
1

UnderstandingUnderstanding the the OptimizerOptimizer IIII

2

GlobalGlobal topicstopics

� Introduction

� Join order

� Stream access

� Filter conditions and indexes

� Subqueries

� Questions?

3

Optimizer & ExamplesOptimizer & Examples

Arno Brinkman

BISIT engineering b.v.

ABVisie

firebird@abvisie.nl

European Firebird conference 2005

4

Before testing queriesBefore testing queries

Be sure :

- you are testing against “real” data.

- index selectivity’s are up to date.

Tools :

- Test data generator to fill a database

- PLAN analyzer

When testing statements before they go in practice you should use realistic data

to avoid surprises. The best you can do is filling your tables with a lot of data

(using test-data generator tools for example) which will reflect the practical use

as much as possible. An production example would be even better.

Keep also the selectivity’s up to date so the optimizer can make good decisions.

Use a PLAN analyzer to show you the execution path chosen by the engine. In

most database tools you’ll find a possibility to at least read the PLAN.

5

MeasurementsMeasurements

• Prepare time

• Execution time
When measuring execution time don’t
forget to fetch all records!

• Network

Measure:

-Prepare: You can keep prepare time low by caching the prepared query (thus

only for the first time).

-Execution: Fetch all records you would finally fetch. Using Count(*) will fetch

all records, but doesn’t send much data over the wire.

-Network: Network traffic can be measured by the difference between a Count(*)

call and using the fields in the select list.

6

Performance AnalysisPerformance Analysis

• PLAN
read from left to right

• Reads / Writes
- Non-indexed
- Indexed

Reads and writes gives you the number of successful record-fetches/record-

updates.

7

SQL syntaxSQL syntax
SELECT

*

FROM

RDB$RELATIONS r, RDB$RELATION_FIELDS rf ,RDB$RELATION_CONSTRAINTS rc

WHERE

rf.RDB$RELATION_NAME = r.RDB$RELATION_NAME and

rc.RDB$RELATION_NAME = r.RDB$RELATION_NAME

SQL ‘89

SELECT

*

FROM

RDB$RELATIONS r

JOIN RDB$RELATION_FIELDS rf ON (rf.RDB$RELATION_NAME = r.RDB$RELATION_NAME)

JOIN RDB$RELATION_CONSTRAINTS rc ON (rc.RDB$RELATION_NAME = r.RDB$RELATION_NAME)

Prefer SQL 92 syntax above SQL 89 !

SQL ‘92

SQL 89 is still a valid syntax, but prefer SQL 92 because it’s much better

readable for everyone.

8

NEVER MIX SQL 92 and SQL 89 syntax!

SQL syntaxSQL syntax

SELECT

*

FROM

RDB$RELATIONS r,

RDB$RELATION_FIELDS rf

LEFT JOIN RDB$RELATION_CONSTRAINTS rc ON
(rc.RDB$RELATION_NAME = r.RDB$RELATION_NAME)

WHERE

rf.RDB$RELATION_NAME = r.RDB$RELATION_NAME

9

Join order IJoin order I
SELECT * FROM

Table_1000 t1

JOIN Table_100 t2 ON (t2.ID = t1.ID)

JOIN Table_10 t3 ON (t3.ID = t2.ID)

• T1

• T1, T2

• T1, T2, T3

• T1, T3

• T1, T3, T2

• T2

• T2, T1

• T2, T1, T3

• T2, T3

• T2, T3, T1

• T3

• T3, T1

• T3, T1, T2

• T3, T2

• T3, T2, T1

Assume that in this example all the ID’s of the tables are unique. Then the

optimizer (ODS 10) will try all the combinations you see and pick the cheapest

cost from it.

10

Join order I (ODS 11)Join order I (ODS 11)
SELECT * FROM

Table_1000 t1

JOIN Table_100 t2 ON (t2.ID = t1.ID)

JOIN Table_10 t3 ON (t3.ID = t2.ID)

• T3

• T3, T2

• T3, T2, T1

• T2 • T1

When using Firebird 2.0 with ODS 11 the number of combinations is limited to

chose above.

The number of combinations starting with T2 and T1 stops already by the first

combination, because the cost is already higher.

