
Software GmbH1

ABOUT ME

Lucas Franzen

– FRRED Software GmbH
o Logistics software for transport, export

Add-On for ERP-Systems (SAP, BAAN, Navision, ProAlpha, etc.)
o approx. 30 installations all over Germany
o all installations with Firebird
o average 5 users, average database size 100 MB
o Database with ~300 tables, ~300 stored procedures

– Working with InterBase since v4 (Delphi 1)

– Working with Firebird since the very beginning (Version 0.9)

– Member of the Firebird Foundation since the very beginning

STORED PROCEDURES
Session HOWTO-P207-R

Firebird Conference • Praha 2005 • Firebird Conference

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH2

WHAT IS THIS SESSION ABOUT?

This session is about STORED PROCEDURES.

• What are Stored Procedures, how and when to use them.

• What are the advantages of using them.

• How to write, maintain and optimize them.

• What are the pitfalls, what to obey in general?

For this purpose there are

• Code examples
• An example database

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH3

WHAT ARE STORED PROCEDURES?

In short

Stored Procedures are pre-compiled functions that are stored within the database and
executed at server side.

They do give a wide variety of possible enhancements and functionality and also
may help increasing the speed.

They can be used as well for doing multiple DML operations as they can be used as
virtual tables for building complex queries.

All DML statements can be used within Stored Procedures, plus the extensions that are
introduced by the Procedural SQL.

BUT neither dynamic SQL nor DDL can be used
(exceptions to this rule to follow).

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH4

WHAT ARE THEY GOOD FOR?

• The complete work is done at server-side
– increasing speed
– less network traffic

• Flexibility by "SQL extensions"
– Procedural Structured Query Language – PSQL

is enhancing SQL language.

• Execute multiple statements within a single call

• Use as a Black Box

• Extending privileges within the database

• Centralizing of Business Rules

• Posting of Events

• Stored Procedures are executable from TRIGGERS.

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH5

RESTRICTIONS

• Following Restrictions are given

– Parameters and Variables can't be Domains!
o Domains might include a Check-Constraints, so changing field types would imply to

re-compiled automatically all procedures.

– DDL Statements are invalid:
o CREATE / ALTER / DROP

– No Cursor declaration
o declare cursor
o Fetch

– No dynamical SQL-Statements
o Example: A tablename can't be replaced by the value of a variable
o Exception to this rule: EXECUTE STATEMENT

 (from Firebird 1.5 on)

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH6

INSIDE THE DATABASE

Stored Procedures are compiled and stored in the database in this compiled form.
Having a look at the System Tables:

the compiled source is stored as BLR (Binary Language Representation) in the field
RDB$PROCEDURE_BLR.
The source code itself has just informational character and can be hidden or replaced
by any dummy entry.

UPDATE RDB$PROCEDURES SET
 RDB$PROCEDURE_SRC = NULL
WHERE RDB$PROCEDURE_NAME = <PROCEDURE_NAME>

(AND RDB$SYSTEM_FLAG <> 1 AND RDB$SYSTEM_FLAG IS NOT NULL)

SYSTEM TABLE: RDB$PROCEDURES:

CREATE TABLE RDB$PROCEDURES (
 RDB$PROCEDURE_NAME CHAR (31),  Procedurename
 RDB$PROCEDURE_ID SMALLINT,  Unique ID
 RDB$PROCEDURE_INPUTS SMALLINT,  Count of Input-Parameters
 RDB$PROCEDURE_OUTPUTS SMALLINT,  Count of Output-Parameters
 RDB$DESCRIPTION BLOB,  Description (use as you like)
 RDB$PROCEDURE_SOURCE BLOB,  Source (just for the curious!)
 RDB$PROCEDURE_BLR BLOB,  compiled Code in BLR
 RDB$SECURITY_CLASS CHAR (31),
 RDB$OWNER_NAME CHAR (31),  Creator of this procedure
 RDB$RUNTIME BLOB,
 RDB$SYSTEM_FLAG SMALLINT  1 = SYSTEM GENERATED
);

