
...

2024​/2

...

June 2024​
​www.ibphoenix.com​

emberwings@ibphoenix.com​

http://www.ibphoenix.com/
mailto:emberwings@ibphoenix.com

Support & tools for Firebird

IBPhoenix is the leading provider of information​, tools​
and services​ for Firebird users and developers

IBPhoenix website & e-shop

If you are interested in publishing or advertising

in EmberWings magazine, please send us an

email​ or message​.​​

...

https://www.ibphoenix.com/
mailto:emberwings@ibphoenix.com
https://shop.ibphoenix.com/contact/

In This Issue:In This Issue:
Your Voice, Our Vision: The Future of

EmberWings Magazine

Wisdom of the elders

Using Firebird QA tools

Interview with Hajime Nakagami

Development update: 2024/Q2

Toolbox: DBeaver CE

Answers to your questions

Optimization of the database structure

..And now for something completely

different

Your Voice, Our Vision: The Future of
EmberWings Magazine
As we launch the second issue of EmberWings Magazine, we are thrilled by the

positive feedback received from our debut edition. Your kind words have been

truly encouraging. We were delighted to hear that you enjoyed our articles, and

that our content struck the right balance between technical detail and readability.

Your feedback has reinforced our commitment to delivering high-quality, relevant

content.

Because you have expressed satisfaction with the basic layout of the magazine, we

will therefore continue to maintain it. So each issue will have two main articles, a

review of a product that caught our attention, an interview with interesting people

from the Firebird community, answers to tricky questions, an overview of

developments within the Firebird project, and, of course, some thematic humor.

We are also pleased that you like the graphic style of the magazine. We will

continue to try to bring you attractive Firebird themed images.

Thank you for your interest and support. They are a great encouragement to us in

our quest to make EmberWings a stable resource for all Firebird RDBMS fans and

users. We hope you will keep us in your favor.

Your EmberWings editors

4

Under the ancient oak, by the flickering campfire, a young native approached the tribal
shaman. "Wise Shaman," the young one began, "how can we keep our paths clear when
the spirit of the land changes?"

The shaman picked up a smooth stone and cast it into the river. "Tell me, young one,
how does the river respond to the stone?"

The young native watched the ripples and replied, "It flows and adapts around the
stone, continuing its journey."

The shaman nodded, then pointed to the sky. "How do the stars maintain their place in
the heavens?"

The young native looked up and said, "They remain constant, guiding us through the
night."

The shaman smiled, "And how does our spirit ensure harmony with the new rhythms of
the earth, like the changing of the database or upgrading the server?"

5

The young native pondered and responded, "With sacred tests that trace every query
and procedure, revealing hidden paths and shifts."

The shaman nodded again, "Yes. These automatic tests are like the river and the stars.
They adapt to changes, yet remain steadfast in their guidance. When the database
transforms, or the server changes its behavior, these tests uncover new paths, ensuring
our journey remains smooth and true."

The young native, understanding now, asked, "So, the tests are the silent guardians,
guiding us through unseen transformations?"

The shaman closed his eyes and replied, "Indeed. The true power lies in their silent
vigilance. Trust in these tests, for they reveal hidden mysteries and ease our passage
through the ever-changing landscapes of our spirit and the earth."

6

...

Using Firebird QA tools

Automated testing is an integral part of Firebird development. Because
standard tools were not sufficient for the unique requirements of database
server testing, the Firebird project developed specialized test tools that have
undergone a number of changes over the years. Currently, Firebird uses a
testing system based on the pytest tool, supplemented by a specialized plugin
designed for Firebird’s specific testing requirements.​

Although primarily designed for internal use, its features make it easy to create

automated tests for database interactions of any Firebird-dependent application.

As already mentioned in the last issue, such tests can significantly facilitate the

transition between individual versions of Firebird. In this article you will learn how

to create and run such tests.

7

Introduction

The Firebird QA tools are built on pytest, which is a powerful and widely-used

testing framework for Python.

If you’re new to Python, don’t worry. Using pytest is simple, and writing tests

requires only basic knowledge of Python. In fact, if you know how to use Firebird

ISQL tool, you can get along with simple tests just by replicating the common

pattern for test files without any knowledge of Python. Of course, you will need to

know Python to write more sophisticated tests, but writing tests is actually the

easiest way to gradually improve your Python skills without a steep learning curve.

