
...

2024/3

...

September 2024​
​www.ibphoenix.com​

emberwings@ibphoenix.com​

http://www.ibphoenix.com/
mailto:emberwings@ibphoenix.com

Support & tools for Firebird

IBPhoenix is the leading provider of information​, tools​
and services​ for Firebird users and developers

IBPhoenix website & e-shop

IBPhoenix is directly involved in the Firebird Project​

 and is also a member of the Firebird Foundation z.s.​

...

https://www.ibphoenix.com/
https://www.firebirdsql.org/
https://www.firebirdsql.org/en/firebird-foundation/

In This Issue:In This Issue:
Editorial

Wisdom of the elders

Challenges with Primary Keys

Interview with Pavel Zotov

Development update: 2024/Q3

Toolbox: Red Expert

Answers to your questions

Automatic Test Creation

..And now for something completely

different

EmberWings Under Firebird's Wing
As we release the third issue of EmberWings magazine, we are excited to share an

important update regarding the future of our publication. This issue marks the

final edition published under IBPhoenix, as we proudly announce the transition of

EmberWings to the Firebird Foundation, where it will become the official

publication of the Firebird Project.

This shift brings new opportunities for growth, allowing EmberWings to further

align with the Firebird Project’s mission of advancing the development and use of

Firebird database technologies. The transition will not only maintain the unique

style and tone our readers have come to appreciate but also bring a broader range

of content. Readers can expect more diverse technical articles, deeper insights into

Firebird database server innovations, and expanded coverage of related software

and tools.

Starting with the December issue, the magazine will be offered under a new

publication model. EmberWings will continue to be available for free, but with a 12-

month delay for the general public. However, Firebird Foundation donors will

enjoy early access to each new edition. We are pleased to introduce two new

subscription programs to support the Firebird Project: Firebird Associate and

Firebird Partner. These programs are designed for dedicated supporters of the

Firebird, offering access to the latest issues of EmberWings, along with other

benefits.

We are deeply grateful for the community’s continued support of EmberWings as it

enters this new phase under the Firebird Foundation. We believe this transition

will provide the magazine with a solid foundation to grow, offering even more

value to our readers while reinforcing our connection with the Firebird Project.

Thank you for being part of this journey with us. We look forward to continuing to

share insights, innovations, and technical expertise as we take flight into this new

chapter.

Your EmberWings editors

4

In a serene village surrounded by rolling hills, a young apprentice was given
the task of managing the tribe’s extensive records using the Firebird system.
With great enthusiasm, the young man began organizing the data but soon
encountered a perplexing problem.

“Wise Shaman,” the young apprentice said, “our records use a primary key
based on a combination of multiple attributes, but now I’m finding that the
system is becoming slow and inefficient. The complexity of the composite key is
affecting performance. What should I do?”

The shaman, known for his deep insights, nodded thoughtfully and said, “Let
me share a story that may offer you guidance.”

In a vast and ancient garden, each plant was identified by a complex label that
included multiple attributes such as species, age, and color. The gardener used
these composite labels to keep track of the plants. However, as the garden
grew, the complexity of managing these detailed labels led to inefficiencies
and slowdowns in the garden’s upkeep.

5

The gardener sought the wisdom of the old tree, who was known for its
profound knowledge of nature. ‘Wise Tree,’ the gardener said, ‘our complex
labels are causing inefficiencies and slowing down our work. How can we
improve our system?’

The old tree replied, ‘Consider simplifying your approach. Instead of relying
solely on the composite labels, create an additional, simpler identifier that can
serve as a quick reference. Use this identifier in conjunction with your detailed
labels to streamline your tasks. For example, you could use a unique plant
number that links to a more detailed description. This way, you maintain clarity
without sacrificing efficiency.’

The gardener followed the old tree’s advice and introduced a simpler, unique
identifier for each plant. The detailed labels remained, but the new identifier
made it much easier to manage the garden. Efficiency improved, and the
gardener could tend to the plants with greater ease and speed.

The shaman turned to the young native and said, “Just as the gardener learned
to simplify the identification process by adding a unique, simpler identifier, so
must you consider refining your primary key strategy. Introduce a more
straightforward key to enhance performance and use it in conjunction with your
composite key. This will help you maintain efficiency and clarity in managing
your records.”

The young apprentice took the shaman’s advice to heart and began to
implement a simplified primary key system alongside the existing composite
key. The performance issues were resolved, and managing the records became
much more efficient.

And so, the young man learned that balancing complexity with simplicity can
lead to greater efficiency and effectiveness in managing data.

6

...

Challenges with Primary Keys​​
Primary keys undoubtedly play a vital role in relational databases. That is why it
is necessary to properly understand their nature, implementation details and
ways of using them within the database and applications that work with the
database. Without this understanding, it is very easy to make fundamental
mistakes in database design that are very difficult (if at all) to correct later.

This article focuses on the issues and challenges you will face when working
with primary keys in Firebird, and relational databases in general.

7

The root of all problems

At the heart of most of the problems we encounter is a lack of understanding of

the concepts and their role in the implemented system.

First, when talking about primary keys, it is always necessary to distinguish

between the terms primary key and PRIMARY KEY constraint.

A PRIMARY KEY is defined by Relational Model as a set of one or more

attributes that uniquely identify tuples (rows) in a relation (table).

A PRIMARY KEY CONSTRAINT is a rule applied to a database table that

ensures uniqueness and non-nulability of column(s) that make up the PRIMARY

KEY. It’s defined in SQL standard and implemented by relational database

systems (such as Firebird) with use of NOT NULL constraints defined on all

PRIMARY KEY columns, and an unique index.

The devil is in how these two concepts are linked, with all problems starting with

the choice of primary key.

To have a key or not

When designing tables, it is usually not a problem to determine whether the table

has a (natural) primary key. It is much more difficult to decide whether a table that

does not have a natural primary key should have a (artificial) primary key. These

are primarily auxiliary tables, e.g. those used to implement N:M links, request

queues, etc.

Some developers tend to define primary keys for all tables indiscriminately

because they want to retain the ability to delete or update specific rows (from a

given set). However, this is completely unnecessary because the ROWS clause of

the DELETE and UPDATE statements can be used for the same purpose.

A specific case are frameworks for working with the database, which for their

functionality require the presence of a primary key even for tables that may not

otherwise have one. From practice, it can be concluded that the presence of an

unnecessary primary key causes more trouble than benefit in the long run. If you

8

have a choice of used technologies, we recommend that you consider other

options.

In practice, it is advisable not to define artificial primary keys for any table for

which a natural primary key cannot be defined.

Natural vs. Artificial keys

Nowadays, the prevailing belief is to use only artificial keys instead natural ones. It

cannot be denied that the use of artificial keys has many significant advantages

(and support with IDENTITY columns). Therefore, in general, we can recommend

using an artificial key of a uniform type. However, using artificial keys also have a

major drawback.

Artificial keys are ideal for processing, but absolutely useless from a user’s point of
view.

This results in the need to retrieve data from linked tables, as the foreign key value

cannot be displayed to the user (or used for selection). The consequence is

increased query complexity (number of additional table joins) with all the

consequences for performance.

Unfortunately, the negative effects of complex queries on performance will

become apparent only after a certain period of time, when the amount of

processed data increases. Since in practice it is common for the tables with the

most foreign keys to be the most used (and largest) as well, these problems will

show up sooner rather than later (but rarely in testing).

However, the existence of this fundamental disadvantage is not a sufficient reason

for not using artificial primary keys. But it requires appropriate measures in the

way of working with data and at the application level, which will make it possible to

reduce the complexity of queries.

9

Possible measures include:

For small and/or mostly static tables, in-app lookup tables can be used to ensure

that user-friendly data is displayed instead of a loaded foreign key.

The display of user-important data from linked tables can be separated in the

application into a separate form displayed only on request.

For frequently referenced tables with a simple (one column) and stable natural

key, consider using that key instead of an artificial key for references. It also

means that referenced table can still have an artificial primary key, but the

natural key is defined as an UNIQUE constraint, and used as a foreign key in

other tables.

Unfortunately, there are no good simple or one-size-fits-all solutions for reducing

query complexity when filtering by values ​​from linked tables. The only way is to

avoid such filters, or at least reduce the number of such filters used at the same

time.

Choosing the type of artificial key

The rule of thumb is to use only a single data type (domain) for all artificial primary

keys in the database. A uniform type greatly facilitates working with data in the

application, especially when using frameworks that isolate work with the database

from the rest of the application logic (either in the form of an ORM or a custom

solution).