11

Join order IJoin order I

Table_1000

17 data pages, format length 110, PK_TABLE_1000 (ID), selectivity 0.001

Table_100

2 data pages, format length 110, PK_TABLE_100 (ID), selectivity 0.010

Table_10

1 data page, format length 110, PK_TABLE_10 (ID), selectivity 0.100

SELECT * FROM

Table_1000 t1

JOIN Table_100 t2 ON (t2.ID = t1.ID)

JOIN Table_10 t3 ON (t3.ID = t2.ID)

PLAN JOIN (T3 NATURAL,T2 INDEX (PK_TABLE_100),T1 INDEX (PK_TABLE_1000))

The format length for the tables is the same, because the table structure is the

same. Only the number of data pages is different due the number of records.

Selectivity is up to date here.

Looking at the PLAN you see that the optimizer has chosen T3, T2, T1 as join

order, because T3 has the least number of records it starts with that table. The

total cost here is approximately 30 (10 + (10 * 1) + (10 * 1)). 10 is the cardinality

for the first table. Cost for the unique fetches is always 1 and thus (10 * 1) for

position T2 and T1 is added.

12

StatisticsStatistics

SELECT

i.RDB$RELATION_NAME,

i.RDB$INDEX_NAME,

i.RDB$STATISTICS

FROM

RDB$INDICES i

WHERE

i.RDB$RELATION_NAME IN ('TABLE_10', 'TABLE_100', 'TABLE_1000')

You can use this statement to retrieve the index selectivity values.

13

Statistics (ODS 11)Statistics (ODS 11)

SELECT

i.RDB$RELATION_NAME,

i.RDB$INDEX_NAME,

i.RDB$STATISTICS,

ixs.RDB$FIELD_NAME,

ixs.RDB$STATISTICS

FROM

RDB$INDICES i

JOIN RDB$INDEX_SEGMENTS ixs ON (ixs.RDB$INDEX_NAME = i.RDB$INDEX_NAME)

WHERE

i.RDB$RELATION_NAME IN ('TABLE_10', 'TABLE_100', 'TABLE_1000')

ORDER BY

i.RDB$RELATION_NAME,

i.RDB$INDEX_NAME,

ixs.RDB$FIELD_POSITION

In ODS 11 selectivity is also stored per segment. This statement can be used to

get the segment selectivity's.

14

Join order IIJoin order II

• T1

• T1, T2

SELECT * FROM

Table_1000 t1

JOIN Table_100 t2 ON (t2.ID = t1.ID)

LEFT JOIN Table_10 t3 ON (t3.ID = t2.ID)

• T2

• T2, T1

PLAN JOIN (JOIN (T2 NATURAL,T1 INDEX (PK_TABLE_1000)),T3 INDEX (PK_TABLE_10))

When a OUTER JOIN is used (in this example LEFT) then the no join order

decision can be made between all the tables. Only the combinations for the inner

joins can be made (in this example T1 and T2).

Looking at the PLAN you’ll notice two JOINs where as the first JOIN is for the

LEFT OUTER and the second for the INNER JOIN.

15

Join order IIIJoin order III
SELECT * FROM

Table_1000 t1

LEFT JOIN Table_100 t2 ON (t2.ID = t1.ID)

JOIN Table_10 t3 ON (t3.ID = t2.ID)

PLAN JOIN (JOIN (T1 NATURAL,T2 INDEX (PK_TABLE_100)),T3 INDEX (PK_TABLE_10))

The optimizer can not change the order.

Enter the LEFT JOINs as low as possible.

Using the OUTER in the middle as shown in this example the optimizer is not

able to make decision about the JOIN order. When you need LEFT JOINs place

them so low as possible so the optimizer can make decisions for the JOIN order

where possible.

16

Join order IV Join order IV -- VIEWVIEW
CREATE VIEW VIEW1 (ID) AS

SELECT t1.ID FROM

Table_1000 t1

JOIN Table_100 t2 ON (t2.ID = t1.ID)

JOIN Table_10 t3 ON (t3.ID = t2.ID)

PLAN JOIN (T1 NATURAL,V1 T3 INDEX (PK_TABLE_10),V1 T2 INDEX (PK_TABLE_100)
,V1 T1 INDEX (PK_TABLE_1000))

SELECT * FROM

Table_10 t1

JOIN View1 v1 ON (v1.ID = t1.ID)

When possible INNER JOINs are combined to one

INNER JOIN.

