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SAS® and Vulcan

§ SAS and a new I/O architecture

§ Why Vulcan?

§ How Vulcan and SAS fit together

§ Challenges for the future
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Shifting Technical Requirements

§ SAS® has long had an architecture that focussed on 
reading massive amounts of data and applying 
analytical processing to that data.

§ Building on our strengths in data manipulation and 
key analytics such as forecasting, we have added a 
“solutions” suite to our traditional “tools” suite.

§ These solutions bring new technical challenges, and 
new requirements for I/O support.
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SAS® Technical History

§ 1970’s - SAS grows from university research project 
to corporation, initial implementation on MVS in PL/1.

§ 1980’s - Portability drives migration to C and major re-
structure of architecture with “host” layering. 

§ 1990’s - Rapid evolution in RISC, storage, networking 
technology demands vertical performance focus

§ 2000’s - SMP and 64 bits demand horizontal 
performance focus.

4



Analytical I/O

§ Data sources often read-only or ETL to warehouse

§ Terabyte and Petabyte data sets

§ Very wide tables (thousands of columns)

§ Some kinds of processing very order sensitive, 
justifying intermediate sorts

§ Very sequential with occasional rewinds to start of 
sorted groups.
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Non-analytical I/O

§ Solutions focus brings new requirements

§ Integration requires new metadata store

§ User applications require new security, profiles, etc.

§ Interaction with 3rd party requirements for object 
persistence, such as J2EE Application Servers
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New Requirements

§ Transactional Store - ACID

§ Multi-user: Hundreds -> Thousands of clients

§ SMP and cluster exploitation

§ New, non-analytic data types

§ Seamless interoperation with historical I/O models
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SAS® Table Services

§ Total redesign of SAS I/O functionality

§ Retain historical analytical interfaces

§ Add new ODBC 3 interfaces, semantics

§ Fully threaded with scalable resource sharing

§ Implemented as an embedded library of services

§ Plug-in driver architecture
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SAS® Table Server

§ Threaded, scalable server for n-tier architecture

§ Manages connections, thread-pooling, etc.

§ Uses SAS Table Services for actual I/O

§ Acts as persistent object server for mid-tier platform

§ Acts as I/O server for server and mid-tier

§ Can be accessed by user or 3rd party applications
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SAS® Table Services Features

§ Support for ANSI SQL 1999 core-compliant syntax for 
historical data sources (Base SAS, SPDS)

§ Also allows pass-through to provider-specific drivers

§ Federated (cross-database) query management

§ Federated (cross-provider) security management

One interface for all SAS I/O requirements.
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The need for a transactional store

§ SAS® has never had a transactional store of our own.

§ Many usage scenarios of SAS don’t require 
transactions at all.

§ Provided a driver interface in an earlier architecture to 
access range of relational databases.

§ Requirements of metadata, objects, solutions, etc. 
mean we now need an ACID compliant store for many 
more usage scenarios.
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Enterprise Class Customers

§ Evolved from individual knowledge worker to mission 
critical, multi-user, n-tier configurations

§ Today, SAS® is used heavily in Fortune 100 
companies as an integral part of large-scale IT 
operations.

§ Typical deployments are 64-bit systems, 4-8 CPU’s, 
with 16-32GB of RAM, and terabytes of disk space.

§ For our customers, time is most often the limiting 
resource - consuming system resources to complete 
a job in a fixed window of time is a good trade-off.
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Business case for Open Source

§ “Build vs. Buy” - don’t build it, there are good ones out 
there already based on years of experience.

§ Potential to leverage large body of expertise and 
development infrastructure.

§ SAS® can focus on it’s product-specific goals and 
leverage our expertise in tandem with the community.
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Challenges of Open Source

§ Aligning design goals

§ Aligning release requirements

§ Aligning product delivery dates

§ License requirements and restrictions

§ Infrastructure compatibility
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Why Firebird/Vulcan?

§ Scalability objectives fit well - SMP support required, 
not just scalability through process replication.

§ Embedded support.

§ More likely to be successfully ported to wide range of 
host platforms we must support.

§ Active community open to our involvement.

§ Licensing flexibility and low cost.
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Table Server Driver Architecture
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SAS® Table Server Architecture

§ Table Server handles connection management using 
SAS-specific connection string syntax.

§ Table Server handles authentication requirements 
using a federated security data store.

§ Table Server identifies the required provider(s) for a 
request, and ensures proper drivers are loaded.

§ Table Server evaluates the SQL to determine if it must 
be recomposed or restructured for execution by 
multiple drivers.
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SAS® Table Server Architecture

§ Table Server can process all the SQL directly in a 
driver-neutral ANSI standard fashion, and convert it to 
appropriate driver-specific dialects.

§ Table Server translates SAS-specific data types 
(special missing values, for example) and has access 
to the library of SAS formats and functions which can 
be used directly in SQL syntax.
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Vulcan and SAS® Table Server

§ A Table Server driver written for Vulcan translates 
Table Server interfaces and semantics into Vulcan 
interface calls and semantics.

