:* ird ConfTference 2005
- JayBird: JCA/JDBC driver

Roman Rokytskyy
Firebird Foundation

e JayBird: advanced

® Transactions

m Services API

m Character sets

m XA Transactions

m Performance tracking

Wﬁ JayBird history and architecture

e History
m Started by David Jencks in 2001

= 1.0 Release on 29™ April, 2003

= 1.5 Release on 29" August 2004
m 2.0 Release on 12" November 2005

® Architecture I ﬁ i
m GDS abstraction layer
= JCA layer I I
= JDBC layer

® Pure Java GDS implementation

® Pooling framework

® Management framework Pure Java JNI-based
® Compliance GDS GDS

® JNI-based GDS implementation
= JDK 1.3.x, 1.4.x, 1.5.x

= JDBC 3.0, JCA 1.0, JTA1.0.1

Management
framework

Connections

e Driver manager B QI
Class.forName ("org.firebirdsqgl.jdbc.FBDriver") ;
- RegiSter driver Connection connection = DriverManager.getConnection (
+ org.firebirdsql.jdbc.FBDriver ::jdbc:firebirdsql:localhost/3050:c:/database/example.fdb
m JDBC URL "SYSDBA", "masterkey");
¢ jdbCZﬁFGbideQk jdbc: firebirdsgl: [wire:]localhost/3050:c:/database/example.fdb

L 4

jdbc:firebirdsql:wire:
jdbc:firebirdsql:local:

*

+ jdbc:firebirdsql:embedded: JDBC subprotocol, RDBMS specific part, identifies the
identifies driver to us database to which driver must connect,
in our case that is <host>/<port>:<path
JDBC protocol Driver type to database>
' t 3 .sql.*;
e Data Source s Je e

import org.firebirdsqgl.pool.*;
u JNDI-baSGd Scheme FBWrappingDataSource ds = new FBWrappingDataSource() ;
ds.setType ("PURE JAVA") ;

® |nstantiate in application
. ds.setDatabase ("localhost/3050:c:/database/example.fdb")
m ConnectionPoolDataSource .

ds.setUserName ("SYSDBA") ;
m XADataSource ds.setPassword ("masterkey") ;

Connection connection = ds.getConnection();

Connection properties

® main ® Driver-specific
m database m useStreamBlobs
= type + Default — “false”

= encoding and charSet = useStandardUdf

+ Default — “false”

m roleName .

m socketBufferSize
" userName + Default — OS internal
= password » defaultlsolation

e additional + Default — READ COMMITTED
, = tpbMapping
|
sqlDialect + READ COMMITTED
+ Default -3 - isc_tpb_read_committed,
m buffersNumber isc_tpb_rec_version,
isc_tpb_write, isc_tpb_wait
® nonStandardProperty . REPEATABLE;E_AD — PP
- isc_tpb_concurrency,
isc_tpb_write, isc_tpb_wait
+ SERIALIZABLE
- isc_tpb_consistency,
isc_tpb_write, isc_tpb_wait

Statements

Statement stmt =

® java.sqI_Statement connection.createStatement () ;
try |
: . ResultSet rs = stmt.executeQuery (
= execute(String):boolean "SELECT firstName, lastName " +
m executeQuery(String):ResultSet " FROM users" +
i . " WHERE userId = 50");
m executeUpdate(String):int rs.next () ;
. String firstName = rs.getString(l);
¢ Java.sql.PreparedStatement String lastName = rs.getString(2);
} finally {
m setXXX(...) stmt.close () ;
}
m execute(), executeQuery() and
executeUpdate()

e java.sql.CallableStatement

u setXXX() procedure call ::= {[?=] call <params>}
_ params ::= <param> [, <param> ...]
= registerOutParameter(...) . -------------------------------:-————————
CallableStatement stmt =
u execute() connection.prepareCall (

"{call factorial(?,?)}");
) getXXX() stmt.setInt(1l, 2);

stmt.registerOutParameter (2, Types.INTEGER);
stmt.execute() ;
int result = stmt.getInt(2);

Statements on GDS level

sm Statecharts/

® Firebird API calls
m GDS.createlscStmtHandle

= GDS.iscDsqIXXX Allocated

e Statement handle life-cycle -
m Allocate prepare fetch
® Prepare eote Open
m Describe
= Execute | gse oldse

execute

" FetCh Closed
® Structures
cd statement)
m XSQLDA structure XSQLVAR

m XSQLVAR structure sqltype: int

XSQLDA

+ version: int
+ sqld: int
+ sqln: int

+ 4+ 4+ + + + + + o+

sqlscale: int
sqlsubtype: int
sqllen: int
sqldata: byte]]
sglname: String
relname: String
aliasname: String
ownname: String

Statements in auto-commit mode

Statement stmt =

e Auto-commit mode connection.createStatement () ;
try {

] i i ResultSet rs = stmt.executeQuery (
Commit trgnsactlon when the "SELECT firstName, lastName " +
statement is completed " FROM users");

while (rs.next ()) {

¢ LIfe'CyCIe in auto-commit mode String firstName = rs.getString(l);

String lastName = rs.getString(2);

® Insert, Update, Delete or DDL }

statement is completed as soon // we commit here
} finally {

as it finished executing stmt.close () ;
= Select statement is completed as updatesStmt.close();
soon as its result set is closed |
m Callable statement is completed updateStmt.close () ;
as soon as all associated result } }
sets are closed } finally {
. stmt.close () ;
ResultSet is closed, when updateStmt.close () ;