In a phase before calling the optimizer multiple INNER JOINs are combined

together to 1 INNER JOIN where possible. VIEWs are flattened where possible

and combined too.

17

Join order V Join order V -- VIEWVIEW
CREATE VIEW VIEW2 (ID) AS

SELECT t1.ID FROM

Table_1000 t1

JOIN Table_100 t2 ON (t2.ID = t1.ID)

LEFT JOIN Table_10 t3 ON (t3.ID = t2.ID)

PLAN JOIN(JOIN(JOIN(V1 T2 NATURAL,V1 T1 INDEX (PK_TABLE_1000),
V1 T3 INDEX (PK_TABLE_10),T1 INDEX (PK_TABLE_10))

SELECT * FROM

Table_10 t1

JOIN View2 v1 ON (v1.ID = t1.ID)

Can not combine the INNER JOINs due the

LEFT JOIN at the end.

When a VIEW contains an OUTER JOIN at the end it isn’t possible to combine

the tables together to 1 INNER JOIN.

As for this example it isn’t possible to put the tables T1 and T1, T2 together into

1 INNER JOIN, but of course a join order decision between t1 and t2 inside the

VIEW can still be made.

18

Stream access IStream access I
CREATE TABLE Relations (

RelationID INTEGER NOT NULL,

FirstName VARCHAR(35),

LastName VARCHAR(35),

CONSTRAINT PK_Relations PRIMARY KEY (RelationID)

)

SELECT

Count(*)

FROM

Relations r

PLAN (R NATURAL)

Running this select statement will cause Firebird to read the whole table. It reads

all records in storage order (the order it’s stored on disk) and this is the fastest

way, because when it was using an index it still has to look for every record in

the database. This is needed, because it has to check if the index entry was valid

for our current transaction.

19

Stream access IIStream access II
CREATE TABLE Relations (

RelationID INTEGER NOT NULL,

FirstName VARCHAR(35),

LastName VARCHAR(35),

CONSTRAINT PK_Relations PRIMARY KEY (RelationID)

)

SELECT

r.*

FROM

Relations r

ORDER BY

r.RelationID

PLAN (R ORDER PK_RELATIONS)

Using the PK in the ORDER BY here causes that the optimizer chooses for an

navigation through index. This will also read the whole table, but in the PK

order. The data isn’t stored in any specific order in the data pages, thus this is a

good candidate for random disk read.

Note that I use “r.*” in this example, but normally you wouldn’t do that. Only put

the fields you need in the select list to keep the network traffic so small as

possible.

20

Stream access IIIStream access III

SELECT

FIRST 10

r.*

FROM

Relations r

ORDER BY

r.RelationID

PLAN (R ORDER PK_RELATIONS)

The index used for an ORDER is only useful when
you fetch the first x records.

With FIRST x (or just fetching the first x records at the client) it’s useful when an

index is used for reading data from the disk. Now only the first 10 records are

fetched from disk. Without an index on field relationID the whole table would

need to be read first and sorted afterwards. Which would be more expensive for

this statement.

21

Stream access IVStream access IV

CREATE ASC INDEX IDX_RELATIONS_LASTNAME ON Relations(LastName)

SELECT

r.LastName,

Count(*)

FROM

Relations r

GROUP BY

r.LastName

PLAN (R ORDER IDX_RELATIONS_LASTNAME)

If the fields in the GROUP BY can be matched against an index (in the same

order) it will use this index for navigation. Note that for this example using a

SORT afterwards is faster, because all records are read. Maximum 1 index can be

used for navigation.

22

SELECT

r.LastName,

Count(*)

FROM

Relations r

GROUP BY

r.LastName

Stream access VStream access V

How to make sure the index won’t be used for navigation?

