
1

UnderstandingUnderstanding the the OptimizerOptimizer II

2

GlobalGlobal topicstopics

� Introduction

� Optimizer

� Indexes

� Questions?

3

IntroductionIntroduction

Arno Brinkman

BISIT engineering b.v.

ABVisie

firebird@abvisie.nl

European Firebird conference 2005

4

TaskTask of the of the OptimizerOptimizer

The optimizer should optimize the
execution path in a way that it becomes
the most efficient (fastest) way for the
engine to execute it.

In fact the name Optimizer already say what it should do

5

OptimizerOptimizer strategiesstrategies

• Heuristic (rule based)

• Cost-based

• User determined.

These are three optimizer strategies we have.

Heuristic optimizer is based on rules.

Cost-based is depending on estimated cost.

User determined optimizer in which the user controls how the execution path

should look like. Such as given hints or in case of firebird a explicit PLAN which

forces the execution path.

Firebird 1.5 uses cost based approach and a little heuristic.

Firebird 2.0 is even some more towards the cost-based strategy.

6

WhenWhen is the is the optimizeroptimizer calledcalled??

• SQL statement

• DSQL parser

• BLR (Binary Language Representation) generator

• Compile the BLR

• Optimizer (RSE � RSB)

• Statement is prepared

First we have our SQL statement. This SQL statement is being parsed in the

Dynamic SQL parser.

After the DSQL the BLR (Binary language representation) is generated (the op-

code for the engine).

As next step the BLR is compiled into an Record Selection Expression tree were

also the Optimizer is called.

The Optimizer will finally turn the RSE into a RSB tree and then the statement is

prepared.

As you see many things happen before a statement is prepared.

So when you use the same statements a lot, keep them prepared in your

application. Note that there is no strong binding with a transaction.

7

RSE RSE �� RSBRSB

The optimizer turns an RSE (Record

Selection Expression) into a RSB (Record

Source Blocks) tree.

The optimizer turns a RSE (record selection expression) into a RSB (record

source block) tree.

That are both tree’s with internally structures by the engine which are used to

walk down a path to execute it.

8

RSB types RSB types usedused byby engineengine II

- FIRST, SKIP: retrieve first x and skip y records

- CROSS: inner join

- LEFT_CROSS: left/right/full outer join

- MERGE: inner join using merge

- UNION: union

- AGGREGATE: perform aggregation

- SORT: use memory sorting

FIRST and SKIP: They retrieve the first X and/or skip Y records from a stream.

CROSS: That’s a nothing more then the INNER JOIN.

LEFT_CROSS: This can be a left/right or full outer join.

MERGE: Merge two sorted streams together (always together with SORT).

UNION: Union two or more stream.

AGGREGATE: Base stream for grouping and performing aggregate calculations

(sum, total, average, …) from a stream

SORT: Sort stream. Use memory when available else swap to disk.

9

RSB types RSB types usedused byby engineengine IIII

- SEQUENTIAL: retrieve records in the way they are stored

- NAVIGATE: navigational index retrieval

- BOOLEAN: logical condition

- INDEXED: retrieve records through index

- DBKEY: retrieve specific record by recordnumber

- PROCEDURE: stored procedure

- EXT_SEQUENTIAL: external sequential access

SEQUENTIAL: Retrieving the records in the way they are stored on disk.

NAVIGATE: Walking trough an index and fetching the records that belong to

the index-entry.

BOOLEAN: Logical condition.

INDEXED: Filter, Retrieve records through index.

DBKEY: Retrieve explicit record by record number.

PROCEDURE: Executes stored procedure.

EXT_SEQUENTIAL: External sequential access.

There are still some other types in the engine, but they aren’t in use anymore.

10

RSE RSE �� RSB RSB exampleexample

SELECT

rf.RDB$RELATION_NAME,

rf.RDB$FIELD_NAME

FROM

RDB$RELATIONS r

JOIN RDB$RELATION_FIELDS rf ON

(rf.RDB$RELATION_NAME = r.RDB$RELATION_NAME)

Example SQL statement i’ll use for a RSE to RSB conversion.

