
1

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Firebird Conference 2005
Speaker: Jeanot Bijpost / Mattic Software

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Duration of the original presentation: 50 minutes.

The slides on the upper side of the pages were used during the presentation.

The slides on the lower side contain additional comment.



2

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Schedule

Model Driven Development (MDD)
Definition
Principles
Demonstration

Model Driven Architectures (MDA)
Definition
Principles

Pro s and Con s of MDD and MDA

Checklist

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost



3

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Application/Code Generators
Domain specific languages

History of programming languages

1st Generation

2nd Generation

3rd Generation

4th Generation

Machine Language

Assembly Language

Procedural languages
Object oriented languages

Application Frameworks
Database Access Frameworks

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

MDD tools are often seen as the 4th generation of programming languages.
The definition of the 1st, 2nd and 3rd generation are quite clear.

The 4th generation is however less clear.
If we have a 3rd generation language including sophisticated frameworks to create interfaces and 
access databases and this environment offers us code generators and visual designers is it still 
just a 3rd generation language or is it a 4th?
What is the difference between such an environment and a MDD enviroment?



4

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

ID
Name

Customer

Model ?

Some graphical diagram ?

Model ?

Incomplete representation
of reality

Sketch

Complete representation
of reality

Exact model

ID
Gender
First name
Last name

Customer

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Let s start with the word Model .

Most people associate a model with a diagram, a graphical notation.

Models can be used in different ways:

As a sketch
Used by programmers to communicate about programs.
Such a sketch is often incomplete. When we draw a UML class on a whiteboard we will only draw 
what is relevant for the discussion at hand.

As an exact model
Used by MDD generators to generate a database or application (or code to create one).
Like a program an exact model should be complete. It should contain every relevant aspect.



5

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Model v.s. Program

Abstraction of reality

Model

Abstraction of reality

Program

Using a graphical notation

ID
Gender
First name
Last name

Customer
<CLASS Name= Customer >

<ATTRIBUTE Name= ID Type= Integer />
<ATTRIBUTE Name= Gender Type= String
Length= 1 />

...
</CLASS>

<CLASS Name= Customer >
<ATTRIBUTE Name= ID Type= Integer />
<ATTRIBUTE Name= Gender Type= String
Length= 1 />

...
</CLASS>

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Abstract v.s. complete
When we study the movement of the planets using a model, this model should be 
complete regarding to information such as mass and velocity. However we do not need to 
know the temperature of the planets, we abstract from this kind of information.

A model is always an abstraction of the reality.

So how does this compare to a program? There is no difference! Both a model and a 
program are abstractions of reality.

So what is the difference? The graphical notation?
Consider the UML class on the left and the XML code on the right. 

Both describe the same information.

So is a graphical notation required to describe a class?
No! It is merely the syntax (notation). It is not a fundamental difference.



6

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Non-graphical languages

Model Driven Programming (MDD) v.s. Normal Programming

Model Driven DevelopmentNormal Programming

Graphical and non-graphical languages

Compiler / Virtual machine Code Generator / Compiler
Model Compiler
Interpreter / Virtual Machine

Higher level of abstraction

Graphical and non-graphical languages

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Again: what is the difference between MDD and normal programming?

One could say normal programming languages do not use diagrams and MDD tools mix 
both diagrams and textual notations. Is this true?

This might be true for older languages. Modern IDE s use visual UI designers and some 
environments even integrate UML diagrams.

Normal programming languages use a compiler. This compiler delivers either executable 
code or code for a virtual machine. How is this done in MDD?

Different MDD tools use different techniques. Code generation and compilation, direct compilation 
of a model, interpretation, it is all there.
So we finally found thé difference!? Not very convincing is it

Apart from differences in IDE s and notations the only fundamental difference seems the 
level of abstraction. MDD simply uses a higher level of abstraction to define a program.

(Just like Java uses a higher level of abstraction compared to assembler).



7

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Model Driven Development Object Oriented

Information
Database

Presentation
Interface

Logic
Code

Code Generation

Classes

Getters/Setters

Empty methods

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

For years and years MDD was closely related to database development. In the past few 
years MDD can also be found in object oriented environments. Although this presentation 
focuses on databases a discussion about MDD would be incomplete without taking a peek 
at object orientation.

In OO a (UML) class model can be used to generate a skeleton for your code. This 
skeleton consists of class declarations with:

Generated getters and setters to access the attributes.
Empty method declarations (ready to be completed with non-generated code).