To install the QA tools, you only need Python version 3.8 or later (we recommend

Python 3.11 or 3.12), and the pipx tool installed. Details on their installation can

be found in the article "Using tools written in Python" published in the first issue.

Installation command from console:

 pipx install --include-deps firebird-qa

You can verify that pytest is properly installed with:​

 pytest --version

If you later decide to use any of the plugins from the vast library of pytest

extensions, you can install them using the pipx inject command. For example, the

pytest-repeat plugin, which enables repeated execution of tests, can be

installed using:​

 pipx inject firebird-qa pytest-repeat

8

Testing database interactions

Testing the interactions of a user application with a database is not, in principle, a

complex problem. The goal of these tests is not to verify the correct functionality

of the application, but whether the server responds to the application’s commands

in the desired and optimal way. Since the application communicates with Firebird

through SQL commands, it is basically just executing them with controlled

conditions, verifying that they will run without problems and with the required

parameters, and returning the required results.

Tests can be very simple because we focus on individual interactions and not on

entire functional units (which consist of a sequence of simpler interactions). In

practice, this means that we will test individual SQL commands entered by the

application, whether they are queries, data modifications or procedure calls.

We will need at least two databases for testing. One database will be used by tests

that do not modify data, and should approximate a typical production database in

terms of data structure and scope. Other databases can be either without data, or

with only the necessary amount of data to test commands that change the

contents of the database.

The reason for such a division of databases is simple. Each test must have a well-

defined environment, including the database. For tests that modify the content of

the database, it would be necessary to return it to its original state at the end of

the test, which unnecessarily complicates either the implementation of the tests or

their runtime environment. It is much easier to create a new database (either using

an SQL script, from a backup or by simply copying) before starting the test and

delete the database after it has run. Thus, the size of the database greatly affects

the speed of running the tests. Tests that do not change the database can directly

use the same database, so its size does not affect the speed of running the tests in

any way.

Each test has basically the same structure:​​

Uses a specific database

9

​Executes one particular SQL statement

​Verifies that command execution conforms to expected values or parameters​

SQL statements should closely copy the statements used by the application.

However, applications often use parameterized queries. In such a case, it is

possible to either create a simple test with a single variant of the command with

fixed parameters, or to create a parameterized test with parameters given by a set

of values or using a function.

Validation of command execution against expected parameters may vary and

depends on the nature of the command. Correct execution is automatically

verified, however, it is advisable to verify return values (in case of queries) or

changes made. In the case of queries, it is also advisable to check whether the

execution plan corresponds to what is expected. Typically, it is not necessary to

test the execution speed of the command, because for simply built tests it is

sufficient to work with the execution time of the test as a whole.

Basic concepts

Pytest is built around a few core concepts:

Test Functions: Tests in pytest are simply Python functions that begin with the

prefix test_. These functions contain the code to be executed and typically

include assertions to verify expected behavior.

Fixtures: Fixtures are functions that provide a baseline set of data or functionality

for tests to use. They are used to set up preconditions, such as initializing a

database or establishing connections, before test functions are executed. They are

also responsible for proper cleanup of transient resources.

Assertions: Assertions are statements used in test function to verify the expected

behavior. They typically have form of standard Python assert statement:

 assert <boolean expression> [,<message>]

10

Optional <message> is printed along assert expression introspection when

assertion is evaluated as False.

Test Discovery: Pytest automatically discovers and runs tests within the project

directory structure, eliminating the need for manual test suite configuration. Tests

can be organized into modules and subdirectories, and pytest will recursively

search for and execute all test functions.

Plugins: Pytest offers a plugin architecture that allows users to extend and

customize its functionality. There are hundreds of community-maintained plugins

available for pytest, covering a wide range of use cases, including test coverage,

parallel execution, and integration with other tools and frameworks.