Of course, this rule is not a dogma, and it can be broken in justified cases.

Sometimes this is the only way to avoid major problems (see the example using a

natural key for references). So if you are isolating database work into a separate

subsystem or layer within your application (recommended), make sure it supports

more than one data type for primary (and thus foreign) keys.

Since primary key values ​​must be unique, the choice of type is directly related to

the way new unique values ​​are created, and the scope of uniqueness.

10

The requirements for the scale of uniqueness have the highest priority when

choosing a type.

If uniqueness within a table is sufficient for you, integer types with a range

corresponding to the expected maximum number of rows in the table will

suffice.

If you require database-wide uniqueness, it may still be possible to use an

integer type as long as its range is still sufficient. However, it is usually necessary

to use a different data type or keys composed of several columns.

If you require uniqueness within multiple databases, it is essential to use a data

type that best matches the chosen method of generating such a unique key.

If tables in a database have different uniqueness requirements, it is advisable to

use a single mechanism for all tables, that is, the mechanism with the highest

identified uniqueness scope.

In practice, determining the scope of uniqueness comes down to whether there

may be a need, now or in the future, to consolidate data from multiple databases

into a central system or to integrate data across various databases.

If the answer is negative, uniqueness within the table is enough for you, and thus

keys of type BIGINT.

Advantages of choosing this type:

Easily create new unique values ​​using generator or SQL IDENTITY clause.

Inserting ascending values ​​into a primary key index requires a minimal amount

of page splitting, and also the occupancy of the leaf pages is maximal.

Option to later extend the scope of uniqueness beyond a single table (more on

that later).

If the answer is yes, you can choose from a wide range of technical solutions, each

of which has its own specific advantages and disadvantages.

All these solutions have two components:

The method of generating unique values, and the resulting basic data type of the

value.

Way of representing values ​​in the database.

11

UUIDs

The easiest way to generate globally unique values ​​is to use UUIDs (Universally

Unique Identifiers) from widely recognized standard RFC 4122. This standard

offers several versions of global identifiers of the same length, which differ in the

way they are generated and the properties of the generated values. Version 1 or 4

identifiers are most commonly used for primary keys, as versions 2, 3, and 5 are

not suitable due to the way the values ​​are generated.

However, the structure of these values ​​makes indexes that use them as keys quite

inefficient (especially with Firebird, which uses prefix key compression). For that

reason, RFC 4122 was superseded by RFC 9562 in May 2024, which defines

additional versions 6 and 7 that are much more suitable for primary keys.

Due to the novelty of the standard, UUID version 7 support is currently only
implemented in the development version of Firebird 6. However, it is likely that
this support will also be added to one of the upcoming Firebird 4 and 5 updates.

While the UUID standard elegantly solves the way of creating globally unique

values, it faces the problem of how to store these values ​​in the database. The UUID

is a binary sequence of uniform size of 16 bytes. These can be stored directly as

CHAR(16) CHARACTER SET OCTETS, but using the OCTETS character set causes

problems when working with these values ​​in user applications and database tools.

Therefore, these values ​​are typically converted to a character string, and stored as

a CHAR type in the ASCII character set.

The most commonly used conversion to hexadecimal representation is 32

characters long (or 36 if you keep the standard formatting with block separators),

which is quite a lot, especially compared to the 8 bytes of BIGINT keys. With a

primary key that is only one per table, it would still be acceptable, but with foreign

keys that can have a larger number in one table, it has a major impact on

performance and resource requirements.

12

Currently, the best solution is probably to use Base64, Base85 or Base128
encoding, which reduces 16 bytes instead of 32 characters to 24 (Base64), 20
(Base85) or 19 characters (Base128). Additionally, this conversion changes the
characteristics of the values ​​somewhat, which may (or may not) improve indexing.

Although Base64 offers the least compression, you can use Firebird's internal
functions BASE64_ENCODE and BASE64_DECODE. We hope to see support for
other variants in the future.

​But using UUID is not the only way to create globally unique identifiers. Popular

alternatives include the Hi-Lo method and Snowflake ID, which we will now

introduce.

The Hi-LO method

​The Hi-Lo method is a technique used to generate unique identifiers in distributed

systems and databases that minimizes contention and improves performance in

high-concurrency environments.

In short, it generates sequence identifiers that consist of two whole parts, where

the first (HIgh part) is generated by the central authority and the second (LOw

part) is generated locally.

Generated values ​​can be stored in different ways. You can use a primary key

composed of two columns, one for each part. However, it is much more

advantageous to merge both segments into a single BIGINT value. For example, if

you use the upper two bytes of the 8-byte BIGINT for the upper segment for

database identifiers, and the remaining lower 6 bytes for the local ids, then you can

create up to 281,474,976,710,655 unique keys for each database in a total of

65,535 databases.

Another advantage of this solution is the possibility to use standard Firebird

generators for generating the LOw segment, and global setting of the HIgh

segment using the configuration (e.g. a dedicated table). Then, for example, in the

ON CONNECT trigger, you can store the segment’s HIGH value in a context

variable, and create a stored function that uses this value together with a

13

generator to create a primary key.

The disadvantage of this method is the inability to use the IDENTITY clause when

defining a primary key column. Instead, you must create the appropriate triggers

manually.

This method can also be used if you use plain BIGINT primary keys with local

generation, and later decide to convert them to global identifiers.

If the following prerequisites are met, you can also make such a change directly in

the database:

No key value will exceed the maximum value that can be stored in the number of

bytes reserved for the lower segment.

You use custom triggers and generators instead of the IDENTITY clause.

You have defined referential integrity with ON UPDATE CASCADE rules.

However, although direct key conversion is possible in this case, it will be quite

time-consuming. The alternative is of course to create a new database and copy

the data with continuous conversion of key values.

Snowflake ID

Snowflake IDs, or snowflakes, are a form of unique identifier created by

Twitter (now X) for the IDs of tweets.

They are 8 bytes long binaries, so they fit into BIGINT type. The first 41 bits are a

timestamp, representing milliseconds since the chosen epoch. The next 10 bits

represent a machine ID, preventing clashes. Twelve more bits represent a per-

machine sequence number, to allow creation of multiple snowflakes in the same

millisecond. The final number is generally serialized in decimal.

Snowflakes are sortable by time, because they are based on the time they were

created. Additionally, the time a snowflake was created can be calculated from the

snowflake. This can be used to get snowflakes (and their associated objects) that

were created before or after a particular date.

There are several slightly different variants used by different projects or

companies (such as Discord, Mastodon or Instagram), so there are plenty to

choose from. You can then find a variety of implementations for different

14

languages ​​on GitHub.

Snowflakes are very suitable for use as primary keys in a database, and seem to be

an ideal replacement for UUIDs in the future. Unfortunately, their use is currently

not the most convenient, because no standard has been established, nor is support

available in Firebird (which we will hopefully see in the future).

To have a constraint or not

Just as not every table needs to have a primary key defined, neither does an

appropriate constraint need to be defined for every primary key. You can achieve

the same effect by defining a NOT NULL constraint on all columns of the key, and

by creating a unique index with the given key.

The only real reason to define a constraint on primary key is that you cannot
create a foreign key constraint without it. It follows that if the given table is not
referenced by a foreign key, it is not necessary to create a constraint on the
primary key.

But why not simplify your life and create constraints for all primary keys without

distinction?

One of the reasons could be, for example, the fact that an index bound to a

constraint cannot be deactivated, and therefore not rebuilt (reoptimized) without

having to delete (and recreate) the constraint. Reoptimization of such indexes is

therefore a rather complex process, and running it occasionally is important when

using a certain type of keys, for example UUIDs. Unfortunately, Firebird currently

does not allow disabling and re-enabling constraints (cascading propagation to

foreign keys in the case of a primary or unique key would be handy), which would

make this operation much easier.

Another (supplemental) reason may be that although the table is referenced from

other tables, these references do not require foreign key constraints (since their

functionality is implemented in a different way), and only an index on the foreign

key is sufficient to speed up queries. And where there is no foreign key constraint,

15

there may not be a primary key constraint.

However, none of the above means that you shouldn’t define a primary key

constraint on all tables with a primary key. On the contrary, it is a recommended

strategy. We present this alternative only to clarify the technical reasons and

consequences behind this choice. Many young developers are not aware of them

and mindlessly perform the learned rituals without understanding their meaning.