More and more languages offer support for this kind of generation. In some environments 
your code can be reverse engineered into a class diagram.

Some environments are capable of generating more, such as:
The SQL-DDL code to create a database to implement the required persistency.
A complete layer with classes to access this database.
A complete layer with base classes to implement your logic.

Although there are a lot of questions regarding to topics such as transactions and locking 
in these environments, they are getting closer and closer to the functionality offered by the 
traditional MDD tools.
In the end the main difference might be the starting point. Traditional MDD uses the 
information model (data model) whereas OO uses the class model.



8

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Model Driven Development Data Oriented

Information
Database

Presentation
Interface

Logic
Code

Insert / Update / Delete

Search

Master-Detail

Basic Help

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Traditional MDD starts with a model of your database. Using this model MDD generators 
can create default screens/applications with:

Insert / Update / Delete.
Search (including operators and nested search).
Each default screen will display the details of the main table.
Basic help system (generated from field descriptions and from descriptions of basic interface 
components).



9

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

A Default Application
Search

Search result

Default form

Help

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

The screens were generated directly from the structure of the database. Not a single line 
of handwritten code has been written, no properties were set of changed.

There seem to be two types of generation:
One time only generation, and
Repeatable generation

With repeatable generation you can change your model, regenerate and still keep your 
customizations.

One time only generation can be considered as a Model Driven Start .

Repeatable generation can be considerd as Model Driven Development .
Since development is more that just getting started.

So we now have a two fold definition:
More abstract when compared the third generation languages
Repeatable generation

For more information about Cathedron:
Take a look at the session An introduction of Cathedron .
Visit www.cathedron.com.



10

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Modeling logic ?

Information
Database

Presentation
Interface

Logic
Code

UML 2
Class diagram (Methods)
Use Cases
Sequence diagram
State Machine diagram
Activity diagram
Communication diagram
Interaction Overview diagram
Timing diagram

UML 2
Class diagram (Methods)
Use Cases
Sequence diagram
State Machine diagram
Activity diagram
Communication diagram
Interaction Overview diagram
Timing diagram

UML
Object Constraint Language

UML
Object Constraint Language

Executable UML
Action Semantics

Executable UML
Action Semantics

Most tools
3th Generation Language

Most tools
3th Generation Language

Sketch
&

Document

X

?

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

So far we have only been using a database diagram (ERD/UML) to generate a default 
application.

How about logic? Is there any way to model logic? What is used by MDD tools?

The options:
UML offers a broad range of diagrams to model both the workflow and the more standard logic of 
your application. We think UML will not become the next generation visual language to model your 
code. The diagrams overlap and consistency checking is a nightmare (and missing from (most?) 
tools).
UML offers the object constraint language (OCL). However this language is not powerful enough 
to create the logic you normally require.
In Executable UML the action semantics language is used. This language abstracts from the way 
sets/lists are implemented. Although the syntax seems rather focused on object orientation the 
language might be capable of specifying a query for a database as well. Will this be the next 
generation language???

The present:
Most MDD tools simple use a 3rd generation language.



11

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Modeling interfaces ?

Information
Database

Presentation
Interface

Logic
Code

??

Most tools
Visual Designer
Hierarchical notation like XML

Most tools
Visual Designer
Hierarchical notation like XML

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

How about the interface? Is there any way to model an interface? What is used by MDD 
tools?

There seems to be no standard interface definition language .
Every vendor seems to implement its own language. These languages do look very 
similar. They all use a hierarchical notation (like xml) to define interface components and 
their properties.



12

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Model Driven Architecture (MDA)

Platform Independency

Platform = Execution Environment

Examples
Java

Corba / .Net
Database

Linux / Solaris / Windows
Hardware Platforms

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Now let s go from MDD to MDA.

The keyword in MDA is platform independence .

Why do we want platform independence?
To become independent of a specific software company
To become independent of a particular language, hardware, os etc
To turn software into a real asset since it is no longer hopelessly depending on the future of some 
platform.



13

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

The Basic Principle

CIM

PIM

PSM
Oracle

PSM
J2EE

PSM
Swing

Code Code Code

PSM
JSP

Code

Computational Independent Model

Platform Independent Model

Platform Specific Model

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

The first model in the architecture is the Computation Independent Model (CIM). This 
model shows no details about the structure of systems. As a result this model cannot be 
used by a generator. (So we will skip it from now on and leave this model to the 
consultants ).