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH7

STORED PROCEDURE LANGUAGE - PSQL

PSQL = Procedural Structured Query Language

PSQL is SQL + additional language elements, as

– declare variable
– if () then ... else ...
– While () do ...
– when ...
– for select

do begin
end

– suspend
– leave(*), break(**), exit

(*) available from FB 1.5 on, deprecates break
(**) available from FB 1.0 on

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH8

STORED PROCEDURE LANGUAGE – PSQL (continued)

• ROW_COUNT
– ROW_COUNT can be used to retrieve the count of affected rows of the last

DML-Statement.
Example:
UPDATE TABLE1 SET FIELD1 = 0 WHERE ID = :ID;
IF (ROW_COUNT = 0) THEN
 INSERT INTO TABLE1 (ID, FIELD1) VALUES (:ID, 0);

• LEAVE / BREAK
– Exit loops with LEAVE / BREAK (Leave deprecates break).

Execution of the code will be continued after the end that's encapsulating the
statement.

• GDSCODE / SQLCODE
– Can be used within WHEN statements.

o GDSCODE holds the ISC-Errorcode
o SQLCODE holds the error number

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH9

EXECUTE STATEMENT

Since FB1.5 there's the possibility to use dynamic statements and even DDL
from within procedures by EXECUTE STATEMENT

EXECUTE STATEMENT may execute any SQL operation that returns:

1. NOTHING
i.e. INSERT, UPDATE, DELETE, EXECUTE PROCEDURE or any other DDL
statement, except CREATE/DROP DATABASE.
Example: EXECUTE STATEMENT <string>;

2. A SINGLE RECORD
Only singleton SELECT operations may be executed this way.
Example: EXECUTE STATEMENT <string> INTO :var1, […, :varn] ;

4. ANY NUMBER OF RECORDS
Example: FOR EXECUTE STATEMENT <string>
 INTO :var1, …, :varn DO
 <compound-statement>;

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH10

DRAWBACKS AND RESTRICTIONS OF EXECUTE STATEMENT

– The "EXECUTE STATEMENT" DSQL-String can't hold parameters!
All Variables inside the static part have to be set before the execution.

– Embedded statements can't be checked syntactically.
– There's no check of the system tables if the involved objects are still part of the database!
– Operations are slow – the embedded statements have to be prepared before EACH

execution.
– Datatypes of return values are strictly checked, to circumvent unexpectable typecasting

errors.
Example: The string "1234" could be converted to the Integer 1234, "abc" however would
not and cause a typecast exception.

– If the stored procedure has special privileges on some objects, the dynamic statement will
NOT inherit these.
Privileges are restrict to the current user or role which is executing the procedure.

This feature was meant for careful use!
When using, take all factors into account.

PRINCIPLE
EXECUTE STATEMENT should only be used when

– there are no other means
– there are other means but they do perform much worse.

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH11

• CREATE PROCEDURE <NAME>
<List of Input-Params>
<List of Output-Params>
AS
 <declare variable <name> <datatype>;>
BEGIN
 <code>
END

• Altering / recompiling procedures
• ALTER PROCEDURE <NAME>
• RECREATE PROCEDURE <NAME>
• CREATE OR ALTER PROCEDURE <NAME>

• Dropping procedures
• DROP PROCEDURE <NAME>

Only the Owner of the procedure or
SYSDBA might drop a procedure!

HOW TO WRITE A STORED PROCEDURE

CREATE PROCEDURE

DROP PROCEDURE
! ERROR IF

DEPENDENCIES!
CREATE PROCEDURE

USING
RECREATE

CREATE PROCEDURE
PROCEDURE

DOES NOT EXIST

ALTER PROCEDURE
PROCEDURE
DOES EXIST

USING
CREATE OR ALTER

What happens
if...