Which constraint

If you define a constraint on primary key, you have two options: define a PRIMARY

KEY constraint or a UNIQUE KEY constraint. Both constraints ensure that a key is

unique within a table with the important difference that a unique constraint allows

a key to contain one or more NULL values ​​and can therefore be created on

columns that do not have the NOT NULL flag, while a primary key constraint does

not allow NULL values ​​and all key columns must have the NOT NULL flag. Another

difference is that a table can have only one primary key constraint, but it can have

multiple unique key constraints.

When defining a FOREIGN KEY constraint, Firebird does not discriminate

between a primary or unique key constraint, and foreign key constraints can

therefore be linked to both types. This feature is important because it allows you

to create solutions that benefit from referential integrity but:

allow an alternative (typically natural) key to be used for referencing.

allows you to assign a meaning to a NULL value in a reference because it can

refer to an existing record in the primary table. This has a significant impact, for

example, on the results of inner joins, where a null value in a foreign key causes a

row with NULL to be omitted from the result, and an outer join must be used to

prevent that.

The choice of constraint used for the primary key is therefore a crucial choice,
determining your options and the way you work with the stored data.

16

Final words

Here is a brief summary of key points and recommendations:

Do not forget the difference between PRIMARY KEY and primary key

CONSTRAINT.

It is advisable not to define artificial primary keys for any table for which a

natural primary key cannot be defined.

Artificial keys are ideal for processing, but absolutely useless from a user’s point

of view.

Artificial keys are better than natural keys, but they come at a price. Without

compensation strategies, you are setting yourself up for big problems in the

future.

Choosing the type and method of generating the primary key is an absolutely

fundamental decision that cannot be easily changed, but always has

consequences that may not always be clear.

The best key is: simple (one column), easy to generate and process, doesn’t take

up much space, and has good indexing properties. If it can carry information

other than uniqueness, that’s a huge bonus.

Before you define a constraint, it is better to think twice.

The PRIMARY KEY constraint is not the only option. The UNIQUE constraint

has its important uses.

17

...

Interview with Pavel Zotov
A database server is complex software, and the requirements for its reliability are

extreme. In the last issue, you could get acquainted with the tool used in the

development of Firebird to test its functionality. In the following interview, you can

look under the hood of the entire quality assurance process and meet the man for

whom Firebird quality is above all else.​​

18

Hi, can you introduce yourself to our readers? Where do you live and how was
your journey to Firebird?

My name is Pavel Zotov. I live in Russia, in the Moscow region. I have been working

with Firebird since 2009, although my first experience with this DBMS appeared in

2002 (that was the time of InterBase 6).

If I remember correctly, you joined the Firebird project in August 2013 when you
got a grant from Firebird Foundation to work on Firebird QA. How do you see
your beginnings in the project? Did your expectations come true, or did you
imagine something else?​

Yes, I started working as a QA engineer in August 2013. At that time, Firebird was

in intensive development of version 3.0 (Alpha1). I remember that my first work

was about performance problems that I had previously found and which were

published on the Russian DBMS forum sql.ru.

Lot of examples were taken from my own posts on that forum. There is beautiful

education site, sql-ex.ru, where I have studied SQL. Many complex SQL queries

(from its world-open part that is called 'Training Stage', with permission of this site

owner) have been adapted to QA framework. It was done mostly for verifying

'robustness' of Firebird parser/compiler and correctness of SQL results. I have

noticed that some of these queries produced wrong output.

Some tests have been ported from InterBase and Postgres support forums. Also,

there was a lot of work to verify correctness of new features introduced in Firebird

3 (Srp authentication, encryption etc.). Some complex SQL tests that deal with new

Firebird features (first of all window functions) have been added at that time. Also,

hundreds of relatively simple tests were implemented after investigation in old

Firebird tracker, and obtaining list of fixed tickets which have not appropriate test.

It was very interesting for me to work on these tests. Although it was time

consuming. But these tests were created quite quickly because I could discuss any

issue with the Firebird developers using our native language.

19

Your first contributions to Firebird QA were for the OLTP-EMUL benchmark, and
you’ve been maintaining it ever since. What role does this project play within the
development of Firebird?​

The first idea for such a test was born long before I joined the Firebird project,

maybe in 2010. At that time I was working in big trade-servicing enterprise,

developing an OLTP application for them (however, it used a very old programming

language). This application allowed to make a lot of operations related to stock,

logistics, servicing, paydesk, accounting department etc. A lot of effort has been

put into ensuring acceptable scalability and performance, and of course getting the

results right, including arithmetic.

When I started working on the Firebird team at the same company, the

performance issue was the first and most serious thing we encountered. Of course,

we made some "stupid mistakes" at the initial stage, and many people from the

Russian-speaking Firebird community helped us. I would especially like to thank

Vlad and Dmitry for a lot of useful suggestions.

After I joined the Firebird project, it became clear to me that some benchmark

ideas could be taken from the old system I used in my work. I discussed this with

Dmitry Yemanov, and he pointed out the most important things that are desirable

in such a test, as well as what to avoid (security, user rights, i18n, etc.). After about

6 months, this test was implemented and most of its algorithms were similar to

those that worked in the real application.

But also (and this was quite surprising to me) almost 50 bugs were found in

Firebird 3, which was being developed at the same time (not yet officially

released). So I hope this test has become useful to achieve the stability of the first

release of version 3.

In addition, this test turned out to be suitable for investigating problems related to

performance regressions after the release of Firebird 3. I remember that such

question came up at least 3-4 times, specifically: we received reports from various

customers about a performance problem, but it was not clear when such

regression appeared. So I ran the test on different builds and compared the

performance scores. Using this, several regressions were found accurate to a

specific build date/number.

20

In 2019, we (the iBase company) had the opportunity to use a fairly powerful

server of one of our customers, which allowed us to run an OLTP-EMUL test

regularly using a scheduler. I have developed some new reports to compare results

between Firebird 3 and 4, you can see them at https://firebirdtest.com/oltp-emul/

This report was created primarily to detect "slow regression", i.e. when the

performance drop has a trend, but is difficult to detect by comparing the results of

several adjacent runs. Unfortunately, we are currently unable to use this server, so

this report is out of date. There is also no data for Firebird 5 as it was performed in

2021. But I hope we can resume this activity on our own hardware soon.

At the time you joined Firebird QA, the project was using a homegrown system
(fbtest) written in Python. Was it difficult for you to learn to work with it? What
surprised you the most, pleasantly and/or unpleasantly?​

I used to and still believe that FBTEST is very simple yet powerful framework!

But it took me a while to get used to some specifics, namely: the necessity to

strictly switch to the appropriate folder before running the tests and to use test

names instead of test filenames/paths.

However, over time, several problems arose. First, the FDB driver (which fbtest

uses to communicate with Firebird) did not support the new data types that were

implemented in Firebird. Also of concern was the problem with the teardown

phase of some tests (mainly due to the LINGER feature in SuperServer). I also

missed some useful features that are now in the new QA framework, namely:

comparing firebird.log content collected before and after some actions; no built-in

ability to give each line that is executed an exact timestamp (on Windows you had

to use something like mtee.exe); no option to specify client library path (fixed

later); the result of running fbtest did not affect the value of ERRORLEVEL (this

was fixed later); no option to specify something like "skip if ServerMode =

'Classic'"; no option to quickly extract metadata etc. The funny problem that show

up for time to time was the need to look for a non-ascii character in some part of

the test that could be entered occasionally: it might be a test that I didn’t check at

the moment, but was edited few minutes ago (say I changed a comment etc. in it).

21

https://firebirdtest.com/oltp-emul/

A few years ago, Firebird QA was converted to a new testing system based on
pytest. How do you rate the new system compared to the original one? What has
improved or worsened for you?​

I think it was definitely a big step forward for us. And the first reason for this is that

our new quality control is now based on a widely used (industry) framework -

pytest. We can take advantage of a lot of its features and plugins, including

py.mark, py.skip/skipif, console output style, settings that are common to a number

of tests (eg encryption plugin name, values ​​for setting replication parameters, etc.).

The new Firebird-driver that replaced FDB now also supports all Firebird data

types and most functions (currently only the batch API is missing).

Also, the new command switch "--extend-xml" is very useful for generating

detailed reports about the QA run.

There is a new useful feature in the QA plugin: we can skip recreating the test

database before each next test and run a file-level copy of an already existing one.