The second model is the Platform Independent Model (PIM). This model describes the 
system independent of the platform that will be chosen to implement the system. From 
this model the platform specific models will be generated.
In MDA generation processes can be influenced using marks (parameters). For example: 
should a generator optimize for speed or for minimal memory consumption?
From the platform specific model (PSM) the actual code is generated.

This all looks to good to be true. Well there is a slight problem



14

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

PIM

PSM
Oracle

PSM
J2EE

PSM
Swing

Code Code Code

PSM
JSP

Code

What is modeled ?

Information
Database

Presentation
Interface

Logic
Code

UML Class Model
& OCL

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

The PIM in the current generation of MDA tools seems to be specified using only the UML 
Class Model in combination with OCL!

As stated before there is no proper language to define your code or to interface.

As a result you will have to specify the interface and logic at the code level.



15

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

PIM

PSM
Oracle

PSM
J2EE

PSM
Swing

Code Code Code

PSM
JSP

Code

Where to change ?

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Another problem with MDA seems to be the numerous points where we can change the 
definition of our system. We can change:

The PIM.
The PSM s.

Although this is dangerous. If we delete a column from the database PSM how will our Swing PSM know 
this? MDA defines bridges. So far those bridges do not seem powerful enough to handle such changes.

The code.
Since the PIM is very limited a lot of changes will end up here. (Being completely platform depended).

There is more! We could change:
The parameters for the generators (Marks).
The generators.

Every dot in the diagram above represents a point to change a system.

Powerful or confusing ???



16

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Model Driven Development
VSM = Vendor Specific Model / Independent 

for models supported by the vendor.

The Holy GrailModel Driven Architecture

PIM

PSM
J2EE

Application

PSM
Oracle

PSM
Swing

Java
Code

SQL
DDL

Java
Code

Database

VSM

DB/Appl

Virtual Machine

Code

DB/Appl

VSM PIM

ApplicationDatabase

100% Complete
Specification

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

From right to left:
The Holy Grail is a way of developing without PSM s or code. This would require a PIM-
language powerful enough to express 100% of the functionality of a system. (And that s 
why it s a holy grail).

In MDD we have a vendor specific model (VSM) without an easy way to exchange this 
model with another tool. As a result we are depending on this vendor.

Note: The two columns represent the many different techniques used by MDD tools. (As we have 
seen before there are more than two techniques).
Note: The VSM model can be platform independent! Most MDD vendors support multiple 
platforms. Again we are depending on the vendor, if a platform is unsupported you can rebuild 
your system using another tool.

When MDA grows beyond the UML Class diagram and offers proper ways to specify 
large portions of your logic and interfaces on the PIM level, things would become 
interesting. When 80%-90% of our systems can be specified using the PIM we might be 
independent enough to make a relative painless switch between vendors and platforms. 
Software might become a real asset.



17

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Con s and Pro s

Benefits of application generation (MDD and MDA)
Faster development

Easier to estimate costs
Seems to be made for agile (iterative) development 

Compact code
Less bugs 
Easy maintenance
Less documentation

Very consistent interface

Benefits of application generation (MDD and MDA)
Faster development

Easier to estimate costs
Seems to be made for agile (iterative) development 

Compact code
Less bugs 
Easy maintenance
Less documentation

Very consistent interface

Model Driven Development
Increased vendor dependency

Model Driven Development
Increased vendor dependency

Model Driven Architecture
Currently it s mainly a class model with some OCL 
UML is not enough.
(Lack of semantics means no exchange between the vendors.)
Where to change?

Model Driven Architecture
Currently it s mainly a class model with some OCL 
UML is not enough.
(Lack of semantics means no exchange between the vendors.)
Where to change?

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost



18

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost

Checklist

Do you need multiple platforms ?
What is the lifetime of your application ?
Do your colleagues accept an application generator ?

What is generated ?
(A code skeleton / Code for a working application / A working application using a virtual machine)

Is the generation fast enough for my way of working ?
(How agile is your development process ?)

How do I specify: information / presentation / logic / workflow ?
(And how platform independent is this specification ?)

Is the entire specification used by the generator ?
(Or is it partially for documentation purposes only?)

Is there a way to check the consistency between the models ?
How can I integrate special code/components ?
(reports, custom screens, interfaces to special hardware such as scanners etc)

If you can add custom code: what happens to this code when you regenerate?
How about version control?

© 2005 - Mattic SoftwareSession: From MDD to MDA  Speaker: Jeanot Bijpost