PLAN (R ORDER IDX_RELATIONS_LASTNAME)

SELECT

r.LastName,

Count(*)

FROM

Rrelations r

GROUP BY

r.LastName, r.LastName

PLAN SORT ((R NATURAL))

SELECT

r.LastName || '',

Count(*)

FROM

Relations r

GROUP BY

1

To avoid that an index is chosen for navigation you can add another (or the same)

field to the GROUP BY clause or “concatenate with an empty string” / “add a

zero”. The same can be done for the ORDER BY clause.

23

Stream access VIStream access VI

SELECT

r.LastName,

Count(*)

FROM

Relations r

WHERE

r.RelationID = 10121

GROUP BY

r.LastName

PLAN (R ORDER IDX_RELATIONS_LASTNAME)PLAN (R ORDER IDX_RELATIONS_LASTNAME INDEX (PK_RELATIONS))

Is it possible to use an index for a filter, while using
an index for navigational access?

Firebird 1.5 will show you only PLAN (R ORDER

IDX_RELATIONS_LASTNAME), but internally it will use the index available

with RelationID in it. Firebird 2.0 will output the PLAN with ORDER and

INDEX together.

24

DSQL conversions IDSQL conversions I

SELECT * FROM

Relations r

WHERE

r.RelationID IN (10, 11, 12)

SELECT * FROM

Relations r

WHERE

r.RelationID = 10 OR

r.RelationID = 11 OR

r.RelationID = 12

The IN predicate is converted inside the DSQL (Dynamic SQL) to multiple OR

statements.

25

DSQL conversions IIDSQL conversions II

SELECT * FROM

Relations r

WHERE

r.RelationID IN (SELECT rc.RelationID FROM RelationCategories rc)

SELECT * FROM

Relations r

WHERE

EXISTS(SELECT rc.RelationID FROM RelationCategories rc

WHERE rc.RelationID = r.RelationID)

IN predicate with sub-query is internally converted to another form which is the

same as using an EXISTS. Often is complained why the statement at the top

can’t use an index on the field relationID. Looking at the converted statement

below you probably already understand why it isn’t possible. As you’ll see an

index will be used for the sub-query (due the rc.RelationID = r.RelationID), but

the other table will be fetched completely.

26

DSQL conversions IIIDSQL conversions III

SELECT * FROM

Relations r

WHERE

r.RelationID IN (SELECT Max(rc.RelationID) FROM RelationCategories rc)

SELECT * FROM

Relations r

WHERE

EXISTS(SELECT Max(rc.RelationID) FROM RelationCategories rc

HAVING Max(rc.RelationID) = r.RelationID)

When the sub-query is an aggregate query (it has GROUP BY/HAVING or

aggregate function in the statement) the condition goes the HAVING clause

instead off the WHERE clause. This can have a big impact on performance,

because the HAVING clause is performed after the grouping.

The optimizer in Firebird 2.0 will try to distribute the condition to WHERE

clause, so an index can be used when available.

27

DSQL conversions IVDSQL conversions IV

SELECT * FROM

Relations r

WHERE

r.RelationID IN (SELECT FIRST 1 rc.RelationID FROM RelationCategories rc)

SELECT * FROM

Relations r

WHERE

EXISTS(SELECT FIRST 1 rc.RelationID FROM RelationCategories rc

WHERE rc.RelationID = r.RelationID)

Warning 2, In Firebird 1.5 and before the IN predicate would probably not do

what you expect. The sub-query is evaluated for record from the master query

and thus this will return all records for Relations.

Firebird 2.0 has fixed this by problem, but note that no index will be used for the

sub-query. You can work-around this by using the sub-query as derived table.
SELECT

*

FROM

Relations r

JOIN (SELECT FIRST 1 rc.RelationID FROM RelationCategories rc) rc
ON (rc.RelationID = r.RelationID)

28

DSQL conversions VDSQL conversions V

SELECT * FROM

Relations r

WHERE

NOT r.RelationID <> 10

SELECT * FROM

Relations r

WHERE

r.RelationID = 10

In Firebird 2.0 NOT conditions are simplified where possible, so that the

optimizer eventually can match it against an index.