All such empty databases are collected in a special folder ('$QA_HOME/dbcache').

This capability greatly reduces the overall QA runtime, even though we have to

clear the cache directory before each new run. It is on by default, so if you don’t

want it, you have to use the '--disable-cache' switch.

After much discussion, a solution was found for the problem related to using

databases with non-default settings, e.g. that are involved in replication or must be

self-security (this is now done using the pre-built "qa-databases.conf" file in the

QA_HOME/files directory).

However, some problems still exist. We need to escape backslashes even if they

are in comments. Also, pytest will fail and the entire test suite will not be executed

if any file contains a non-ascii character in the wrong place. More seriously,

firebird-driver still has some problems when we try to run complex python code

that calls a function and tries to use instances of the Connection and Cursor

classes there (this can cause python to crash!). This issue occurred during a

migration from the old to the new QA framework. However, a workaround was

found (it’s necessary to pass the above instances to the function as parameters).

22

Readers are surely interested in how your work fits into the overall framework of
Firebird development. Can you explain how Firebird QA works, and what is your
usual routine?

First of all, I would like to sincerely thank my supervisors (Dmitriy Kuzmenko and

Alexei Kovyazin). They understand that I participate in the Firebird project as a QA

engineer and have to spend valuable time running tests, verifying some issues,

doing something based on requests from Firebird developers, etc. They allow me

to handle this during my working hours - but of course only if there is nothing

urgent related to our customers. They also know that any bugs that are detected in

the standard version of Firebird will eventually be carried over to our commercial

product - the HQBird family. For that reason, my quality control effort can be

considered something of a "filter" that prevents many bugs from appearing in

HQBird.

The QA framework and some useful tools (batch scripts) are installed on several

computers. Two of them (with Windows and Linux) belong to iBase and two are my

own. Also at iBase we have dedicated storage for all the builds that are created

after each new commit in the master/v5/v4/v3 branches. This makes it possible to

very quickly "jump back in time" to confirm whether a problem can be reproduced

or not.

I have an account on the Firebird github repository and am subscribed to all

commit information related to core development (sent to my email). When I see a

commit with a message like "Fixed…​" and it’s related to the Firebird core, I open

the relevant tracker ticket and see if it’s related to QA. If a test seems too difficult

to implement, or if I can’t reproduce the problem, that test is marked as "deferred".

In other cases, this test may be labeled as "not enough information" or "cannot

reproduce". After some time (months or even years) I review all such tests and

many of them no longer seem so difficult to implement.

The simplest case of course is if the problem contains some SQL/PSQL code that

illustrates the problem and gives the build number. If I can reproduce the problem

using given build (or build recent for the date that was given in the ticket), I will

check whether this problem is actually fixed or not. If so, I’ll create a test that

almost always looks like the ticket, verify it, and write a comment about which

build had that problem and where it actually got fixed. Finally, I push the test file to

23

to our QA repository.

But of course it’s often not that simple. Currently there are a dozen tickets with

missing information about the build or some parameters, etc. If I don’t know how

to reproduce it, I will write a question to the Firebird developers. In almost all

cases, they can provide an answer that helps me reproduce the problem. But only if

I don’t delay too much with my question (I mean we have to "follow fresh

footprints").

Also, from time to time some Firebird developer asks me to somehow verify the

code that they don’t want to commit to the Firebird repository yet (because they

think it’s premature). This could be about various things: encryption,

authentication, query optimizer, cache usage, etc. Usually no tests are created

after this task. Only results and conclusions are sent to the Firebird team.

Some tests were implemented after reading forums / blogs of other DBMS

(Interbase, PostgreSQL, Oracle). There are many tests that have been adapted to

our framework from one we inherited from InterBase, named 'GTCS' (AFAIK, still

supported by Adrian and Alex).

In a separate group are tests related to performance problems. We CANNOT rely

on the ratio of time values ​​that were measured by the 'clock' for some code before

and after the patch. I mean we can’t use either the 'elapsed time' in the ISQL output

or the datediff() result due to the presence of concurrent load on the test machine

during this test. The only way that seems reliable is to measure CPU 'user time'

values, which can be obtained using the psutil package. However, such tests can

fail from time to time - mostly due to wrongly chosen ratio threshold values.

About my usual routine. As for QA itself - it’s…​ pytest (gee). If I want to find a test

or ticket that has already been fixed and looks similar to the one we’re currently

investigating, then of course I’ll use github and its search mechanism (which allows

for fuzzy searches). I use FAR Manager which is extremely convenient for working

with files/commands etc. I also find its text editor quite comfortable with the text

coloring scheme turned on. I use a simple batch file to submit tests, which (beside

of git actions) sends me a letter with details - and I use such letters when creating

QA-reports.

24

What is your strategy for creating tests for Firebird? How do you go about
deciding what to test and how?​

First, if the issue recorded in the Firebird tracker is fixed, I will receive a

notification in the email. Of course, I pay attention to issues that provide a SQL test

case, or at least have a description of the problem and the exact build number of

the affected Firebird build (ie in full "5.0.1.1477" format). If the issue has too little

detail or cannot be tested at all, I mark it in Firebird tracker with "lack of

information" or "cannot be tested". If the problem can’t be reproduced (or I don’t

know how to do it), I’ll try asking the Firebird team about a way how to do it. A test

will never be submitted to our QA repository until it is reproducible on at least one

of the major Firebird versions.

In some rare cases, the test needs to be implemented using a completely different

scenario than the one listed in the ticket. In particular, it can be a scenario that

looks like a brute force attack. For example, tests that check for issues with

Unicode characters; or a test that does a lot of combinations with scrollable

cursors; or a test that verifies the impossibility of accessing RDB$ tables, etc.

When test for a ticket is done and committed, I will mark it in ticket in order to see

only 'non-resolved' ones easily.

I also check for new posts related to the $FB_HOME/doc directory as they contain

information about new features that need to be tested as well. If any issue (in the

tracker) or example (from $FB_HOME/doc) contains SQL/PSQL code, I’ll try to

create a test as soon as possible. Otherwise, if I think something like this has

already happened, I’ll look for it in the existing tests. If the problem seems to be

"completely new and complex", I will try to first implement a test "prototype" using

only Python code (ie without the QA-plugin). A lot of information/examples related

to Python can be found on StackOverflow and other sources, so the "main

problem" is getting the question right for Google (wink).

Do you see any flaws in how Firebird quality control is currently done? What
would you like to improve?​

25

I cannot judge the quality of my work. Rather, it should be done by those who

benefit from its results (smile). At the end of 2019, I decided to re-implement the

scheme of how QA results are stored and - most importantly - how they are

displayed. After many discussions with Firebird developers, the current 'cross-

reporting' view was born (see firebidtest.com and jump to any page with

specific results for the OS / FB family). It allows (I hope) a quick assessment of the

last 30 Firebird builds on one page. Number of columns with pushed SHA (which

uniquely identifies concrete snapshot) can be easily increased up to ~85. This

cross-report can also be used to quickly find the build that caused a particular

regression. For each failed test, you can see a complete history of how that test

was completed.

There are also tables with the time spent to run each test. However, we still don’t

see (in a suitable form!) performance regressions in our tests. Last year I made

several attempts on this and applied complex algorithms from statistical analysis. It

showed me that performance regressions mostly look like sudden jumps (spikes)

rather than smooth trends. But I haven’t implemented a proper procedure to

detect them yet. That is my task this year.

Another thing I want to implement is the ability to see the results of a (selected)

test in one table for all processes from the Firebird family, ServerMode values ​​and

operating systems (Windows / Linux).

Many consider testing and QA in general to be the most boring and unrewarding
IT job. Is it true or do you enjoy it?​

I completely disagree with such an opinion. When I was developing my own OLTP

application, finding errors took about 70% of the time. And it was a real pleasure

when I finally found that some code no longer had any problems/bugs after the

effort. I saw it as a reward for hard work. So my current job definitely satisfies me.

Can you enlighten us about the popularity of Firebird in your country, and how it
is with the Firebird user community there in general?​

26

Firebird was and is popular in Russia. Maybe for historical reasons (because since

the 90s there have been a lot of small businesses that didn’t want to pay for a

commercial DBMS), but I think also because the product is really easy to work

with. Recent years show that the number of companies using Firebird is constantly

growing. Two conferences organized by RedBase proved it.