§ The driver arranges for any needed data type 
translations, character set management, and error 
handling.

§ The driver is dynamically loaded on demand by the 
Table Server based on client requests.  The driver 
manages the loading (and optionally unloading) of the 
Vulcan shared libraries.
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Vulcan and SAS® Table Server

§ Embedded Vulcan provides a very efficient database 
engine, without the performance costs of an additional 
hop to a provider.

§ Vulcan’s locking model supports multiple instances of 
Table Server accessing the same database.

§ Vulcan’s thread-safe implementation partners 
effectively with Table Server’s thread pooling and 
resource management to support scalability.

§ Ability to support hot backups of running servers.

20



Vulcan and SAS® Table Server

§ In our first release of Table Server in 2006, we do not 
expect end users to directly interact with Vulcan.

§ That is, we want them to go through Table Server to 
interact with “our” transactional data store.

§ We provide an administrative interface that supports 
DBA functions via a Java application, which is 
common to all SAS products.

§ We will ship adapted versions of GBAK, etc. to 
support DBA and system management functions.
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The Vulcan Environment

§ The Table Server driver explicitly sets process 
environment variables (VULCAN, VULCAN_CONF, 
etc.) to point to the SAS®-installed instance of Vulcan.

§ Table Server handles authentication and authorization 
to achieve federated security.  Vulcan is invoked 
essentially as “SYSDBA”.  Security is disabled.

§ User-installed instances of Vulcan shouldn’t collide 
with our use of Vulcan.
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Building Vulcan across platforms

§ We deploy Vulcan on VMS, MVS, Windows, and 
Linux, as well as all name-brand Unix 64-bit systems.

§ We use an in-house source management, build and 
debug environment that supports multi-platform builds

§ Compilers on some platforms (MVS in particular) 
introduce additional constraints on building, such as 
header file locations.
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Project Goals and Synchronization

§ SAS® development priority is portability and 
scalability for commercial release in 2006.

§ Community priority is in architectural review and 
revision.

§ Both are ultimately required, but compete with each 
other in the near-term.

§ Community focus has been on Firebird much more 
than on Vulcan.

24



How many Vulcans?

§ The unfortunate consequence is that right now, there 
are (at least) two versions of Vulcan.

§ The SourceForge version is changing rapidly with 
class-restructuring, etc. driving much needed 
architectural changes at the cost of stability.

§ The SAS® version (maintained privately) changes 
more slowly, and undergoes rigorous testing on 
multiple platforms with diverse loads.

§ Both goals are valid and needed, but conflict in the 
short term.
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SAS®-Specific Vulcan

§ Build environment issues mean we do not mirror the 
open source build tree, but instead restructure it when 
we update.

§ For example, in our environment file names cannot be 
duplicated in different directories (only one copy of 
ibase.h allowed, etc).

§ Automated tools allow us to translate source files 
between our environment and the SourceForge one.
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SAS®-Specific Vulcan

§ We regularly pull specific bug fixes into our code base 
from SourceForge.

§ Our intent is to provide batches of updates when we 
find and fix bugs - though we need to improve that 
process.

§ We are using  #ifdef SAS_FIREBIRD to demarcate 
changes in open source files that we must post 
publicly to meet license requirements.

§ SAS-specific implementations in separate source 
files, called/included from conventional source.
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SAS®-Specific Vulcan

§ SHARED_CACHE is not defined in our build; i.e. per-
connection caching is done.  This is different than the 
default build.  Additional locking changes.

§ Per-statement cancel operation

§ Command-line tools define environment (VULCAN, 
VULCAN_CONF, etc.) based on directory of 
invocation.

§ SAS$METADATA table added to all databases to 
track additional Table Server-specific data.
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Reconciling Vulcan and Firebird

§ Since Vulcan was branched from Firebird, a lot has 
been changed in Firebird.

§ Many of these features (expressions in indexes, for 
example) are critical for our future use.

§ Several discussions have occurred about the 
challenges of finding a way to merge them together.

§ SAS sees this as essential for the long-term success 
of Firebird overall.
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Conclusion

§ The Firebird community has made it possible for us 
tightly integrate a transactional DB far more quickly 
than we could have accomplished on our own.

§ The performance and scalability potential of the 
Vulcan design fit well with “enterprise class” software.

§ Short-term divergence of goals mean our participation 
in the community has been limited.

§ Our longer-term goal is to re-synch with the “one true” 
Vulcan, and be an active participant in advocating for 
embedded usage of Vulcan.
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For More Information...

§ See the paper on “Embedded Classic” about how we 
use the Classic model of caching in the thread-safe 
embedded use of Vulcan, via the SHARED_CACHE 
compile-time symbol and it’s effect on locking.

§ See the paper “SAS/Firebird Porting And Testing 
Processes” for more information on our infrastructure.

§ See the related paper on “SAS/Firebird Performance 
Testing Strategy” on how we stress-test the scalability  
of the code.
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Q&A?
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