29

Operators / predicates IOperators / predicates I
Can use an index:

� equals (a = b)

� less than (a < b)

� greater than (a > b)

� less than or equal (a <= b)

� greater than or equal (a >= b)

� IS NULL

� STARTING WITH

� IN with list of constants

� BETWEEN

� not equal to (a <> b)

� IS NOT NULL

� CONTAINING

� LIKE

� IN (subquery)

� NOT

Can’t use an index:

30

Operators / predicates IIOperators / predicates II
An index can only be used inside the subquery:

� IN (subquery)

� EXISTS (subquery)

� SINGULAR (subquery)

� ALL (a # ALL (subquery))

� ANY (a # ANY (subquery))

� SOME (a # SOME (subquery))

= (=, <, >, <=, >=, <>)

31

Filter conditions Filter conditions -- LIKELIKE

CREATE ASC INDEX IDX_RELATIONS_LASTNAME ON Relations(LastName)

SELECT

r.*

FROM

Relations r

WHERE

r.LastName LIKE 'Sp%'

PLAN (R INDEX (IDX_RELATIONS_LASTNAME))

internal

SELECT

r.*

FROM

Relations r

WHERE

r.LastName LIKE 'Sp%' and

r.LastName STARTING WITH 'Sp'

The optimizer add an STARTING WITH if the LIKE doesn’t start

with an pattern-matching character.

Note that when you use a parameter never a STARTING WITH is added,

because the value of the parameter can contain anything.

32

Filter conditions Filter conditions -- BETWEENBETWEEN

SELECT

r.*

FROM

Relations r

WHERE

r.LastName BETWEEN 'D' and 'A'

PLAN (R INDEX (IDX_RELATIONS_LASTNAME))

internal

SELECT

r.*

FROM

Relations r

WHERE

r.LastName >= 'D' and

r.LastName <= 'A'

The optimizer converts a “between” conjunction into a “greater
than or equal” and a “less than or equal” conjunction.

33

Filter conditions Filter conditions -- OROR

SELECT

r.*

FROM

Relations r

WHERE

r.RelationID = 11 or

r.RelationID = 23 or

r.RelationID = 44 or

r.RelationID = 56

PLAN (R INDEX (PK_RELATIONS, PK_RELATIONS, PK_RELATIONS, PK_RELATIONS))

With an OR filter only indexes can be used when every condition can use a

index, because if one condition can’t use an index it has to be evaluated against

every record in the table.

34

Filter conditions Filter conditions –– ANDAND

SELECT

r.*

FROM

Relations r

WHERE

r.RelationID => 1000 and

r.LastName < 'F'

PLAN (R INDEX (PK_RELATIONS,IDX_RELATIONS_LASTNAME))

If possible and it’s interesting (versus cost) two indexes will be used and

internally the indexed results are AND-ed. The final result (list of record

numbers) is used to lookup the records.

35

Filter conditions Filter conditions –– compound indexcompound index

SELECT

r.*

FROM

Relations r

WHERE

r.FirstName = 'Adam' and

r.LastName = 'Kern'

PLAN (R INDEX (IDX_RELATIONS_FIRSTLASTNAME))

CREATE ASC INDEX IDX_RELATIONS_FIRSTNAME ON Relations(FirstName)

CREATE ASC INDEX IDX_RELATIONS_FIRSTLASTNAME ON Relations(FirstName, LastName)

Field order in compound index is important!

An index with two or more fields (compound index) can be very useful if you

filter a lot against the same fields with an equality operator. This index will

probably also have a good selectivity, because mostly the number if distinct

nodes will decrease. Using a field which is unique in a compound index meant in

most cases that the index is in fact unneeded/wrong.

36

Filter conditions Filter conditions –– compound indexcompound index

SELECT

r.*

FROM

Relations r

WHERE

r.FirstName > 'Adam' and

r.LastName = 'Kern'

PLAN (R INDEX (IDX_RELATIONS_LASTNAME,IDX_RELATIONS_FIRSTNAME))

CREATE ASC INDEX IDX_RELATIONS_FIRSTLASTNAME ON Relations(FirstName, LastName)

When the first segments are not matched with an equal’s

operator then the next segments cannot be efficiently used.