It is also very difficult to find other DBMS that have such support from the main

developers, especially for people who speak Russian. I will give just one example

from my own experience. In 2011-2012 (when I worked at the previous company)

we were tasked with migrating from Firebird to Oracle. We soon ran into some

code example that caused Oracle to crash (smile). We looked for a solution but

couldn’t find one. When we asked Oracle Support (it’s called "metalink") about the

problem, it turns out that they know about this bug, but it’s been around for…​

about 1.5 or 2 years! And it hasn’t been fixed yet. Next, we figured out that if we

want this bug fixed sooner, we have to pay Oracle a lot for it. Of course, we did not

continue the search for a solution to this problem and moved on to other tasks

(smile). I can’t imagine the Firebird developers letting this situation go unnoticed

and not trying to address it.

Since I started working with Firebird in 2009, I have noticed many times that

almost all major bugs (including crashes of course) have been fixed within a few

days. The longest the bug was not fixed (IIRC) was about 2-3 months (it was an

index corruption issue, the infamous 'missing records'). Such a high level of support

from its developers (over many years) is a good reason to choose this DBMS for

doubters.

Thanks for you time!​

27

Development update: 2024/Q3
A regular overview of new developments and releases in Firebird Project​

Releases:
Firebird 5.0.1, released 2.8.2024

Firebird 4.0.5, released 8.8.2024

Firebird 3.0.12, released 8.8.2024

Firebird ODBC driver 3.0, released 10.9.2024

firebird-driver for Python 1.10.6, released 15.8.2024

28

https://firebirdsql.org/en/firebird-5-0/
https://firebirdsql.org/en/firebird-4-0/
https://firebirdsql.org/en/firebird-3-0/
https://github.com/FirebirdSQL/firebird-odbc-driver
https://pypi.org/project/firebird-driver/

Import library for Borland compilers​
Historically, Firebird provided fbclient_bor.lib — import library that can be

used with Borland compilers — in x86 Windows packages. However, it’s missing in

the v5.0.0 release. The reason is simple — the build script didn’t attempt to make

this library if implib.exe is missing and Firebird GitHub environment obviously

misses it.

It has been decided that this library will no longer be part of the v5 packages and
this change is now documented in the Release Notes.

JSON support for Firebird 6
In July, Red Soft submitted the first part of its proposal for implementing JSON

support in Firebird 6 for discussion. The main points of the proposal are:

Based on the JSON SQL standard 2017 (ISO/IEC TR 19075-6:2017).

There is no explicit JSON data type (which appears only in SQL 2023) or a binary

JSON type. JSON is stored as text via text types.

The implementation adds JSON functions, JSON_TABLE record source, and all

its associated components.

All functions are named according to the SQL standard.

Nearly all functionality has already been implemented in RedDatabase and is

awaiting submission for merging. To avoid merging over 15,000 lines of code at

once, the work has been divided into eight parts. Parts 1-3 focus on JSON

generation functions, parts 4-6 handle JSON extract (query) functions, and parts

7-8 cover JSON_TABLE.

The JSON code is separated from the engine as much as possible to facilitate its

unit testing.

Internally, all the basic JSON functions (JSON_VALUE, JSON_QUERY,

JSON_ARRAY, and JSON_OBJECT) are implemented as expression node,

JSON_TABLE is a record source node and JSON_ARRAYAGG and

JSON_OBJECTAGG are aggregation nodes.

All the functions produce compact JSON. Therefore, all excess spaces, tabs, and

new lines will be omitted.

29

Certain aspects of the standard are not very user-friendly, so a few additional

features will be introduced that extend beyond the standard.

The subsequent discussion among developer covered various aspects of the design

and the optimal implementation approach. Key topics included the internal

representation of JSON values, the efficiency of storing and processing them, and

potential future extensions, such as binary JSON, the JSON type in the 2023

standard, and indexing.

You can read the whole discussion in firebird-devel googlegroup under

"Proposal for SQL support for JavaScript Object Notation (JSON). Part 1" thread.

Tablespaces for Firebird 6
In September, Red Soft submitted the updated proposal for implementation of

tablespaces in Firebird 6 for discussion.

Syntax

TABLESPACE
 CREATE TABLESPACE [IF NOT EXISTS] <TS NAME> FILE '/path/to/file'

 ALTER TABLESPACE <TS NAME> SET FILE [TO] '/path/to/file'

Either absolute or relative path is allowed.

 DROP TABLESPACE [IF EXISTS] <TS NAME>

The development of the INCLUDING CONTENTS option has been postponed.

For an existing tablespace, it is possible to add a comment using the COMMENT

ON statement.

 COMMENT ON TABLESPACE <TS NAME> IS {'text' | NULL}

TABLE
 CREATE TABLE ... [[IN] TABLESPACE {<TS NAME> | PRIMARY}]

30

It is also possible to specify a tablespace when creating a column or table

constraint:

 <column/table constraint> ::=

​ ... UNIQUE ... [[IN] TABLESPACE {<TS NAME> | PRIMARY}] |

​ PRIMARY ... [[IN] TABLESPACE {<TS NAME> | PRIMARY}] |

​ REFERENCES ... [[IN] TABLESPACE {<TS NAME> | PRIMARY}] ...

​ ALTER TABLE <TABLE NAME> SET TABLESPACE [TO] {<TS NAME> | PRIMARY}

The table data will be moved to the specified tablespace or to the main database. It

is also possible to specify a tablespace when adding column or table constraints.

INDEX
 CREATE INDEX ... [[IN] TABLESPACE {<TS NAME> | PRIMARY}]

By default, table indexes are created in the same tablespace as the table itself.

 ALTER INDEX ... [SET TABLESPACE [TO] {<TS NAME> | PRIMARY}]

The index data will be moved to the specified tablespace or to the main database.

ODS changes

A new table RDB$TABLESPACES

New field in RDB$INDICES

New field in RDB$RELATION_FIELDS

New fields in RDB$RELATIONS

gbak

Backup works as usual for now. It gets data from a database transparently working

with tablespaces.

Restore has new switches.

-ts_map[ping] <path to file>​

31

Option is required for correct database recovery if its backup contains tables or

indexes saved in tablespaces. To do this, specify the path to file, which consists of

lines with two values: the first column is the name of the tablespace, the second

column is the new location of the tablespace. You can specify either an absolute

path or a relative path.

Example:

 TS1 /path/to/tablespace1.dat

 TS2 /path/to/tablespace2.dat

-ts <tablespace> <path>​

Option allows to specify the path for the tablespace. You can specify either an

absolute path or a relative path. The option can be used as many times as required.

It can also be used together with -ts_map.

-ts_orig[inal_paths]​

To restore tablespaces to the original paths they were on when the backup was

created. It is still possible to override paths for some tablespaces using the -ts and -

ts_map options. This is an explicit option, not a default action.

If you do not specify the above options when restoring a database that has

tablespaces, an error about the inability to determine the path to restore

tablespaces will occur.

Replication

There is an apply_tablespaces_ddl parameter for replication. If this

parameter is disabled, tablespace-related DDL statements and CREATE/ALTER

TABLE/INDEX clauses will not be applied to the replica. This is used if the replica

has its own set of tablespaces or none at all.

Other

ALTER DATABASE {BEGIN | END} BACKUP will put not only the main

database file, but also all tablespaces into safe copy mode. A delta file will be
32

created for each tablespace.

Command SHOW {TABLESPACES | TABLESPACE <TS NAME>} displays a list

of all tablespace names in alphabetical order or information about the specified

tablespace.

Limitations and future plans

It’s possible to create up to 253 tablespaces.

Operators to move an index or table to a tablespace require an exclusive

database lock.

Red Soft plans to add support to move blobs into separate tablespace.

33

Toolbox: Red Expert
The Red Expert is an open-source cross-platform database manager for

RedDatabase and Firebird developed by Red Soft. It’s written in Java and uses the

JayBird drivers, with version 3, 4 and 5 of the driver directly included. It’s licensed

under GPL 3.0, and you can find it on GitHub .

We used the version 2024.09 for this review.

1. Red Expert download​

2. Red Expert repository​

[1]

[2]

34

https://reddatabase.ru/en/downloads/redexpert/
https://github.com/red-soft-ru/redexpert

First steps

When you launch Red Expert for the first time, you will be presented with the

Database Browser panel that is initially empty.

So your first step is to define a new database connection.

35

...

...

The left panel is used not only to organize connections, but also to display and

navigate through database objects of connected databases.