Assume we’re using this simple statement against the system tables.

11

RSE RSE �� RSB RSB exampleexample
blr_rse, 1,

blr_rs_stream, 2,

blr_relation2, 13, 'R','D','B','$','R','E','L','A','T','I','O','N','S', 1, 'R', 1,

blr_relation2, 19, 'R','D','B','$','R','E','L','A','T','I','O','N','_','F','I','E','L','D','S', 2, 'R','F', 2,

blr_boolean,

blr_eql,

blr_field, 2, 17, 'R','D','B','$','R','E','L','A','T','I','O','N','_','N','A','M','E',

blr_field, 1, 17, 'R','D','B','$','R','E','L','A','T','I','O','N','_','N','A','M','E',

blr_end,

blr_end,

rsb_cross

rsb_sequential

RDB$RELATIONS

rsb_boolean

rsb_indexed

RDB$RELATION_FIELDS

RDB$INDEX_4

Then the RSE part (BLR-code) of the previous statement will look as the above

part in the screen. (When you create a VIEW with this statement you can see this

BLR in the blob-field RDB$VIEW_BLR of RDB$RELATIONS)

The RSE goes into the optimizer and will turn it into a RSB tree as you see

below.

First you see RSB_CROSS which meant JOIN (here two) streams.

The first stream has RSB_SEQUENTIAL and thus reads all records from the

table RDB$RELATIONS in storage order. For every record from the first stream

the RSB_BOOLEAN is executed which calls RSB_INDEXED and retrieves all

records evaluated by the RDB$INDEX_4 scan on RDB$RELATION_FIELDS.

For every record returned by RDB$RELATION_FIELDS the boolean condition

is evaluated.

12

DSQL DSQL optimizationoptimization / / transformationtransformation

• NOT simplification (FB 2.0)

NOT A > 0 �� A <= 0
NOT NOT A = 0 �� A = 0

• Expr1 IN (sub-query) => Exists

EXISTS(SELECT … WHERE Expr1 = …)

• Expr1 IN (const 1, const 2, …, const n) to OR conditions

(Expr1 = const 1) OR
(Expr1 = const 2) OR
…
(Expr1 = const n)

There are a few optimizations/transformations that are done in the DSQL layer.

The NOT condition is simplified when possible, so that it can eventually use

indexes (FB 2.0).

An sub-query used in the IN predicate is transformed to an EXISTS.

IN predicate with list of values is converted to a list of OR conditions

13

OptimizerOptimizer layoutlayout

Distribute conjunctions

Aggregate Union Procedure

River

Check sorts

Distribute / Explode conjunctions

Sub-streams Tables

Sort / Merge riversOuter join

Inner join (return rivers)

First / Skip

Sort / Merge rivers

Sort

Simple overview of how the flow of the optimizer is internally.

14

Check sortsCheck sorts

• Check if a GROUP BY exists using the same fields as
the projection (DISTINCT) and/or sort (ORDER BY).
If so, the projection/sort can be removed

• Check if the first n fields from the sort matches the projection.
If so, the sort can be removed.

• If all fields in the sort are from 1 stream, deliver
it to the outer stream when possible. (FB 2.0)

15

Conjunctions (conditions)Conjunctions (conditions)

• Decomposition
- Convert a “between” conjunction into a “greater than or equal”
and a “less than or equal” conjunction.
(x BETWEEN a AND b) � (x >= a) and (x <= b)

- If a LIKE starts with anything else than a pattern-matching
character add a STARTING WITH conjunction, because
STARTING WITH can use a index.

• Try to make more conjunctions based on equality conjunctions
available.
- If (a = b) and (a # c) � (b # c) for any operation '#'.

Decomposition:

The optimizer tries to convert/expand the conjunctions so it can do more with it.

For example:

- Convert a between conjunction into a “greater than or equal” and “less than

or equal” conjunction.