The firebird-qa plugin then creates a superstructure on top of this basic

architecture, the elements of which can be divided into several groups:

Uniform format of tests. Each test is a separate file that can contain one or more

test functions (which, however, represent different variants of the same test, e.g.

for different platforms or versions of Firebird). The plugin also defines

descriptive test metadata (various identifications, name, notes, etc.) and support

for test function metadata (eg assignment only to a certain test platform or

Firebird version, etc.)

Uniform test repository layout.

Configuration of the environment for running tests according to defined

parameters. This is primarily a selection of only those test functions (test

variants) that correspond to the current platform and version of Firebird, the

configuration of the connection to the tested server and its tools, data files, etc.

Fixtures for securing and managing resources used by Firebird tests. These are

primarily databases, users, roles, etc. A special role is played by the fixture,

which provides a multifunctional Action object for working with Firebird.

11

Test repository

Tests and other necessary files are organized in the directory structure of the so-

called test repository. Here is layout of sample repository​:

.

├── backups

├── databases

│ ├── employee3.fdb

│ └── employee4.fdb

├── files

├── tests

│ ├── parametrized

│ │ ├── __init__.py

│ │ └── test_01.py

│ ├── __init__.py

│ ├── test_01.py

│ ├── test_02.py

│ ├── test_03.py

│ └── test_04.py

├── firebird-driver.conf

└── pytest.ini

Backup files that would be used to create test databases should be stored in

backups directory.

Databases that will be either copied to test databases or used directly should be

stored in databases directory.

Any data files used by tests should be stored in files directory

All tests should be stored in tests directory structure (you can organize them

freely in sub-directories there). Because tests are written in Python, the test

suite directory is a Python package, so each directory MUST contain an empty

__init__.py file.

12

The firebird-driver.conf file is mandatory, and must contain

configuration for at least one Firebird server. Package with examples for this

article contains configuration file that defines server local with standard

SYSDBA/masterkey credentials.

File pytest.ini is an optional pytest configuration.

To run your tests, you need to open the terminal window in this directory and run

pytest from there.

Your first test

Here is an example of simple test that uses standard ISQL tool to execute a query

against employee database, and verifies its output and execution plan:

"""

ID: query.01

TITLE: Query from JOB with index filter

DESCRIPTION: This test uses database specified by alias

​ (in databases.conf), and has description that

​ spans multiple lines.

"""

import pytest

from firebird.qa import *

fixture providing test database

db = existing_db_factory(filename='#employee')

isql script executed to test Firebird

test_script = """

set plan on;

select JOB_CODE, JOB_TITLE, JOB_COUNTRY from JOB

where JOB_COUNTRY = 'France';

"""

13

this is expected output from test script execution

expected_stdout = """

PLAN (JOB INDEX (RDB$FOREIGN3))

JOB_CODE JOB_TITLE JOB_COUNTRY

SRep Sales Representative France

"""

fixture for test execution and evaluation

act = isql_act('db', test_script,

​ substitutions=[('=', ''), ('[\t]+', ' '))

def test_1(act: Action):

​ act.expected_stdout = expected_stdout

​ act.execute()

​ # This evaluates test outcome

​ assert act.clean_stdout == act.clean_expected_stdout

Test metadata

The first block of text enclosed by triple double quotes is so-called docstring of

the Python module with your test. The firebird-qa plugin uses it for definition of

test metadata. Each metadata item must start on separate line starting with item

tag followed by colon. The only mandatory items are:

ID: Unique test identification. Can contain alphanumeric characters, dot,

underscore and hyphen. Must start with alphanum character.

TITLE: Test title. Multiline titles are concatenated into single line (line breaks

removed and line contents separated with single space).

DESCRIPTION: Test description. Could span multiple lines.

14

Module imports

Imports listed in example are manadatory for all tests. You may import additional

Python modules that your test needs.

Test database

Each test typically requires a database. These are provided as fixtures for your

tests that are created either by existing_db_factory or db_factory

function call.

The existing_db_factory() function creates fixture for directly used databases (i.e.

for tests that do not modify its content). You can identify the database via its alias

name in databases.conf file using #alias format like in this example, or with

filename of the database located in databases sub-directory. The returned

fixture must be assigned to module-level variable. Name of this variable is

important, as it’s used to reference the fixture in other fixture-factory functions

that use the database, and the test function itself.