Interface

The user interface consists of a single window with standard elements: a menu bar,

a toolbar, a workspace with object views organized in tabs, and a status bar. Unlike

DBeaver, which we reviewed in the previous issue, the individual panels cannot be

detached, minimized, or moved—a feature that some may consider an advantage.

However, the inability to reorder tabs within tab views is a drawback, as this

feature could be quite useful. As a result, layout customization is limited to resizing

certain panels using sliders."

The interface appearance can be customized with one of six themes, including dark

modes. Users can also configure keyboard shortcuts, customize colors in the editor

and Result Set, and adjust toolbars, among other options. Overall, the interface is

pleasant, clean, and easy to navigate. This is especially valuable considering that

the documentation, including the built-in help, is available only in Russian.

36

...

Functionality

Red Expert is an ambitious, feature-rich tool designed for daily use, especially by

database application developers, though database administrators will also find it

highly valuable. It offers everything from a clear overview of database objects to

tools for their creation and modification, data display, a robust query editor, script

generation from metadata, an ER diagram editor, user and permission

management, database validation, and much more. However, it lacks a dedicated

feature for handling database backups.

The SQL editor, a crucial tool for any Firebird user, is well-implemented in Red

Expert, featuring auto-completion, shortcut-activated templates, and live object

references. Execution statistics and execution plans are available in both standard

and extended formats. Query results can also be exported as CSV, XLSX, XML, or

SQL files.

Two standout features of the editor are worth highlighting. First, each execution of

an SQL command opens a separate tab for the Result Set, allowing users to

manage multiple outputs independently. You can easily switch between these tabs,

and hovering over a tab reveals a window with the corresponding SQL statement,

enabling quick navigation between outputs or copying commands to the clipboard

or editor.

37

...

However, the query output display (which applies to tables as well) is fairly basic,

offering only column sorting and reordering. It would be beneficial if future

updates included more advanced features, such as column aggregation.

The second outstanding feature is the ability to execute SQL commands directly

within the profiler, a functionality developers are sure to appreciate.

The display of individual database objects follows the standard format seen in

similar tools, making navigation straightforward. However, some displayed

information and properties apply only to RedDatabase and are inactive when

working with Firebird. That said, since many RedDatabase features are gradually

being implemented in Firebird (for example, tablespaces are planned for Firebird

6.0), the inclusion of these features can be seen as a forward-looking advantage.

38

...

...

A particularly pleasant surprise is the stored procedure editor, enhanced with

useful tools for editing parameters, variables, cursors and more.

ER diagrams are available for visualizing relationships, both for the entire database

and for individual tables.

39

...

...

You will undoubtedly appreciate the additional functions and tools, which include

the ability to recompile procedures and triggers from a tree view of objects, DDL

script generator from metadata, database structure comparison (with the option

to create a difference script), Data Importer and Data Generator, User and Grant

managers, database statistics, table validator and (P)SQL profiler.

40

...

...

User manager​

Grant manager​

41

...

...

Data generator

Table validator

42

...

...

The only disappointment is the Trace Manager, which we were unable to activate

with Firebird. The built-in trace configuration support is exclusive to RedDatabase,

resulting in parameters incompatible with Firebird. Even using a manually created

configuration file proved ineffective. Unfortunately, Red Expert provides no

feedback on whether the trace session was successfully initiated or if an error

occurred.

Summary

Red Expert is definitely a solid contender among tools for Firebird, especially those

aimed at database application developers. Its only weakness is the fact that it was

(and to some extent still is) primarily designed to work with RedDatabase (and for

Russian users). If future versions improve Firebird support and offer English

documentation, Red Expert undoubtedly has the potential to gradually become

"The standard GUI tool for Firebird", replacing the lagging FlameRobin.

But you definitely won’t make a mistake if you try Red Expert today.

Advantages:

Multiplatform

Open Source

Profiler integration

ER diagrams

User and Grant managers

Data generator and importer

Disadvantages:

Documentation only in Russian language

Trace support is focused on RedDatabase and not Firebird

You may encounter some quirks when working with Firebird

Our Rating: 8/10

43

Answers to your questions
Documentation is said to be a collection of answers to unspoken questions. If you

ask a search engine, it will answer you with a link to a document that (hopefully)

contains the answer. There are documents, forums and entire systems like Stack

Overflow that consisting only of questions and answers. And now an army of AIs is

starting to chase us to answer our questions. Questions and answers cannot be

avoided, there is no hiding place.

However, amidst the sea of routine questions and responses, there lie truly

captivating inquiries and answers, like hidden treasures. Our commitment is to

regularly present you with a curated collection of these precious gems.

44

About transaction numbers in index nodes

​Svend Meyland Nicolaisen asked:

Wouldn't it be possible to add transaction information to the index entries so that

the engine doesn't have to lookup the record for validation?​

Ann W. Harrison answers:

Yes, it would be possible, but would greatly increase the size of indexes and the

amount of maintenance they require. Here's why.

Size matters a lot in index performance - there's less information per page with

larger entries and the index depth increases.

An index entry currently consists of eight bits of prefix, eight bits of length, the

compressed key value, and a 32 bit value which is a page number (for upper levels

of the index) or a record number (for the bottom level). Record numbers are 40 bits

in V2 but the compression is better, so the net is smaller. Transaction ids are 32 bit

values and you need two of them - one to say what transaction created the value

and one to say which transaction superseded the value. Adding two transaction ids

to each index key nearly triples the "overhead" size of an index entry.

But that's no all. If you have an indexed field that switches between two values, it is

currently represented in the index by one entry for each value - not one entry for

each version. For example, transaction 1 creates the record and stored 'ABC' in the

indexed field. Transaction 2 updates the record, changing 'ABC' to 'DEF'. The index

now has two entries for the same record, 'ABC' and 'DEF'. Transaction 3 updates

the record again, setting the field's value back to 'ABC'. Since there's already an

index entry for 'ABC' for this record, nothing gets added to the index.

If we kept transaction information in the index, we would need two 'ABC' entries

for that record, one for the 'ABC' created by Transaction 1 and superseded by

transaction 2, and a second for the one created by Transaction 3 and not yet

replaced. So instead of two entries with 6 bytes of overhead, we now have three

entries with 14 bytes of overhead each.

45

Additional index entries mean more maintenance.

When transaction 2 updated the record, it would have to modify the old index

entry in addition to inserting its new index entry.

When the record version created by transaction 1 is garbage collected, there's no

need to change the index, because there is still a valid 'ABC' in the record version

chain. If the index entry were tagged with the ids of the transactions that created

and obsoleted it, the garbage collection would have to include removing the older

of the two 'ABC' entries.

Why you should occasionally rebuild your indices

Aage Johansen asked:

Is it necessary to rebuild indices (by ALTER INDEX INACTIVE/ACTIVE or by

backup/restore)? Doesn't Firebird balance the indexes dynamically?​

Ann W. Harrison answers:

Yes, but the bucket split algorithm tends to leave partially filled buckets when

indexes are built incrementally, while the fast-load algorithm used when an index is

added after data exists produces dense indexes.

Table fill ratio after restore

Christian Kaufmann asked:

I always thought, that the fill ratio is corrected to about 80% when doing a restore.

But after my restore, I get the following values for the biggest table:

Data pages: 25095, data page slots: 25095, average fill: 59%

Fill distribution:

​ 0 - 19% = 0

​ 20 - 39% = 1

​ 40 - 59% = 25094

​ 60 - 79% = 0

​ 80 - 99% = 0

46

The table contains about 7'000'000 records. Most of these will remain unchanged,

but new records will be added in the future. The data fields of my record are two

smallint and two integer fields.

should I do a restore with -use_all_space ?

should I just leave it like this ?

other suggestion for changing it ?

Ann W. Harrison answers:

It is well - and incorrectly - known that the fill ratio is 80% if the database is set up

to retain space for new versions. I've read it often from sources who should know.

But I've also read the code and was around when it was designed. When space is

reserved, the system leaves space for one fragmented record header for every

primary record version stored on a page.

A primary record version is the newest version of a record - back versions, blobs,

and fragments don't count.

A fragmented record is one that is split across pages, either because it was longer

than a page or because it was forced to be on a particular page and didn't fit

completely there.

A fragmented record header is a normal record header plus a pointer to the page

and line of the fragmented part of the data. Counting on my fingers, I think it's 22

bytes, of which six plus three fill bytes occur only in fragmented records.

So, if your records compress to less than 9 bytes, you'll have more than 50%

reserved space.