- We have the like: If the like starts with anything else than a pattern-matching

character then a STARTING WITH conjunction is added, because only the

STARTING WITH can be used with the index. The LIKE itself cannot use an

index. When a LIKE is used together with a parameter (.. WHERE FieldA LIKE

:parameter) never an index can be used, because at prepare time it’s unknown

what value will go into the parameter.

It also tries to make more conjunctions based on equality conjunctions available.

This to helps binding/choosing the best index available. For example you’ve (a =

b) and (a >= c) this will result in a new conjunction (b >= c).

16

Process orderProcess order

Items at same level processed first :

- UNION

- AGGREGATE

- PROCEDURE

- Nested-RSE’s

Finally processed :

- INNER JOIN

- OUTER JOIN

17

Distribute conjunctionsDistribute conjunctions

� Distribute HAVING conjunctions to the WHERE clause (FB 2.0)

� Distribute UNION filter conjunctions to the filter clauses of
the inside streams (FB 2.0)

Distribute HAVING conjunctions to the WHERE clause (FB 2.0)

Conjunctions in the HAVING clause which contain fields that are also in the

GROUP BY clause can be distributed to the WHERE clause, so that it eventually

can use an index.

Distribute UNION filter conjunctions to the filter clauses of the inside streams

(FB 2.0)

When an UNION is part of a VIEW and you perform a filter on the VIEW the

filter is distributed to every query from the UNION.

18

Optimizer decisionsOptimizer decisions

• Stream order
Only for inner streams

• Stream fetch method
In/Out storage order

• Filter methods
Index and/or boolean evaluation

• Join method
MERGE, INNER/OUTER JOIN

The Optimizer makes decisions about:

-The stream order for inner joins.

It decides in which order the streams should be executed after each other.

-Stream fetch method.

In or Out storage order. Which meant read it in the way it’s stored on disk (In

storage order) or use an index navigation.

-Filter methods.

Index and/or Boolean evaluation.

-JOIN method.

MERGE, INNER/OUTER JOIN

19

OptimizerOptimizer layoutlayout inner inner joinjoin ODS 10ODS 10

Find best join order

Form rivers

Get Indexed Relationships

Unique indexed relationships

Indexed relationships

Calculate cost

Indirect relationships

Inner Join

Generate retrieval

Find best

Form river

Simplified overview of the inner join part in the optimizer for ODS 10.

First the indexed relationships between the streams are determined.

Next search for the best join order.

Finally match the conjunctions to the indexes and form rivers.

20

Relationships

Mark used streams

Calculate cost

OptimizerOptimizer layoutlayout inner inner joinjoin ODS 11ODS 11

Find best join order

Form rivers

Calculate stream info

OR nodes

Make inversion

AND nodes

Mark used conjunctions

Inner Join Retrieval

Find best

Indexed relationships

Sort on cost

Base cost

Calculate stream info

Simplified overview of the inner join part in the optimizer for ODS 11.

First the base cost / indexed relationships between the streams are calculated.

Next do a walk for every stream and recursively for the next cheapest indexed

relationship stream.

Finally match the conjunctions to the indexes and form rivers.

21

Stream order ODS 10Stream order ODS 10

Given a set of streams, select the "best order" to join them.

The "best order" is defined as longest, cheapest join order.

(length, of course, takes precedence over cost).

- Determine relationships for every stream.

- Try every relationship combination.

- Calculate estimated cost and cardinality per stream.

Based on estimated total records, index-selectivity, unique-indexes

and number of indexes

- Loop through index relationships with unique relationships first

First determine relationships for every stream with other streams inside the same

INNER JOIN “block”.

Next try every relationship combination.

Calculate estimated cost and cardinality per stream.

This is based on estimated total records, index-selectivity, unique-indexes and

number of indexes

Loop through direct index relationships with direct unique relationships first.

This is done because the unique relationships are the most interesting/cheapest

relationships.

Finally check for indirect indexed relationships.

22

Stream order ODS 11Stream order ODS 11

Given a set of streams, select the "best order" to join them.