The db_factory() function creates fixture for temporary test databases, where

function arguments specify how database is created, initialized and removed:

If not specified otherwise, the fixture creates new empty database.

To create database from backup file, use from_backup argument. File must be

located in backups directory.

To use copy of prepared database, use copy_of argument. File must be located

in databases directory.

The name of created temporary database could be specified with filename

argument. Default database name is test.fdb.

It’s possible to specify page_size and sql_dialect of created database.

These options are ignored if database is created as a copy, or from backup.

It’s possible to specify database charset (not applied for backups and copies)

that is also default connection charset.​

15

After temporary database is created (by either method), it could be initialized

with SQL commands (executed via isql) specified using init argument.

Database is created using default server user and password. It’s possible to

specify alternate credentials with user and password arguments.

The fixture ensures that database is created an initialized during test setup, and

removed during test teardown. To disable either phase (because create/drop is

performed by test itself), use do_not_create or do_not_drop arguments.

By default, database is set to async write after creation to speed up database

operations. It’s possible to change that with async_write argument.

Because almost all Firebird tests need a database, the QA plugin works with

concept of primary test database. This fixture is typically named db, and is used by

other fixtures that work with database.

Test script and expected output

Our first test uses ISQL to execute a SQL script, captures its output and compares

it with expected one. Hence we need to define these. The recommended way is to

use variables defined at module level for such blocks of text.

Action fixture

The Action object provided by action fixture is a Swiss Army Knife for your tests.

This fixture is created by isql_act() or python_act() factory functions.

These functions are identical (it’s in fact only one function available under two

names). It’s a legacy from old fbtest QA system that had two types of tests, and

such distinction was retained during conversion of tests from the old system to the

new one. Although there is no difference, it’s recommended to retain the

distinction in new test by using:

isql_act for simple tests that use single ISQL test script.

python_act for more complex test implementations.

16

This function has next arguments:

db_fixture_name: REQUIRED name of database fixture (primary database). Note

that database fixture is referenced by name, not by value, so you have to pass the

fixture variable name as string!

script: Optional SQL script that tests the server.

substitutions: Optional list of additional Regex substitutions for stdout/stderr

cleanup. In the example, there are substitution that remove = characters and

replace tabulators with single space.

The returned fixture must be assigned to module-level variable. It’s typically

named act.

The test function

All test functions have at least one parameter: the Action object provided by action

fixture created earlier.

Our simple test has only three lines of code:

First line assigns the expected output defined at module level to the

expected_stdout member variable in the Action object.

Second line executes the test script via ISQL.

The third line asserts that output from script execution is equal to expected

output. It uses "cleaned" version of both strings (that’s the reason why we assigned

the expected output to the Action object on first line) that have noise content

removed or normalized in other ways for simpler comparison. Default cleanup

removes SQL>, CON> and other ISQL "noise" strings and all leading and trailing

whitespace characters from each line of text. In our example with additional

substitutions, it also removes the header/data separator from query output.

17

Test execution

To execute tests from your repository, just open the terminal window in it and

execute the pytest there. However, you must always provide --server NAME

parameter where NAME is the server configuration name in firebird-

driver.conf file. As you’ll typically use only one test server, it’s practical to

create pytest.ini file in your test repository with command line and other

pytest configuration options you want to always use. The recommended content is:

 console_output_style = count

 testpaths = tests

 addopts = --server local --install-terminal

Now you can just execute:

 pytest

to run all tests in your test repository. With the above sample test there, you

should see output like this:

============================= test session starts ===========================

​platform linux -- Python 3.11.9, pytest-8.2.0, pluggy-1.5.0

​System:

 ​encodings: sys:utf-8 locale:UTF-8 filesystem:utf-8​

Firebird:

 ​configuration: firebird-driver.conf

 ​ODS: 13.1

 ​server: local [v5.0.0.1306, SuperServer, Firebird/Linux/AMD/Intel/x64]

 ​home: /opt/firebird

 ​bin: /opt/firebird/bin

 ​client library: libfbclient.so.2

​rootdir: /home/job/qa-user

​configfile: pytest.ini

​plugins: firebird-qa-0.20.0

​collected 1 item

​query.01 . [1/1]

​============================= 1 passed in 0.12s =============================

18

More tests

The vast majority of database interaction tests have a uniform structure, which

greatly simplifies their creation. You can use the above example as a template for

any number of other tests that work with a single static SQL query. Just copy the

original file under a new name, change the description in the metadata, the text of

the SQL query and the expected output from ISQL.

