAS fit together

§ Challenges for the future

2

Shifting Technical Requirements

§ SAS® has long had an architecture that focussed on
reading massive amounts of data and applying
analytical processing to that data.

§ Building on our strengths in data manipulation and
key analytics such as forecasting, we have added a
“solutions” suite to our traditional “tools” suite.

§ These solutions bring new technical challenges, and
new requirements for I/O support.

3

SAS® Technical History

§ 1970’s - SAS grows from university research project
to corporation, initial implementation on MVS in PL/1.

§ 1980’s - Portability drives migration to C and major re-
structure of architecture with “host” layering.

§ 1990’s - Rapid evolution in RISC, storage, networking
technology demands vertical performance focus

§ 2000’s - SMP and 64 bits demand horizontal
performance focus.

4

Analytical I/O

§ Data sources often read-only or ETL to warehouse

§ Terabyte and Petabyte data sets

§ Very wide tables (thousands of columns)

§ Some kinds of processing very order sensitive,
justifying intermediate sorts

§ Very sequential with occasional rewinds to start of
sorted groups.

5

Non-analytical I/O

§ Solutions focus brings new requirements

§ Integration requires new metadata store

§ User applications require new security, profiles, etc.

§ Interaction with 3rd party requirements for object
persistence, such as J2EE Application Servers

6

New Requirements

§ Transactional Store - ACID

§ Multi-user: Hundreds -> Thousands of clients

§ SMP and cluster exploitation

§ New, non-analytic data types

§ Seamless interoperation with historical I/O models

7

SAS® Table Services

§ Total redesign of SAS I/O functionality

§ Retain historical analytical interfaces

§ Add new ODBC 3 interfaces, semantics

§ Fully threaded with scalable resource sharing

§ Implemented as an embedded library of services

§ Plug-in driver architecture

8

SAS® Table Server

§ Threaded, scalable server for n-tier architecture

§ Manages connections, thread-pooling, etc.

§ Uses SAS Table Services for actual I/O

§ Acts as persistent object server for mid-tier platform

§ Acts as I/O server for server and mid-tier

§ Can be accessed by user or 3rd party applications

9

SAS® Table Services Features

§ Support for ANSI SQL 1999 core-compliant syntax for
historical data sources (Base SAS, SPDS)

§ Also allows pass-through to provider-specific drivers

§ Federated (cross-database) query management

§ Federated (cross-provider) security management

One interface for all SAS I/O requirements.

10

The need for a transactional store

§ SAS® has never had a transactional store of our own.

§ Many usage scenarios of SAS don’t require
transactions at all.

§ Provided a driver interface in an earlier architecture to
access range of relational databases.

§ Requirements of metadata, objects, solutions, etc.
mean we now need an ACID compliant store for many
more usage scenarios.

11

Enterprise Class Customers

§ Evolved from individual knowledge worker to mission
critical, multi-user, n-tier configurations

§ Today, SAS® is used heavily in Fortune 100
companies as an integral part of large-scale IT
operations.

§ Typical deployments are 64-bit systems, 4-8 CPU’s,
with 16-32GB of RAM, and terabytes of disk space.

§ For our customers, time is most often the limiting
resource - consuming system resources to complete
a job in a fixed window of time is a good trade-off.

12

Business case for Open Source

§ “Build vs. Buy” - don’t build it, there are good ones out
there already based on years of experience.

§ Potential to leverage large body of expertise and
development infrastructure.

§ SAS® can focus on it’s product-specific goals and
leverage our expertise in tandem with the community.

13

Challenges of Open Source

§ Aligning design goals

§ Aligning release requirements

§ Aligning product delivery dates

§ License requirements and restrictions

§ Infrastructure compatibility

14

Why Firebird/Vulcan?

§ Scalability objectives fit well - SMP support required,
not just scalability through process replication.

§ Embedded support.

§ More likely to be successfully ported to wide range of
host platforms we must support.

§ Active community open to our involvement.

§ Licensing flexibility and low cost.

15

Table Server Driver Architecture

16

SAS® Table Server Architecture

§ Table Server handles connection management using
SAS-specific connection string syntax.

§ Table Server handles authentication requirements
using a federated security data store.

§ Table Server identifies the required provider(s) for a
request, and ensures proper drivers are loaded.

§ Table Server evaluates the SQL to determine if it must
be recomposed or restructured for execution by
multiple drivers.

17

SAS® Table Server Architecture

§ Table Server can process all the SQL directly in a
driver-neutral ANSI standard fashion, and convert it to
appropriate driver-specific dialects.

§ Table Server translates SAS-specific data types
(special missing values, for example) and has access
to the library of SAS formats and functions which can
be used directly in SQL syntax.

18

Vulcan and SAS® Table Server

§ A Table Server driver written for Vulcan translates
Table Server interfaces and semantics into Vulcan
interface calls and semantics.