All of the rows have been fetched

The Statement is re-executed

Another Statement is executed
on the same connection

Statement Extensions

® FirebirdStatement ® FirebirdPreparedStatement
m getCurrentResultSet():ResultSet m getExecutionPlan():String
= hasOpenResultSet():boolean m getStatementType():int
m getinsertedRowsCount():int = TYPE_SELECT
m getUpdatedRowsCount():int m TYPE SELECT FOR UPDATE
m getDeletedRowsCount():int = TYPE UPDATE
= TYPE_INSERT
m getLastExecutionPlan():String » TYPE DELETE
= TYPE _DDL

» TYPE_EXEC_PROCEDURE
= TYPE_COMMIT

= TYPE_ROLLBACK

» TYPE_START TRANS

» TYPE_SET _GENERATOR

Statement Extensions (2)

® FirebirdCallableStatement

m setSelectableProcedure(boolean)

procedure call ::= {[?=] call <params>}
params ::= <param> [, <param> ...]

import java.sqgl.*;
import org.firebirdsgl.jdbc.*;

CallableStatement stmt = connection.prepareCall (
"{call factorial(?, 2, 2)1");

FirebirdCallableStatement fbStmt =
(FirebirdCallableStatement) stmt;

fbStmt.setSelectableProcedure (true) ;

stmt.setInt (1, 5);
stmt.registerOutParameter (2, Types.INTEGER); // first OUT
stmt.registerOutParameter (3, Types.INTEGER); // second OUT

ResultSet rs = stmt.executeQuery();

while(rs.next ()) {
int firstCol = rs.getInt(l); // first OUT
int secondCol = rs.getInt(2); // second OUT

int anotherSecondCol = stmt.getInt (3); // second OUT

Result sets

e Scrollable result sets e Updatable result sets
= TYPE_FORWARD_ONLY ® Subset of single table
*+ Only ResultSet.next() ® All columns from PK or
m TYPE _SCROLL _INSENSITIVE RDB$DB KEY
* Fully cached in memory = Not included columns allow NULL
+ Absolute and relative positioning value
+ Row count
= TYPE_SCROLL SENSITIVE " Not allowed
+ Not supported, downgraded to * subqueries _
TYPE_SCROLL_INSENSITIVE * DISTINCT predicate
e Holdable result sets * HAVING clause
+ aggregate functions
= HOLD CURSORS_OVER_COMMIT * oined tables
+ user defined functions

+ Only for scrollable result sets
= CLOSE_CURSORS AT _COMMIT

+ Default, all result sets

L 4

stored procedures

® FirebirdResultSet extension

m getExecutionPlan():String

Pooling

® Connection pooling

Maintains pool of open connections

Supports connection “pinging” to
detect broken connections and
reconnect to the Firebird server
behind the scenes

Closes idle connections after the
specified timeout

Blocks for the specified time when no
free connection can be found, clients
are served on “first-in, first-out” basis

Provides runtime statistics about
connection numbers

Remembers the place where
Connection.close() was called and
prints the stack trace if a “closed”
connection is used

e Statement pooling

m Saves time needed to prepare the

statement
+ on AS3AP gives approx. 2x times boost
Maintains statement pool, however if

application asks for more statements,
request will always be satisfied

Remembers the place where
PreparedStatement.close() was called
and prints the stack trace if “closed”
statement is used

Warning: Firebird supports approx.
20,000 open statements, keep the
statement pool size low

JNI driver types

e | OCAL

m Connects to Firebird server running
on the localhost via IPC

® On AS3AP tests gives approx. 30-
40% performance boost

® Requires synchronization on non-
Windows platforms

= JDBC URL

+ jdbc:firebirdsql:local:<path to database>

e NATIVE

m Connects to Firebird over TCP/IP
sockets

m |s approx. 10% slower compared to
pure Java mode

= JDBC URL
+ jdbc:firebirdsql:native:<host>:<path to db>

e EMBEDDED

m Accesses database file directly, no
server required

m Approx. 2x times faster than using
server on the same host with pure
Java connections

m Exclusively locks database file on
Windows

®m On Linux exclusive file lock does not
exist, when multiple JVMs access
same database, it will be corrupted

® Requires synchronization on non-
Windows platforms

e ORACLE

m Same as NATIVE, but uses fyracle.dll
to access Oracle-mode Firebird

= Will be extracted from the main
package into separate plugin

Logging

® How to switch it on ® | og levels
® | og4J must be in CLASSPATH s DEBUG
» -DFBLog4j=true + Full wire protocol dump — file log grows very
fast!
m |og4j.properties correctly configured . JaCSA orocessing
= INFO

+ loading JNI libraries

+ when no connection cannot be obtained

log4j.appender.stdout=\ from the pool

org.apache.log4j.ConsoleAppender

|
log4j.appender.stdout.layout=\ WARN
org.apache.log4j.PatternLayout + serious issues happening in wire protocol
log4j.appender.stdout.layout.ConversionPattern=\ handler,
[$c{l},%p] %m%n + unknown transactions on JCA level
log4j.rootCategory=DEBUG, stdout * pool experiences errors, etc.
log4j.category.org.firebirdsgl=DEBUG, stdout " ERROR

+ the specified host cannot be resolved when
attaching to the database

+ driver cannot be registered

+ pooled statement is returned to pool, but the
corresponding pool was not found

Wﬁ Error handling

® Error codes e Typical usage