In this case, I would use that switch. The reserved space is used only for modified

and deleted records. If there is no space on page when a modification or delete is

done, Firebird will move the back version to a different page. That's expensive, but

not nearly so expensive as having all pages half filled.

Christian Kaufmann continues:

OK. But if I understand correctly, even an update of a single record, where I change

only one field forces Firebird to add a new copy of it and then, a new page will be

necessary?​

47

Ann W. Harrison answers:

Data is stored on data pages and index entries are stored on b-tree pages, so the

number and types of indexes don't affect data storage.

If you use the -use_all_space switch, the database will put as many records as can

possibly fit on each page. When you modify a record, Firebird first checks to see if

the old version will fit on the same page with the new version. If not, then the old

version will be put on a previously allocated data page for that table that does have

space. First choice goes to dirty pages in the cache, second to other data pages in

the cache, third to pages on disk.

If there is no previously allocated data page for that table with space, Firebird will

take a free page in the file and allocate it to the table. If there are no free pages in

the file, Firebird will extend the file and allocate the new page to the table.

When the back version is stored on a page, that page is available for new records

or back versions. Eventually, the back version will become unnecessary and it will

be removed, leaving space on that page for a back version of one of the newer

records.

Until InterBase 3, we didn't reserve space for modifications. The first set of updates

and deletes after the data was loaded tended to create a lot of I/O as back versions

required new pages but eventually removing old versions and deleted records

would create space and things got faster. The reserved space was added to reduce

that "settling in" cost, but given the size of your records, the algorithm produces

too much free space and you do excessive I/O because pages are only 60% full.

You can only compress entire databases with the -use_all_space restore
parameter, which can cause problems with frequently updated tables.
With FBOpt, you can compress individual tables where it really matters.

IBPhoenix

48

Automatic Test Creation
In the last issue, we introduced the testing system utilized in the development
of Firebird and explored its capabilities for creating automated tests for
database interactions in any Firebird-dependent applications. These tests can
greatly simplify the transition between different versions of Firebird.

Creating tests for existing applications can be challenging. These applications
usually involve numerous SQL queries and data operations, necessitating the
creation of a substantial number of tests. Consequently, we will now explore
various options for programmatically generating these tests.

49

The main challenges in automated test creation

Tests that share similar characteristics can be created programmatically with

relative ease. This can be achieved by augmenting a test template with variable

components, including:

The SQL command (along with any parameters)

The execution plan

The data used by the command

The expected output of the SQL command

Thus, the primary challenge lies in gathering this information and storing it in a

format that the test generator can effectively utilize.

An essential step in the process is identifying testable commands and grouping

them according to test templates. SQL queries are ideal candidates for automated

test generation because they can be tested independently, follow a consistent

structure, and can share a common test database. Queries can be further

categorized into two main groups: static and parameterized.

Generating tests for data modification operations is more challenging, primarily

because it’s difficult to create a unified template with a reasonable number of

variable elements. Additionally, many of these operations must be executed

together due to business logic, making it impractical to test them in isolation. The

significant differences between these operations often make it challenging—if not

impossible—to develop a single template for testing.

The exception is modifications encapsulated within stored procedures, which

significantly simplify template creation.

Gathering information about SQL statements can be challenging for several

reasons:

They are scattered across various parts of the application’s source code.

They are defined in hard-to-reach structures, such as within Delphi components.

They are generated programmatically in ways that hinder easy access, such as

with various ORMs

50

When SQL statements are defined in hard-to-reach structures, a similar approach

can often be applied. For instance, if they are stored within Delphi components,

the DFM files can be processed in text format.

The primary challenge in extracting queries from source code is dealing with

parameterized queries, as it is impossible to determine the exact values of the

parameters used during execution.

When it comes to programmatically generated SQL statements, the ability to

collect executed SQL largely depends on how you create them. If you’re using an

ORM, it is highly likely that it includes built-in support for logging SQL statements

to a file. For example, frameworks like Entity Framework, Hibernate, Django ORM,

SQLAlchemy, ActiveRecord, Eloquent, and GORM offer this functionality. If you

have your own SQL generation system, it’s straightforward to integrate logging

capabilities as well.

If none of the aforementioned options are viable, you can obtain the necessary

information using the Firebird trace feature.

Extracting SQL statements through logging is much easier if you’re using a

dedicated system to test your application, as the logs are typically smaller and

provide better coverage of the full range of operations. If such a system is

unavailable, the only option is to generate logs from the application’s live

operation.

Using Firebird trace

Using Firebird trace is simple and straightforward. If you’re not using a Firebird

trace tool such as Upscene’s TraceManager, you can always use the fbtracemgr

utility that comes with Firebird along with a manually created configuration file

(use redirect to file to save the trace).

You can use the fbtrace.conf file from your Firebird installation as a template

for your configuration file, or use the one below:

51

database = %[\\/]my_database.fdb

{ # Do we trace database events or not

​ enabled = true

​ # Put sql statement execution finish\fetch to eof records

​ log_statement_finish = true

​ # Trace only SELECT statements

​ include_filter = %(SELECT)%

​ # Print access path (plan) with sql statement

​ print_plan = true

​ # Use legacy (false) or explained (true) plan format

​ #explain_plan = true

​ # Print detailed performance info when applicable

​ #print_perf = true

​ # Put finish record only if its timing exceeds X milliseconds

​ time_threshold = 0

​ # Maximum length of SQL string logged

​ max_sql_length = 30000

​ # Maximum length of individual string argument we log

​ max_arg_length = 800

​ # Do not log session init/finish events

​ log_initfini = false

}

If you wish to collect execution plans in extended form instead of the classic

version, simply uncomment the explain_plan option. If you wish to collect also

the performance counters (table access statistics), uncomment the print_perf

option.

The resulting trace log needs to be processed further because it contains many

entries similar to the following:

2024-08-28T09:58:36.1840 (1974:0x7f004dfb0640) EXECUTE_STATEMENT_FINISH

​ employee.fdb (ATT_96, SYSDBA:NONE, NONE, TCPv4:127.0.0.1/38798)

​ /opt/firebird/bin/isql:11033

​ (TRA_2935, CONCURRENCY | WAIT | READ_WRITE)

Statement 102:

select * from country

^^^

​PLAN (COUNTRY NATURAL)

16 records fetched

​ 0 ms, 20 fetch(es)

52

​​2024-08-28T10:28:31.4820 (1974:0x7f004df91dc0) EXECUTE_STATEMENT_FINISH

 employee.fdb (ATT_105, SYSDBA:NONE, NONE, TCPv4:127.0.0.1/36458)

 /usr/bin/python3.11:13225

 (TRA_2942, CONCURRENCY | WAIT | READ_WRITE)

​Statement 102:

select * from country where currency = ?

^^^

PLAN (COUNTRY NATURAL)

​param0 = varchar(10), "Euro"

​6 records fetched

 0 ms, 21 fetch(es)

​2024-08-28T10:36:38.0520 (1974:0x7f004df923c0) EXECUTE_STATEMENT_FINISH

 employee.fdb (ATT_111, SYSDBA:NONE, NONE, TCPv4:127.0.0.1/33016)

 /usr/bin/python3.11:13665

 (TRA_2945, CONCURRENCY | WAIT | READ_WRITE)

​Statement 203:

select * from country where currency = ?

^^^

PLAN (COUNTRY NATURAL)

​param0 = varchar(10), "Dollar"

​6 records fetched

 0 ms, 21 fetch(es)

​2024-08-28T10:37:14.7370 (1974:0x7f004df923c0) EXECUTE_STATEMENT_FINISH

 employee.fdb (ATT_112, SYSDBA:NONE, NONE, TCPv4:127.0.0.1/52064)

 /usr/bin/python3.11:13716

 (TRA_2946, CONCURRENCY | WAIT | READ_WRITE)

​Statement 304:

select * from country where currency = ?

^^^

PLAN (COUNTRY NATURAL)

​param0 = varchar(10), "Euro"

​1 records fetched

 0 ms, 21 fetch(es)

53

The simplest way to achieve this is by using a Python script with the firebird-

lib library, which includes a trace log parser that outputs information as

structured objects. A key advantage of this parser is its compact output, as it

identifies repeated information and emits relevant objects only on their first

occurrence. On subsequent occurrences, it references these objects, reducing

redundancy. Specifically, this applies to SQLInfo and ParamSet objects, which

contain details about the SQL command and its unique combination of parameters.