37

Filter conditions Filter conditions –– compound indexcompound index

SELECT r.* FROM

Relations r

WHERE

r.FirstName IN ('Adam', 'Jane') and

r.LastName = 'Kern'

PLAN (R INDEX (IDX_RELATIONS_LASTNAME,IDX_RELATIONS_FIRSTNAME,
IDX_RELATIONS_FIRSTNAME))

Three indexes are used, while two compound indexes could be
used?

SELECT r.* FROM

Relations r

WHERE

(r.FirstName = 'Adam' and r.LastName = 'Kern') or

(r.FirstName = 'Jane' and r.LastName = 'Kern')

PLAN (R INDEX (IDX_RELATIONS_FIRSTLASTNAME,IDX_RELATIONS_FIRSTLASTNAME))

Rewrite the query:

The first statement is not able to use the compound index on FirstName and

LastName twice. For Firebird 1.5 you’ve to rewrite the query to something like

the lower statement. In Firebird 2.0 the first statement will be able to use the

compound index and no rewrite is needed.

The same counts when the IN predicate in the first statement were 2 OR

conditions.

38

Filter conditions Filter conditions –– ignore indexignore index

SELECT

r.*

FROM

Relations r

WHERE

r.RelationID + 0 > 100 and

r.LastName || '' = 'Kern'

PLAN (R NATURAL)

The optimizer can only use a index when at the left or right side
from the operator 1 field is present.

SELECT

r.*

FROM

Relations r

WHERE

r.RelationID > 100 and

(r.LastName = 'Kern' or 1 = 0)

PLAN (R NATURAL)

Add 0 or empty string: Add OR:

39

Filter conditions Filter conditions –– LEFT JOINLEFT JOIN
SELECT

*

FROM

Table_1000 t1

LEFT JOIN Table_100 t2 ON (t2.ID = t1.ID)

JOIN Table_10 t3 ON (t3.ID = t1.ID)

WHERE

t2.SomeField = 'Firebird'

PLAN JOIN (JOIN (T1 NATURAL,T2 INDEX (PK_TABLE_100)),T3 INDEX (PK_TABLE_10))

Using a filter on a LEFT JOIN let the LEFT JOIN

behave as an INNER JOIN (except checking for

NULL state).

When filtering on an OUTER JOIN in the WHERE clause you let the OUTER

clause behave as an INNER JOIN. The only exception here is if you’re checking

for NULL states in the WHERE clause (such as for “t2.SomeField IS NULL” or

“COALESCE(t2.SomeField, 0) = 0”).

This is also a way to force the order in which the tables are JOINed, but it’s

recommended to let the optimizer decide. Assuming data grows and the tables

are changing in size compared to each other.

40

Filter conditions Filter conditions –– aggregateaggregate

SELECT

r.FirstName,

Count(*)

FROM

Relations r

GROUP BY

r.FirstName

HAVING

r.FirstName = 'Jim'

PLAN (R ORDER IDX_RELATIONS_FIRSTLASTNAME)

Use the WHERE clause whenever possible.

SELECT

r.FirstName,

Count(*)

FROM

Relations r

WHERE

r.FirstName = 'Jim'

GROUP BY

r.FirstName

Filters in the HAVING clause cannot use an index. Always prefer filters in the

WHERE clause, only filters on aggregate functions should be put in the

HAVING clause.

Firebird 2.0 will try to distribute the HAVING clause to the WHERE clause by

itself.

41

AggregateAggregate

SELECT Max(FirstName) FROM Relations r

PLAN (R ORDER IDX_RELATIONS_FIRSTNAME_DESC)

Max/Min Will use an index when possible.

SELECT Min(FirstName) FROM Relations r

PLAN (R ORDER IDX_RELATIONS_FIRSTNAME_ASC)

SELECT Max(FirstName), Count(*) FROM Relations r

PLAN (R NATURAL)

When a single Min or Max aggregate function is used it will try to use an index

for navigation. Min can only use Ascending indexes and Max can only use

descending indexes.