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH12

WRITING A STORED PROCEDURE

Example:

SET TERM #;
CREATE PROCEDURE SP_SUM_TWO_INTS (
 VALUE_1 INTEGER,
 VALUE_2 INTEGER,
)
RETURNS (A_SUM INTEGER)
AS BEGIN
 A_SUM = VALUE_1 + VALUE_ 2;
END #
SET TERM ;#

Example:

SET TERM #;
CREATE PROCEDURE SP_GET_COUNTRY_DATA (COUNRY_ID INTEGER)
RETURNS (
 ISO_CODE CHAR(2),
 COUNTRY_NAME VARCHAR(40),
 COUNTRY_POPULATION INTEGER
)
AS BEGIN
 SELECT COUNTRY_ISO_CODE, COUNTRY_NAME, COUNTRY_POPULATION
 FROM COUNTRY
 WHERE COUNTRY_ID = :COUNTRY ID
 INTO :ISO_CODE, :COUNTRY_NAME, :COUNTRY_POPULATION
END #
SET TERM ;#

Working with variables

Working with table values

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH13

• In which cases the COLON has to precede the VARIABLE?
This one of the major misunderstandings.

• Generally:
The colon has to precede the variable when the variable will be
used within a SQL statement
(and otherwise would be misinterpreted as begin a part of the DML and not the
value it holds).

The COLON ":"

... WHERE FIELD1 = :VAR1

UPDATE ... SET
FIELD1 = :VAR1 ...

VAR1 = VAR2
(Assigning values in code that's not DML)

INSERT INTO ..
VALUES (:VAR1, :VAR2)

IF (VAR1 = AVALUE) THEN ...
(Comparing values)

SELECT .. FROM ..
INTO :VAR1, :VAR2

DON'T USE
- WHEN USED OUTSIDE DML

CASES TO USE IT
- WHEN POPULATING OR USING WITHIN DML

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH14

Compiling: The semicolon and SET TERM

(I) SQL statements (including DDL) do use the semicolon for termination (in fact this is rather a
 client app problem)

(II) Stored procedure need to use the semicolon to separate and terminate different (P)SQL
statements within the code

(III) Compiling procedures is an SQL statement so there's a problem arising from the
contradiction of (I) and (II)

By bracketing the procedure with a SET TERM this problem will be solved.

Example
SET TERM #;  the new termination symbol is # now
CREATE PROCEDURE ...
 CODE
END #  # = end of procedure
SET TERM ;#  the new termination symbol is ; again

Watch out!
Some database tools add this on their own!

ErrorMessage: (-104: Unexpected end of command) the termination is missing.

ErrorMessage (-104: Token unknown - line n, char 5. TERM) the termination was already
added by the tool.

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH15

EXECUTABLE or SELECTABLE?

• Stored Procedures can be invoked in two different ways.

1. EXECUTE <PROCEDURE_NAME> (<INPUT_PARAMS>)
An executable Procedure always returns one "set" of parameters.

2. SELECT <FIELDS>
FROM <PROCEDURE_NAME>
<WHERE>
<ORDER BY>
<GROUP BY>

A selectable procedure returns between 0 and <n> records. The return
parameters can be treated as fields
 a selectable procedure can be treated as a regular table.

The resultset can be further queried, for example by WHERE clauses.
This will slow down the query, but in some cases it might allow working with
very complex queries.

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH16

EXECUTABLE or SELECTABLE?

• Executable Procedure
SET TERM #;
CREATE PROCEDURE SP_SUM_UP (
 VALUE_1 INTEGER,
 VALUE_2 INTEGER,
)
RETURNS (A_SUM INTEGER)
AS BEGIN
 A_SUM = VALUE_1 + VALUE_2;
END #
SET TERM ;#

SET TERM #;
CREATE PROCEDURE SEL_CUSTOMER_NAMES (CITY VARCHAR(40))
RETURNS (
 CUSTOMER_NAME VARCHAR(40),
 CUSTOMER_NUMBER VARCHAR(40)
)
AS BEGIN
 FOR SELECT CUSTOMER_NAME, CUSTOMER_NUMBER
 FROM CUSTOMER
 WHERE CUSTOMER_CITY = :SITY
 INTO : CUSTOMER_NAME, :CUSTOMER_NUMBER
 DO BEGIN
 SUSPEND;
 END
END #
SET TERM ;#

• Selectable Procedure

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH17

SUSPEND

• When working with SELECTABLE procedures SUSPEND has to be used.