The following script processes the trace log and lists unique SQL queries along

with their corresponding (unique) parameter sets:

/// script

requires-python = ">=3.11"

dependencies = [

"firebird-lib~=1.5",

]

///

​​import sys

from collections import defaultdict

from firebird.lib.trace import TraceParser, ParamSet, SQLInfo, EventStatementFinish

​​params = {}

queries = {}

query_params = defaultdict(set)

​​parser = TraceParser()

with open(sys.argv[1]) as f:

 for obj in parser.parse(f):

 if isinstance(obj, ParamSet):

 params[obj.par_id]= obj

 elif isinstance(obj, SQLInfo):

 queries[obj.sql_id] = obj

 elif isinstance(obj, EventStatementFinish):

 if obj.param_id is not None:

 query_params[obj.sql_id].add(obj.param_id)

​for q in queries.values():

 print(q)

 for p in query_params.get(q.sql_id, []):

 print(' ', params[p])

If you save the sample trace log to a file named sample-trace.log and the

script to process_log.py, you can run the following command:

54

 pipx run process_log.py sample-trace.log

To get next output:

 SQLInfo(sql_id=1, sql='select * from country',

​ plan='PLAN (COUNTRY NATURAL)')

 SQLInfo(sql_id=2, sql='select * from country where currency = ?',

​ plan='PLAN (COUNTRY NATURAL)')

 ​ ParamSet(par_id=1, params=[('varchar(10)', 'Euro')])

​ ParamSet(par_id=2, params=[('varchar(10)', 'Dollar')])

An alternative to using a parser is the IBPhoenix Trace Plugin, which directly
generates data in JSON or protobuf formats, making it suitable for machine
processing. However, in this case, you’ll need to handle the reduction of
redundant output within your own code.

Data storage

While it may be possible to merge the process of extracting SQL command data

with test generation, it is advisable to separate these steps. First, store the

extracted data in a suitable format, then use it with the test generator. This

approach simplifies test updates when SQL statements are modified.

Data should be stored in a structured format that allows for easy manual or

automated processing later. While it may be tempting to store the data in text files

under version control, using a database for storage is far more efficient and

convenient.

The design of the database structure is beyond the scope of this article, as it

depends on various factors, including the nature of the data, the method of

acquisition, and the requirements for updates and future use. However, designing

such a database should not be difficult for an experienced developer.

Test templates can also be stored in this database, along with information

regarding the association of individual SQL commands with their corresponding

templates.

55

Test generator

Test templates form the foundation for generating automated tests. To begin, it’s

advisable to manually create a test for one representative SQL statement from

each category you’ve collected. From this original test, you can then modify it to

create new tests for different statement. This approach makes it easier to identify

both commonalities and differences across tests.

Next, you’ll need to decide how to represent your templates and how to implement

them in the test generation process. There are several options to consider. If your

requirements are simple—such as creating tests by replacing text in the template

or making minor adjustments based on straightforward branching rules—it may be

most efficient to write a custom generator in the programming language you’re

most familiar with.

However, if your generation process demands more complex rules for creating

variations, it is generally better to leverage a dedicated templating system.

Numerous options are available for this purpose, including Jinja2 , Mako , Cog

, CTemplate , Mustache , Handlebars , Apache FreeMaker . Your choice

will determine whether you can utilize an existing tool for test generation or if you

will need to develop your own solution.

1. Jinja2

2. Mako

3. Cog

4. CTemplate

5. Mustache

6. Handlebars

7. Apache FreeMaker

[1​] [2​]

[3​] [4] [5] [6​] [7​]

56

https://wwwint.ibphoenix.com:25443/EmberWings/24-03/test-generators.html#_footnoteref_1
https://github.com/pallets/jinja/
https://wwwint.ibphoenix.com:25443/EmberWings/24-03/test-generators.html#_footnoteref_2
https://www.makotemplates.org/
https://wwwint.ibphoenix.com:25443/EmberWings/24-03/test-generators.html#_footnoteref_3
http://nedbatchelder.com/code/cog/
https://wwwint.ibphoenix.com:25443/EmberWings/24-03/test-generators.html#_footnoteref_4
https://github.com/olafvdspek/ctemplate
https://wwwint.ibphoenix.com:25443/EmberWings/24-03/test-generators.html#_footnoteref_5
https://github.com/mustache/mustache
https://wwwint.ibphoenix.com:25443/EmberWings/24-03/test-generators.html#_footnoteref_6
https://github.com/handlebars-lang/handlebars.js
https://wwwint.ibphoenix.com:25443/EmberWings/24-03/test-generators.html#_footnoteref_7
https://freemarker.apache.org/

...And now for something completely different

The Tale of the Three Servers

Once upon a time, in a bustling data center, there lived three little servers. They

were brothers, and each one wanted to build the best system to store and protect

the world’s precious data.

The first little server was eager and didn’t want to waste time. "I’ll keep things

simple," he said. "I’ll build my system using basic flat files. It’s easy and fast!" So, the

first little server built his system by saving data in plain files, scattered across

directories.

Before long, the data began to pour in, and the first little server was feeling quite

proud of his speedy setup. But one day, the Big Bad Query came along. This was no

ordinary query—it was complex, heavy, and hungry for data.

"Let me in, let me in, little server," the Big Bad Query demanded, "or I’ll crash your

system down!"

57

"Not by the code on my hard drive!" replied the first little server. But the Big Bad

Query was powerful. It huffed and puffed and sent complicated search requests

that overwhelmed the little server’s flat-file system. In no time, the system

crashed, and data was lost in the chaos. The first little server had no choice but to

flee to his brother’s system for help.

The second little server had taken more time to think things through. "I’ll be

smarter than that," he said. "I’ll use a <CENSORED> relational database system.

Structured tables, relationships, and indexes will protect me from any trouble!" So,

the second little server built his system with SQL, neatly organized tables, and

strong constraints.

The data flowed in smoothly, and for a while, everything seemed perfect. But soon

enough, the Big Bad Query came back, more complex than ever. "Let me in, let me

in, little server," it roared, "or I’ll crash your system down!"

"Not by the code in my relational tables!" cried the second little server. But the Big

Bad Query was even more cunning this time. It unleashed massive joins, nested

subqueries, and overloaded the system with concurrent requests. The relational

database struggled under the pressure, slowing down until it became

unresponsive. The second little server had to abandon his system and run with his

brother to the third server’s setup.

Now, the third little server had been quietly working on his system for a long time.

He was careful and wise, and he had chosen to use Firebird—a strong, reliable

database known for its resilience and power.

"I’ll build my system using Firebird," he said confidently. "It’s lightweight, yet

robust. It can handle heavy loads, and it won’t let me down."

The third server set up his Firebird database with careful planning. He used its

powerful features like multi-generational architecture, high concurrency, and

strong support for stored procedures and triggers. Firebird’s small footprint didn’t

fool him; he knew it packed a punch.

When the Big Bad Query returned, it was more fearsome than ever. "Let me in, let

me in, little server," it bellowed, "or I’ll crash your system down!"

"Not by the code in my Firebird database!" answered the third server bravely.

58

The Big Bad Query tried everything—complex transactions, enormous datasets,

simultaneous users—but Firebird was ready. It managed resources efficiently,

handled concurrency with ease, and didn’t let the heavy load bring it down. The Big

Bad Query couldn’t crash the system, no matter how hard it tried.

Exhausted and defeated, the Big Bad Query finally gave up and slunk away, leaving

the third little server’s system running smoothly. The three brothers celebrated,

and the first two servers learned an important lesson: sometimes, the best solution

isn’t just about being simple or building quickly. A smart, well-designed system

using Firebird can stand strong against even the toughest of queries.

And so, the three servers lived happily ever after, with Firebird as their protector,

ensuring data flowed smoothly and safely for all time.

59

...

The Firebird project was created at SourceForge​​ on

July 31, 2000

This marked the beginning of Firebird's development as an

open-source database based on the InterBase source code

released by Borland.

Since then, Firebird's development has depended on

voluntary funding from people and companies who benefit

from its use.​​

​Thank you for your support!​

EmberWings is a quarterly magazine published ​by the

Firebird Foundation, free to the public after a 12-month

delay. Regular donors​ get exclusive early access to every

new edition upon release​.

Firebird Foundation z.s.

Firebird website Firebird on GitHub

...

https://sourceforge.net/projects/firebird/
https://store.firebirdsql.org/
https://www.firebridsql.org/
https://github.com/FirebirdSQL