The "best order" is defined as longest, cheapest join order.

(length, of course, takes precedence over cost).

- First determine base cost and indexed relationships for every stream.

- Next try every stream.

- Calculate estimated cost and cardinality per stream.

Based on estimated total records, index-selectivity, indexes-cost.

- Try the next cheapest indexed relationship until all relationships

are calculated.

First determine base cost and indexed relationships for every stream.

Next try every stream.

Calculate estimated cost and cardinality per stream at each position.

This is based on estimated total records, index-selectivity, index-cost.

Try the next cheapest indexed relationship until all relationships are calculated.

23

Stream access methodsStream access methods

• NAVIGATION: Use index (ascending / descending)

Can only use 1 index for navigation.

Called “Out of storage order”.
Loop through index entries and fetch records (many pages needs

to be read).

• SEQUENTIAL: No index

Called “In storage order”.
Fetch the records from the pages in the way they are stored

(unpredictable order)

We’ve two types of stream access methods:

-NAVIGATION

Using an ascending/descending index.

Can only use 1 index for navigation and is called “Out of storage order”.

Loop through the index entries and fetch the records.

This causes many data-page reads, because in most cases for every record a new

data-page must be read.

Fastest way when you want to fetch only a few records by order (FIRST X) from

a huge table.

-SEQUENTIAL

No index and called “In storage order”.

Fetch the records in the way the are stored on disk. This is thus in an

unpredictable order.

Fastest way when you want to fetch a large piece of the table.

24

Filter methodsFilter methods

• Index retrieval

Combine (and/or operations) bitmaps into final bitmap.

Decide on selectivity / “segment match” if index is useful at all.
Final a list of recordnumbers for retrieval from records.

• Boolean evaluation

Evaluate expression on record after retrieval.

10001
10002
10003
10005

10001
10002
10004
10008

10001
10002

25

Join methodsJoin methods

• OUTER JOIN

Left / right / full

• INNER JOIN

Cross

• MERGE

Merge rivers (river = group of streams) into 1 river

FB 2.0 can also merge rivers based on expressions

OUTER JOIN: Left / right / full outer join.

INNER JOIN: Cross, join 2 or more streams.

MERGE: Merge rivers (a river represent multiple streams) into 1 river and does

only work for INNER JOINs.

When there’s a relationship between two streams, but no index could be used. It

will try to sort both streams and merge them together.

FB2 can also merge streams based on expressions, such as:

SELECT * FROM Table1 t1 JOIN Table2 t2 ON (t2.ID + 100 = t1.ID)

26

Execution PLAN IExecution PLAN I

You can retrieve the information (PLAN) how the optimizer has

decided which way to go. (for example in ISQL with SET PLAN ON)

The optimizer converts the RSB tree into a readable form using :

• PLAN

• NATURAL (In storage order)

• ORDER (Out of storage order)

• INDEX

• JOIN

• MERGE

• SORT

Almost every database tool can give you the PLAN from a query. Some give you

even a nice graphical screen with some hints about the PLAN.

When asking for a PLAN the optimizer converts the RSB tree into a readable

format using the keywords:

- PLAN (Start of a RSB tree)

- NATURAL (Sequential, In storage order)

- ORDER (Navigation, Out of storage order)

- INDEX (Retrieval by bitmap)

- JOIN (Inner/left/right/full join streams)

- MERGE (Merge two rivers)

- SORT (Sorting stream)

27

Execution PLAN IIExecution PLAN II

rsb_cross

rsb_sequential

RDB$RELATIONS

rsb_boolean

rsb_indexed

RDB$RELATION_FIELDS

RDB$INDEX_4

SELECT

rf.RDB$RELATION_NAME,

rf.RDB$FIELD_NAME

FROM

RDB$RELATIONS r

JOIN RDB$RELATION_FIELDS rf ON (rf.RDB$RELATION_NAME = r.RDB$RELATION_NAME)

PLAN JOIN (R NATURAL, RF INDEX (RDB$INDEX_4))

Read the PLAN from left to right, the most expensive part should be at the left

Let’s took the same example as used in a slide before.