How SUSPEND does work:
– execution of the procedure is suspended until the row is fetched from the client
– After that code execution continues
– When there's no more data to be retrieved SQL code 100 (end of data) is sent

• Suspend might be used in executable procedures (EXIT) but it isn't
recommended!

• Do use SUSPEND in selectable procedures
• Don't use it in executable procedures

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH18

STORED PROCEDURES AT CLIENTSIDE

• When using stored procedures from a client application, the difference
between EXECUTABLE and SELECTABLE Procedures is important!

Which components to use?

Buffered- / Non-buffered-datasetsDSQL-components

Query / Cursor-ComponentsStored-Procedure-components

SELECTABLE PROCEDUREEXECUTABLE PROCEDURE

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH19

NAMING CONVENTIONS

There are no specials ones, but the ones that are given by Firebird

BUT:
Naming executable and selectable procedures differently, will make life
easier!

For example:
– SP_GET_CUSTOMER_ID

for EXECUTABLE Procedures

– SEL_CUSTOMER_DATA
for Selectable Procedures.

When working with a bunch of stored procedure and using them internally it's a
big advantage being able to judge from the name what and how it might do ...

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH20

SQL WITHIN STORED PROCEDURES

The complete SQL can be used in Stored Procedures!

• Not just
– SELECT
– UPDATE
– DELETE, ... !

• also
– LIKE,
– CONTAINING,
– STARTING WITH
– CASE
– etc.

can be used and not just within querying the data,
also comparing values is possible.

Examples 

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH21

EXAMPLE: STRING LENGTH

SET TERM #;
CREATE PROCEDURE SP_GET_STRINGLEN (A_STRING VARCHAR(1024))
RETURNS (A_LENGTH INTEGER)
AS
 DECLARE VARIABLE CV VARCHAR (1024); /* Compare value */
 DECLARE VARIABLE II INTEGER; /* Iteration */
BEGIN
 CV = ''; /* COMPARE STARTS WITH AN EMPTY STRING */
 II = 0;
 A_LENGTH = -1;
 WHILE (II <= 1024) DO
 BEGIN
 IF (A_STRING LIKE CV) THEN /* does the compare value equal the given string? */
 BEGIN
 A_LENGTH = II;
 II = 1024;
 END
 II = II + 1;
 CV = CV || '_'; /* extend the Compare Value by any character, in SQL this is '_'*/
 END
END #
SET TERM ;#

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH22

EXAMPLE: SUBSTRING

CREATE PROCEDURE SP_GET_SUBSTRING (
 SRC VARCHAR (255), START_AT INTEGER, NLEN INTEGER)
RETURNS (RESULT VARCHAR(255))
AS
 DECLARE VARIABLE II INTEGER;
 DECLARE VARIABLE CV VARCHAR(255);
 DECLARE VARIABLE PFX VARCHAR(255);
 DECLARE VARIABLE C CHAR(1);
BEGIN
 CV = ''; RESULT = ''; PFX = '';
 IF (START_AT > 1) THEN /* FILL FIRST <START_AT> CHARACTERS WITH '_' */
 BEGIN
 II = 1;
 WHILE (II < START_AT) DO
 BEGIN
 PFX = PFX || '_';
 II = II + 1;
 END
 END
 II = START_AT;
 WHILE (II < NLEN + START_AT) DO
 BEGIN
 C = ' ';
 /* CHECK THE NEXT CHARACTER */
 IF (SRC LIKE PFX || 'A%') THEN C = 'A';
 ELSE IF (SRC LIKE PFX || 'B%') THEN C = 'B';
 ELSE IF (SRC LIKE PFX || 'C%') THEN C = 'C';
 ELSE IF (SRC LIKE PFX || 'D%') THEN C = 'D';
 ... etc ..
 RESULT = RESULT || :C;
 PFX = PFX || '_';
 END

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH23

EXAMPLE: SQR (Square Root)