§ The driver arranges for any needed data type
translations, character set management, and error
handling.

§ The driver is dynamically loaded on demand by the
Table Server based on client requests. The driver
manages the loading (and optionally unloading) of the
Vulcan shared libraries.

19

Vulcan and SAS® Table Server

§ Embedded Vulcan provides a very efficient database
engine, without the performance costs of an additional
hop to a provider.

§ Vulcan’s locking model supports multiple instances of
Table Server accessing the same database.

§ Vulcan’s thread-safe implementation partners
effectively with Table Server’s thread pooling and
resource management to support scalability.

§ Ability to support hot backups of running servers.

20

Vulcan and SAS® Table Server

§ In our first release of Table Server in 2006, we do not
expect end users to directly interact with Vulcan.

§ That is, we want them to go through Table Server to
interact with “our” transactional data store.

§ We provide an administrative interface that supports
DBA functions via a Java application, which is
common to all SAS products.

§ We will ship adapted versions of GBAK, etc. to
support DBA and system management functions.

21

The Vulcan Environment

§ The Table Server driver explicitly sets process
environment variables (VULCAN, VULCAN_CONF,
etc.) to point to the SAS®-installed instance of Vulcan.

§ Table Server handles authentication and authorization
to achieve federated security. Vulcan is invoked
essentially as “SYSDBA”. Security is disabled.

§ User-installed instances of Vulcan shouldn’t collide
with our use of Vulcan.

22

Building Vulcan across platforms

§ We deploy Vulcan on VMS, MVS, Windows, and
Linux, as well as all name-brand Unix 64-bit systems.

§ We use an in-house source management, build and
debug environment that supports multi-platform builds

§ Compilers on some platforms (MVS in particular)
introduce additional constraints on building, such as
header file locations.

23

Project Goals and Synchronization

§ SAS® development priority is portability and
scalability for commercial release in 2006.

§ Community priority is in architectural review and
revision.

§ Both are ultimately required, but compete with each
other in the near-term.

§ Community focus has been on Firebird much more
than on Vulcan.

24

How many Vulcans?

§ The unfortunate consequence is that right now, there
are (at least) two versions of Vulcan.

§ The SourceForge version is changing rapidly with
class-restructuring, etc. driving much needed
architectural changes at the cost of stability.

§ The SAS® version (maintained privately) changes
more slowly, and undergoes rigorous testing on
multiple platforms with diverse loads.

§ Both goals are valid and needed, but conflict in the
short term.

25

SAS®-Specific Vulcan

§ Build environment issues mean we do not mirror the
open source build tree, but instead restructure it when
we update.

§ For example, in our environment file names cannot be
duplicated in different directories (only one copy of
ibase.h allowed, etc).

§ Automated tools allow us to translate source files
between our environment and the SourceForge one.

26

SAS®-Specific Vulcan

§ We regularly pull specific bug fixes into our code base
from SourceForge.

§ Our intent is to provide batches of updates when we
find and fix bugs - though we need to improve that
process.

§ We are using #ifdef SAS_FIREBIRD to demarcate
changes in open source files that we must post
publicly to meet license requirements.

§ SAS-specific implementations in separate source
files, called/included from conventional source.

27

SAS®-Specific Vulcan

§ SHARED_CACHE is not defined in our build; i.e. per-
connection caching is done. This is different than the
default build. Additional locking changes.

§ Per-statement cancel operation

§ Command-line tools define environment (VULCAN,
VULCAN_CONF, etc.) based on directory of
invocation.

§ SAS$METADATA table added to all databases to
track additional Table Server-specific data.

28

Reconciling Vulcan and Firebird

§ Since Vulcan was branched from Firebird, a lot has
been changed in Firebird.

§ Many of these features (expressions in indexes, for
example) are critical for our future use.

§ Several discussions have occurred about the
challenges of finding a way to merge them together.

§ SAS sees this as essential for the long-term success
of Firebird overall.

29

Conclusion

§ The Firebird community has made it possible for us
tightly integrate a transactional DB far more quickly
than we could have accomplished on our own.

§ The performance and scalability potential of the
Vulcan design fit well with “enterprise class” software.

§ Short-term divergence of goals mean our participation
in the community has been limited.

§ Our longer-term goal is to re-synch with the “one true”
Vulcan, and be an active participant in advocating for
embedded usage of Vulcan.

30

For More Information...

§ See the paper on “Embedded Classic” about how we
use the Classic model of caching in the thread-safe
embedded use of Vulcan, via the SHARED_CACHE
compile-time symbol and it’s effect on locking.

§ See the paper “SAS/Firebird Porting And Testing
Processes” for more information on our infrastructure.

§ See the related paper on “SAS/Firebird Performance
Testing Strategy” on how we stress-test the scalability
of the code.

31

Q&A?

32