At the top the statement with below the RSB tree used internally.

Under the RSB tree you see the readable PLAN output made by the optimizer.

Read the PLAN from left to right and you’ll notice that it has the same “nodes”

as the RSB tree from top to bottom.

Things at the left are thus processed first and at the right as last. As you

understand a NATURAL having on the right side is mostly a expensive thing,

because that will read the whole stream for every time called.

28

Calculations in optimizer ODS 10Calculations in optimizer ODS 10

stream cost = (cardinality * index_selectivity) +

(indexes * INDEX_COST)

INDEX_COST = 30.0

cardinality = (nr_data_pages * (page_size / format_length))

Estimated, because :

Assumed data page is 100% filled with uncompressed records

priority level for used indexes

Stream cost = (cardinality * index_selectivity) + (indexes * INDEX_COST)

INDEX_COST is an hard coded value of 30.0

Indexes is the number of indexes used by the stream

Cardinality = (nr_data_pages * (page_size / format_length_record))

Nr_data_pages is the number of data pages for the table.

format_length_record = Uncompressed size for the record.

This is estimated, because it’s assumed that all data pages are filled for 100

percent and the records aren’t compressed.

In FB1.5 a priority level for indexes is introduced.

The priority level is based on :

- How many equality conjunctions match against the segments.

- How many conjunctions can be matched against an index.

- How many segments are matched.

29

Calculations in optimizer ODS 11Calculations in optimizer ODS 11

stream cost = (cardinality * total selectivity) + total index cost

Index cost = estimated number of index pages

1 + (index selectivity * index cardinality).

cardinality =

nr_data_pages * ((page_size – offset) / format_length * 0.5)

Estimated, because :

Assumed data page is 100% filled with uncompressed records

Stream cost = (cardinality * index_selectivity) + index cost

Cardinality = nr_data_pages * ((page_size – offset) / (min_rec_size +

format_length_record * 0.5))

nr_data_pages is the number of data pages for the table.

format_length_record = Uncompressed size for the record.

offset = Header space used in page.

min_rec_size = Minimum size a record always will use.

Index cost = estimated number of index pages 1 + (selectivity * index

cardinality).

This is estimated, because it’s assumed that all data pages are filled for 100

percent and the records aren’t compressed.

30

Calculations outside optimizerCalculations outside optimizer

Index selectivityIndex selectivity

Index selectivity (value between 0 and 1) :

nodes = 0 :

selectivity = 0.0

nodes >= 1 :

selectivity = 1 / (nodes - duplicates)

How more duplicates how worse (higher value) the selectivity.

The index selectivity is calculated outside the optimizer and belongs to the index.

Selectivity is a value between 0 and 1.

If there are no nodes the selectivity is zero else the selectivity is calculated by:

Selectivity = 1 / (nodes – duplicates)

How higher the value is near to 1 the more duplicate nodes are in the index

(selectivity’s compared from indexes on same table). Note that the number of

nodes could be higher as the number of records in the table, because the index

can hold nodes which point to records which aren’t visible for the current

transaction. Need to be garbage collected for example.

In ODS 11 the selectivity is also calculated per segment which makes

calculations with compound indexes more accurate.

31

((Re)CalculateRe)Calculate index selectivityindex selectivity

Index selectivity is calculated when :

• creating a index (thus also restore)

• activate a index : ALTER INDEX name ACTIVE

• force recalculation : SET STATISTICS INDEX name

Keep your index selectivity information accurate

Periodically, recalculate index with SET STATISITICS command

Periodically, recalculate index with the SET STATISTICS command.

Also recalculate always all indexes that belong to a table, so that the selectivity’s

between the indexes are accurate when compared to each other.

32

Optimizer improvements FB 1.5Optimizer improvements FB 1.5

• Compound-index, choose the most correct index.

• Ignore indexes which are bad compared to already chosen indexes.