CREATE PROCEDURE SQR (NUMBER DOUBLE PRECISION)
RETURNS (SQUARE_ROOT DOUBLE PRECISION)
AS
 DECLARE VARIABLE AVALUE DOUBLE PRECISION;
 DECLARE VARIABLE DIFF DOUBLE PRECISION;
 DECLARE VARIABLE OK INTEGER;
 DECLARE VARIABLE II INTEGER;
 DECLARE VARIABLE DIFF_OK DOUBLE PRECISION;
BEGIN
 /* Newton Iteration Method */
 AVALUE = 1;
 II = 0; OK = 0; DIFF_OK = 0.00001;
 IF (NUMBER < 0) SQUARE_ROOT = -1; /* SQUARE_ROOT of negative numbers ... */
 ELSE BEGIN
 WHILE (OK = 0) DO
 BEGIN
 AVALUE = (AVALUE + (NUMBER / AVALUE)) / 2.00000;
 II = II + 1;
 DIFF = (NUMBER - (AVALUE * AVALUE));
 IF (DIFF < 0.000000) THEN DIFF = DIFF * -1.000000; /* ABS */
 IF (DIFF <= DIFF_OK) THEN
 BEGIN
 SQUARE_ROOT = AVALUE; /* RESULT is in range that was declared valid */
 OK = 1;
 END
 ELSE IF (I > 100) THEN
 BEGIN
 OK = 1; /* if not ended after 100 trials, end now – or write another code */
 SQUARE_ROOT = -2;
 END
 END
 END
 SUSPEND;
END

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH24

• Always initialize variables (mainly within loops)!

Remark:
Since FB1.5 variables can be initialized within the declaration

DECLARE VARIABLE ABC VARCHAR(3) = 'ABC';

When overloading variables within LOOPS (FOR SELECT ... DO , WHILE (...) DO ...)

always initialize variables within the loop!

If a select will not return any row the result
won't be NULL –it's nothing - which won't
change the value of the variable.

PITFALLS - Not initializing variables

 EXAMPLE
BEGIN
 WHILE (II < 100) DO
 BEGIN
 CUSTOMER = 'NOT ASSIGNED'; /* INITIALIZATION */
 SELECT CUSTOMER_NAME FROM CUSTOMERS
 WHERE CUST_ID = :II
 INTO :CUSTOMER;
 SUSPEND;
 II = II + 1;
 END

DATA CUST_ID CUSTOMER_NAME
1 ARTHUR DENT
2 JOHN DOE
4 MARVIN

RESULT

MARVINMARVIN4
JOHN DOENOT ASSIGNED3

JOHN DOEJOHN DOE2
ARTHUR DENTARTHUR DENT1

WITHOUT
INITIALIZATION

WITH
INITIALIZATION

VAL
II

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH25

PITFALLS - WRONG VARIABLE DECLARATION

• Error: Arithmetic exception string truncation or overflow

this will work as long as no value of TABLE_SELECT_FIELD1 will hold more than 30 characters.

 a VARCHAR(40) field should be filled with max. 40 characters!!! 

EXAMPLE:

CREATE TABLE TABLE_SELECT (
 TABLE_SELECT_ID INTEGER NOT NULL,
 TABLE_SELECT_FIELD1 VARCHAR(40),  Field being declared as VARCHAR(40)
 TABLE_SELECT_FIELD2 VARCHAR(40),
 CONSTRAINT PK_TABLE_SELECT PRIMARY KEY (TABLE_SELECT_ID)
);

CREATE PROCEDURE SEL_TABLE_SELECT
RETURNS (FIELD_1 VARCHAR(30))  Returnfield being declared as VARCHAR(30)!
AS BEGIN
 FOR SELECT TABLE_SELECT_FIELD1
 FROM TABLE_SELECT
 INTO :FIELD_1
 DO BEGIN
 SUSPEND;
 END
END #
SET TERM ;#

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH26

WHAT SHOULD BE OBEYED

• Thoroughly checking and testing of stored procedures does help.

A stored procedure should always be tested under real-time conditions in
advance.

• Most common errors in stored procedures are:
– Arithmetic exception string truncation or overflow

General error, the cause is not easy to find.

But the most common cause can be easily excluded by
filling the fields / variables to their maximum size
( see previous page)

– Multiple rows in singleton select
If a SELECT FROM .. INTO statement will return more than one record 
working on unique data only.
(!NULL within an unique index is allowed!).