42

SubqueriesSubqueries II

SELECT

r.LastName || ', ' || r.FirstName,

(SELECT c.Description FROM Categories c WHERE c.CategoryID = rc.CategoryID)

FROM

RelationCategories rc

JOIN Relations r ON (r.RelationID = rc.RelationID)

ORDER BY

1

PLAN (C INDEX (PK_CATEGORIES))

PLAN SORT(JOIN(R NATURAL,RC INDEX (FK_RELCAT_RELATIONS)))

• Have their own PLAN.

• Correlated subqueries are executed for every ‘row’.

43

SubqueriesSubqueries IIII

SELECT

r.LastName || ', ' || r.FirstName,

(SELECT c.Description FROM Categories c WHERE c.CategoryID = rc.CategoryID)

FROM

RelationCategories rc

JOIN Relations r ON (r.RelationID = rc.RelationID)

ORDER BY

2

PLAN (C INDEX (PK_CATEGORIES))

PLAN (C INDEX (PK_CATEGORIES))

PLAN SORT(JOIN(R NATURAL,RC INDEX (FK_RELCAT_RELATIONS)))

Note! When ORDER BY or GROUP BY clause refer to a subquery
in select list then this subquery will be executed twice.

44

UNIONUNION

SELECT r.LastName || ', ' || r.FirstName,

FROM Relations r

WHERE r.RelationID >= 1 and r.RelationID <= 10

UNION ALL

SELECT r.LastName || ', ' || r.FirstName,

FROM Relations r

WHERE r.RelationID >= 1 and r.RelationID <= 10

ORDER BY

2

PLAN (R INDEX (PK_RELATIONS))

PLAN (R INDEX (PK_RELATIONS))

• Every query-item has a PLAN.

• Prefer UNION ALL above UNION.

Every query used on the left and right side of an UNION has it’s own PLAN.

When you don’t need to eliminate duplicate rows use the UNION ALL, because

this doesn’t use the distinct operation afterwards. Using just UNION will always

cause an distinct being added internally, but you can’t read this info from the

PLAN output.

45

UNION UNION -- VIEWVIEW

CREATE VIEW View3 (RelationID) AS

SELECT rc.RelationID

FROM RelationCategories rc

WHERE rc.CategoryID = 5

UNION ALL

SELECT rc.RelationID

FROM RelationCategories rc

WHERE rc.CategoryID = 8

PLAN JOIN((V RC INDEX (FK_RELCAT_CATEGORIES))

PLAN (V RC INDEX (FK_RELCAT_CATEGORIES)),R INDEX (PK_RELATIONS))

SELECT

r.*

FROM

Relations r

JOIN View3 v ON (v.RelationID = r.RelationID)

UNION is processed first.

Unions are processed first on the same level. That’s why you see here the view at

the beginning of the PLAN.

46

UNION UNION -- distributedistribute

PLAN (V RC INDEX (FK_RELCAT_CATEGORIES))

PLAN (V RC INDEX (FK_RELCAT_CATEGORIES))

SELECT

v.*

FROM

View3 v

WHERE

v.RelationID BETWEEN 4000 and 5000

Firebird 1.5

PLAN (V RC INDEX (PK_RELATIONCATEGORIES))

PLAN (V RC INDEX (PK_RELATIONCATEGORIES))

Firebird 2.0

For Firebird 1.5 the filter in the WHERE clause will only be evaluated after the

whole VIEW is executed, while the relationID is also part of an index. In Firebird

2.0 the WHERE clause on a UNION (in this case the VIEW, but it could also be

a derived table) will be distributed and other indexes could probably be chosen.

Such as in this example where the index from the primary key could be used.

47

Selectable Stored ProceduresSelectable Stored Procedures

SELECT

*

FROM

Relations r

LEFT JOIN StoredProcedure(r.RelationID) ON (1 = 1)

Selectable stored procedures are processed first.

Note that stored procedures are cached (prepared statements) inside the engine.

When you add an index which you expect to be used by the stored procedure, but

you already run the procedure once. This index will not be used, because it

doesn’t come in the optimizer anymore.

48

DONDON’’T USE EXPLICIT T USE EXPLICIT PLANsPLANs!!

DONDON’’TT

USEUSE

EXPLICITEXPLICIT

PLANsPLANs!!

49

QuestionsQuestions??

50

The EndThe End