• OR operator doesn’t choose every index anymore.

• Sub-select in UPDATE statement couldn’t use index
Example:

UPDATE TableA SET FieldA =

(SELECT FieldB FROM TableB b WHERE b.ID = TableA.ID)

• A VIEW in a LEFT JOIN couldn’t use a index.

• Make more conjunctions based on already existing ones.

• Distribute more conjunctions to LEFT JOIN.

• “no current record for fetch operation” fixes.

33

Optimizer Improvements FB 2.0Optimizer Improvements FB 2.0

• Segment selectivity for compound index (ODS 11).

• Use Merge on “larger” expressions (A.F1 + A.F2 = B.F2 – B.F1).

• Distribute conjunctions in Union / Aggregate when possible.

• ORDER BY using index also with outer joins.

• Re-use conjunctions, so compound indexes benefit from it (ODS 11).

• Better support for IS NULL / STARTING WITH in compound

indexes and choosing join order (ODS 11).

• Matching both OR and AND nodes to indexes (ODS 11).

• Exclude the lower and/or higher index scans with > (greater than)

and/or < (less than) conjunctions.

34

IndexIndex

• Index root page

Every table has a index root page which hold all base index

information for that table. The selectivity, index-description is stored

together with the pagenumber from the first page of the index b-tree.

• Index b-tree

Nodes (index entries) are stored with prefix compression.

This meant a index page can only be walked forwards.

Note! A index contains also nodes from already deleted records,

because they still could be used by a other transaction. These are

removed by the garbage collector.

35

Content index page ODS 10Content index page ODS 10

Header
Examples: left and right sibling page

Nodes

UCHAR btn_prefix; // size of compressed prefix

UCHAR btn_length; // length of data in node

UCHAR btn_number[4]; // page or record number

UCHAR btn_data[x]; // key data

Maximum length 255 bytes

Example :

Ascending index with 2 nodes with Firebird and Fuel

0, 8, 1001, Firebird, 1, 3, 1002, uel

Maximum index size for Firebird 1.5 and lower is 255 bytes, but note that

collations can use 3 bytes for only 1 character and thus decreases the size to a

maximum of 84 characters. Beside that when a compound index is used also for

every 4 bytes an 1 byte “segment-marker” is added.

A nice key size calculator can be found on the site from Ivan Prenosil:

http://www.volny.cz/iprenosil/interbase/ip_ib_indexcalculator.htm

36

Content index page ODS 11Content index page ODS 11

Header
Examples: left and right sibling page

Jump information
Few nodes to jump immediately half the page

Nodes

Length, prefix and number are stored compressed

Maximum index key size ¼ of page size

Record numbers are stored in non-leaf pages

40-bits record number

The index nodes in ODS 11 are stored compressed and therefore more nodes fits

on 1 page, but a disadvantage was the decoding time for traversing all nodes on 1

page. To avoid this problem “jump information” has been added to the top of the

page. ”Jump information” contains a few nodes with offsets and point

somewhere in the page. When a node-lookup is done first is looked at the “jump

information” and then the search is started in the nodes.

37

Index lookup I Index lookup I (Ascending)(Ascending)

SELECT * FROM A_TABLE WHERE A_INDEXED_FIELD = 100

Index
Root
P30

L1
P52

L0
P50

L0
P51

L0
P53

L0
P..

With equal comparison
optimizer binds lower and
upper values for index
lookup.

Index evaluation starts with
lower bound value and scans
until it skips over the upper
bound value.

With an index lookup it will lookup the first b-tree page in the index root page.

Next it will lookup the first matching node in the b-tree page. If this is not the

leaf level page it will jump to the first next-level until the leaf page it found.

From there it will start scanning until it skips over the upper bound value.

38

Index lookup II Index lookup II (Ascending)(Ascending)

SELECT * FROM A_TABLE WHERE A_INDEXED_FIELD <= 150

Index
Root
P30

L1
P52

L0
P50

L0
P51

L0
P53

L0
P..