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH27

WHAT STORED PROCEDURES ARE PERFECT FOR

Stored procedures are perfect for situations like

• Creating own functions without using UDFs

• having multiple statements
– multiple insert / updates on different tables within one transaction context and

one piece of code

• Statements beyond Standard-SQL
– Queries that can't be expressed in Standard-SQL
– Complex data retrieval for reports

• Complex calculations

• Extending privileges

• Black Boxes

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH28

EXTENDING PRIVILEGES

Stored procedures can be
used for extending
privileges...

EXAMPLE:

CREATE TABLE TABLE_SELECT (
 TABLE_SELECT_ID INTEGER NOT NULL,
 TABLE_SELECT_FIELD1 VARCHAR(40),
 TABLE_SELECT_FIELD2 VARCHAR(40),
 CONSTRAINT PK_TABLE_SELECT PRIMARY KEY (TABLE_SELECT_ID)
);

USER_A has NO Access on this table!
SET TERM #;
CREATE PROCEDURE SEL_TABLE_SELECT
RETURNS (FIELD_1 VARCHAR(40))
AS BEGIN
 FOR SELECT TABLE_SELECT_FIELD1
 FROM TABLE_SELECT
 INTO :FIELD_1
 DO BEGIN
 SUSPEND;
 END
END #
SET TERM ;#
GRANT EXECUTE ON PROCEDURE SEL_TABLE_SELECT TO USER_A;
USER_A HAS the right to execute the procedure!

GRANT SELECT ON TABLE_SELECT TO PROCEDURE SEL_TABEL_SELECT;
The procedure itself has the right to do a SELECT on the
table  USER_A has via the procedure Access to the table
(but only on the fields the procedure accesses).

 ALLOWING RESTRICTED TABLE ACCESS 

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH29

EXECUTING PROCEDURES FROM WITHIN PROCEDURES

• Stored procedures might execute / select from other stored procedures.
– The difference between EXECUTABLE and SELECTABLE procedures is

important!
o Executable Procedure

EXECUTE PROCEDURE <PROC_NAME>
RETURNING VALUES
:VAR1, :VAR2, ..., :VARn

o Selectable Procedure
[FOR] SELECT <FIELD_LIST>
FROM <PROC_NAME>
INTO <VARIABLE_LIST>

– An important difference:
Executable procedures have to (if at least one return parameter will be used)
define a variable for each return parameter!

Selectable procedures do have to supply a return parameter (field) just for the
fields they do select!

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH30

RECURSIVE PROCEDURES

• Recursion is possible, since stored procedures can use other stored
procedures, including themselves. (Recursion depth is approx. 1.000)

• Recursive procedures are perfect for reading tree structures.

EXAMPLE: MANAGING PRIVILEGES
/* Table for usergroup privileges */
CREATE TABLE PRIVILEGE_POOL (
 PRIVILEGE_NAME T_STRING70,
 PRIVILEGE_PARENT T_STRING70,
 CONSTRAINT PK_PRIVILEGE_POOL PRIMARY KEY (PRIVILEGE_NAME)
);

/* Table for privilege assignments for each Usergroup */
CREATE TABLE GROUP_PRIVILEGES (
 GP_ID T_PRIMARYKEY NOT NULL,
 GROUP_ID T_FOREIGNKEY,
 PRIVILEGE T_STRING70,
 GP_GIVEN T_BOOL_NO,
 GP_LEVEL T_INTEGER,
 CONSTRAINT PK_GRUPPENRECHTE PRIMARY KEY (GR_ID)
);

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH31

RECURSIVE PROCEDURES – A PRIVILEGE TREE

EXAMPLE:

CREATE PROCEDURE SEL_GROUP_PRIVS (
 START_PRIVILEGE VARCHAR (70),
 STARTLEVEL INTEGER,
 GROUP_ID INTEGER
)
RETURNS (
 PRIVILEGE_NAME VARCHAR (70),
 PRIVILEGE_PARENT VARCHAR (70),
 A_LEVEL INTEGER,
 GIVEN CHAR (1),
 GP_ID INTEGER
)
AS BEGIN
 /* read the first level, as given in the input param */
 FOR SELECT P.PRIVILEGE_NAME, P.PRIVILEGE _PARENT, G.GP_ID, G.GP_GIVEN
 FROM PRIVILEGE_POOL P
 LEFT JOIN GROUP_PRIVILEGES G ON P.PRIVILEGE_NAME = G.PRIVILEGE
 WHERE P.PRIVILEGE_PARENT = :START_ PRIVILEGE AND
 G.GRP_ID = :GROUP_ID
 INTO :PRIVILEGE_NAME, :PRIVILEGE_PARENT, :GP_ID, :GIVEN
 DO BEGIN
 A_LEVEL = START_LEVEL + 1;
 SUSPEND;
 /* procedure calls itself, retrieving the next level (which will retrieve the next level...) */
 FOR SELECT * FROM SEL_GROUP_PRIVS (:PRIVILEGE_NAME, :A_LEVEL, :GROUP_ID)
 INTO : PRIVILEGE_NAME, :PRIVILEGE_PARENT, :A_LEVEL, :GIVEN, :GP_ID
 DO BEGIN
 SUSPEND;
 END
 END
END

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH32

STORED PROCEDURES AS BLACK BOX

• SPs might work as black boxes.

– As an interface between different databases

– Between different "parts" of the database which separate teams working on

• Real life example:
– ERP and our packing system; both running with Firebird

ERP SYSTEM

 Generate order 

print invoice 

update stock ...

PACKING SYSTEM

 ask for orders

 send order details to robot
 packing
 freight calculation
 etc..

 Write packing / cost informations

 ...

 select fromTAB1

 insert intoTAB2

insert into 

 select from 

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH33

TRANSACTIONS

• Stored Procedures are ALWAYS within the transaction context of the
executing component!

• Stored Procedures can't hold neither COMMIT nor ROLLBACK within their
source.

What happens in case of an error?

• WITHOUT EXCEPTION HANDLING
Any changes will be lost

• WITH EXCEPTION HANDLING
All changes might be committed or rollbacked

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH34

EXCEPTION HANDLING

• Using WHEN allows to catch and handle Exceptions.

• A WHEN-clause has ALWAYS to be located at the end of the code.

• WHEN ANY does catch ALL exceptions

• WHEN <ERRORNO> just catches the exception with the matching errorcode

• The internal values of GDSCODE and SQLCODE can be used with WHEN.

Remark:
<WHEN GDSCODE> does work with the identifiers, not the errornumbers.

Download the list of Identifiers:
http://www.ibobjects.com/docs/fb_1_5_errorcodes.zip

http://www.ibobjects.com/docs/fb_1_5_errorcodes.zip

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH35

EXAMPLE: EXCEPTION HANDLING

Example:

CREATE TABLE TABLE_SELECT (
 TABLE_SELECT_ID INTEGER NOT NULL,
 TABLE_SELECT_FIELD1 VARCHAR(40),
 CONSTRAINT PK_TABLE_SELECT PRIMARY KEY (TABLE_SELECT_ID));
CREATE EXCEPTION E_UNKNOWN 'UNKNOWN ERROR';
CREATE EXCEPTION E_EXISTS 'VALUE DOES ALREADY EXIST';
CREATE EXCEPTION E_MISMATCH 'PARAMETER MISMATCH';

CREATE PROCEDURE SP_INSERT_TABLE_SELECT (
 NEW_ID INTEGER,
 VALUE_1 VARCHAR(60))
RETURNS (ERRORCODE INTEGER)
AS BEGIN
 ERRORCODE = 0;
 INSERT INTO TABLE_SELECT (
 TABLE_SELECT_ID, TABLE_SELECT_FIELD1)
 VALUES (:NEW_ID, :VALUE_1);

 WHEN SQLCODE –803 DO /* attempt to store dupl. value */
 BEGIN
 EXCEPTION E_EXISTS;
 END
 WHEN ANY DO /* any other error */
 BEGIN
 EXCEPTION E_UNKNOWN;
 END
END

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH36

DEBUGGING

• Tools including a debugger
– Database Workbench
– IB Expert
– ...
– But keep in mind:

Tools do just emulate the
procedure, most of the times
they do help,
sometimes they do fail!