With lower or equal than
condition optimizer binds
upper value for index lookup.

Index evaluation starts at
first page and scans until it
skips over the upper bound
value.

desc

With lower or equal than the first leaf-level page has to be found and from there

it starts scanning until it skips over the upper bound value.

39

Index lookup III Index lookup III (Ascending)(Ascending)

SELECT * FROM A_TABLE WHERE A_INDEXED_FIELD < 150 ?

Index
Root
P30

L1
P52

L0
P50

L0
P51

L0
P53

L0
P..

With lower than condition
optimizer binds upper value
for index lookup.

Index evaluation starts at
first page and scans
until it skip over upper
bound.

Note ! Without equal sign
index will still be scanned the
same.

For Firebird 1.5 the bitmap returned for “lower or equal than” and “lower than”

(of course compared with the same expressions on the left and right side from the

operator) is exactly the same. Which resulted in unneeded record-fetches.

This problem is fixed in Firebird 2.0

40

Index lookup IV Index lookup IV (Ascending)(Ascending)

SELECT * FROM A_TABLE WHERE A_INDEXED_FIELD >= 150

Index
Root
P30

L1
P52

L0
P50

L0
P51

L0
P53

L0
P..

With higher than or equal
condition optimizer binds
lower value for index lookup.

Index evaluation starts at
lower value and scans
until the end of the whole
index.

41

Index lookup V Index lookup V (Ascending)(Ascending)

SELECT * FROM A_TABLE WHERE A_INDEXED_FIELD BETWEEN 150 and 200

Index
Root
P30

L1
P52

L0
P50

L0
P51

L0
P53

L0
P..

With the between condition
the optimizer binds lower
and upper value.

Index evaluation starts at
lower value and scans
until it skips over the upper
value.

42

Index lookup VI Index lookup VI (Descending)(Descending)

SELECT * FROM A_TABLE WHERE A_INDEXED_FIELD <= 150 ?

With lower and equal than
condition optimizer binds
lower value for index lookup
when index is descending.

Index evaluation starts at
lower bound value and scans
till the last page.

Index
Root

L1

L0

L0

L0

L0

asc

For ODS 10 NULLS are always stored at the end and this can cause unneeded

record fetches with an descending index.

In ODS 11 NULLS are stored at the front with an ascending index and at the end

by a descending index.

Prefer always an ascending index and create only a descending index when you

really need them for navigation (ORDER BY), but first think twice.

43

Compound Index ICompound Index I
CREATE ASC INDEX IDX_1 ON A_TABLE (FIELD1, FIELD2)

SELECT

*

FROM

A_TABLE

WHERE

FIELD1 = 1 and

FIELD2 = 50

Think carefully before you’re going to add indexes. Don’t add indexes for every

field/combination you can think of. That’s really a way to slow down your

inserts, updates and deletes.

Only add indexes at fields where you are going to filter often on. Note also, that

Firebird automatically creates indexes on primary and foreign keys.

In the above example the created index is very helpful, because both conditions

in the where clause can be used to lookup the index entry.

44

Compound Index ICompound Index III
CREATE ASC INDEX IDX_1 ON A_TABLE (FIELD1, FIELD2)

SELECT

*

FROM

A_TABLE

WHERE

FIELD1 <= 1 and

FIELD2 >= 50

For this where clause the compound index has only partial use, because it can

only scan to the ending value 1 (field1 <= 1). Only when the first segment from a

compound index can be matched with an equals condition the next segment will

be useful for index retrieval.

45

Compound Index ICompound Index IIIII
CREATE ASC INDEX IDX_1 ON A_TABLE (ID, SOMENAME)

SELECT

*

FROM

A_TABLE

WHERE

ID = 100 and

SOMENAME STARTING WITH ’E’

In Firebird 1.5 this compound index couldn’t be used with both conditions, but

Firebird 2.0 can also use STARTING WITH and IS NULL with compound

segments.

46

QuestionsQuestions??

47

Thank you for your attentionThank you for your attention