• Use the database itself for
locating the problem
– Catch the exception

by WHEN ANY
– Use a return-variable

for locating the problem
– once located: get details by

inserting information into a logtable

Example:

SET TERM #;
CREATE PROCEDURE SEL_PROCEDURE
RETURNS (
 FIELD_1 VARCHAR(40),
 ...
 ERROR_AT
)
AS BEGIN
 ERROR_AT = 0;
 .. CODE FOR STEP 1 ...
 ERROR_AT = 1;
 ... CODE ...
 ERROR_AT = 2;
 ... CODE FOR STEP 2 ...
 /* end */
 WHEN ANY DO
 BEGIN
 SUSPEND;
 END
END #
SET TERM ;#

ANY exception will jump to the WHEN ANY block:
 locate the problem, investigate it, remove it.

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH37

HELP! ALTERING PROCEDURES THAT DO HAVE DEPENDENCIES

• ATTENTION when altering procedures that are used by other
procedures or triggers!

ALWAYS obey these rules:
– When altering the Inputparams:

Either DROP or ALTER any procedure that is using it.

– When altering the Returnparams:
again DROP or ALTER any procedure that is using it AND

o the procedure is invoked as an executable procedure and
the return params are defined by RETURNING_VALUES

o the procedure is invoked as an selectable procedure and
SELECT * FROM ... INTO... is used.

• This way the database can't come into a state where metadata might
become inconsistent.

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH38

HELP! STORED PROCEDURE WON'T RECOMPILE

• In case a stored procedure can't be altered or dropped,
a gfix or backup and restore won't help (or work)
nor firebird.support will be of any quick help:

– Delete the procedure-source from the database!

UPDATE RDB$PROCEDURES SET
 RDB$PROCEDURE_BLR = NULL
WHERE RDB$PROCEDURE_NAME = <PROCEDURE_NAME>

SYSTEM TABLE: RDB$PROCEDURES:

CREATE TABLE RDB$PROCEDURES (
 RDB$PROCEDURE_NAME CHAR (31),  Procedurename
 RDB$PROCEDURE_ID SMALLINT,  Unique ID
 RDB$PROCEDURE_INPUTS SMALLINT,  Count of Input-Parameters
 RDB$PROCEDURE_OUTPUTS SMALLINT,  Count of Output-Parameters
 RDB$DESCRIPTION BLOB,  Description (use as you like)
 RDB$PROCEDURE_SOURCE BLOB,  Source (just for the curious!)
 RDB$PROCEDURE_BLR BLOB,  compiled Code in BLR
 RDB$SECURITY_CLASS CHAR (31),
 RDB$OWNER_NAME CHAR (31),  Creator of this procedure
 RDB$RUNTIME BLOB,
 RDB$SYSTEM_FLAG SMALLINT  1 = SYSTEM GENERATED
);

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH39

Using STORED PROCEDURES will help by
– increasing speed
– Solving complex tasks by easy means
– introducing / maintaining / extending the Business Logic.

• Usually the (database-) Server is the better place for operations to be
done in a classic C/S-environment:
Deploying a job to the server will also decrease network traffic.

• Extending the possibilities of standard SQL.

ALMOST THE END

DON'T BE AFRAID OF – YOU'LL LOVE THEM!DON'T BE AFRAID OF – YOU'LL LOVE THEM!

Firebird-Conference • Praha / Prague / Prag • November 13-15, 2005 •
Session HOWTO-P207-R • STORED PROCEDURES • Lucas Franzen Software GmbH40

FINALLY

ANY MORE QUESTIONS ???

... and later on ...

Contact:

Lucas Franzen
c/o Frred Software GmbH
Wilhelmstr. 24a
D-79098 Freiburg
Germany

Tel.: +0049 (0)761 / 76 777 95

Email lucas.franzen@frred.de
Internet www.frred.de

and don't forget to JOIN!

mailto:lucas.franzen@frred.de
http://www.frred.de/
http://www.frred.de/