In the next issue, we'll show you how all the steps can be automated using simple
Python script.

Although most tests have a uniform structure, some tests may require slightly

different implementation. Therefore, we will now demonstrate the most typical

ones.

Test variants

The reasons for creating alternative test implementations can be varied. The most

typical is the need to modify the test for different versions of Firebird. Another

common reason is the difference in implementation for different platforms.

When applying tests to different versions of Firebird, it is necessary to use a

database with the corresponding ODS structure. If the database used by the test is

created using a script or from a backup, there is no problem. However, if the test

uses the database directly or a copy of it, it is necessary to copy the database with

the corresponding structure to the databases directory before starting the test.

An alternative solution is to create several test functions and assign each different

database to the corresponding version of Firebird. The pytest plugin will then

automatically select the test function corresponding to the currently used version

of Firebird.

Modification of first test that uses different databases could look like:

19

-- Test version for Firebird 3

fixture providing test database for Firebird 3

db3 = existing_db_factory(filename='employee3.fdb')

fixture for test execution and evaluation

act3 = isql_act('db3', test_script)

@pytest.mark.version('>=3,<4')

def test_for_fb3(act3: Action):

​ act3.expected_stdout = expected_stdout

​ act3.execute()

​ assert act3.clean_stdout == act3.clean_expected_stdout

-- Test version for Firebird 4 and 5

fixture providing test database for Firebird 4 and 5

db4 = existing_db_factory(filename='employee4.fdb')

fixture for test execution and evaluation

act4 = isql_act('db4', test_script)

@pytest.mark.version('>=4,<6')

def test_for_fb_4_and_5(act4: Action):

​ act4.expected_stdout = expected_stdout

​ act4.execute()

​ assert act4.clean_stdout == act4.clean_expected_stdout

The test functions remain essentially the same, only using different fixtures for the

database and the Action object. Assigning a function to a Firebird version is done

using the pytest.mark.version decorator, which is passed the specification of

the required version. Similarly, a function can be assigned to a specific platform

with the pytest.mark.platform decorator.

20

Because Firebird 5 can access Firebird 4 databases, we can use single database for

both Firebird versions.

More complex tests

Some tests cannot be implemented using ISQL scripts, or the use of ISQL is too

impractical. For example, if a test query returns a large number of rows, it may not

be practical to test its output because of the amount of text that would need to be

included in the test. Testing only the execution plan without actually executing the

query is not a suitable solution, as is limiting the query output with, for example,

the `FIRST' clause (it can change the query execution time, which we are also

interested in). The solution is to execute the query directly from Python, instead of

using ISQL, which allows us to retrieve the result of the query but ignore it entirely.

A corresponding modification of the initial test may look, for example, as follows:

"""

ID: query.04

TITLE: Query from JOB with index filter

DESCRIPTION: This test uses Python code to fetch all returned data

​ without output.

"""

import pytest

from firebird.qa import *

db = existing_db_factory(filename='#employee')

test_query = """

select JOB_CODE, JOB_TITLE, JOB_COUNTRY from JOB

where JOB_COUNTRY = 'France';

"""

expected_plan = """Select Expression

-> Filter

​ -> Table "JOB" Access By ID

​ -> Bitmap

​ -> Index "RDB$FOREIGN3" Range Scan (full match)

"""​

21

fixture for test execution and evaluation

act = python_act('db')

def test_1(act: Action):

​ # Open the connection ("with" ensures cleanup)

​ with act.db.connect() as con:

​ # Create cursor

​ with con.cursor() as cur:

​ cur.execute(test_query)

​ # Fetch all data so test execution time contains the fetch

​ # time, but do not store anything anywhere

​ for _ in cur: pass

​ # This evaluates test outcome

​ act.stdout = cur.statement.detailed_plan

​ act.expected_stdout = expected_plan

​ assert act.clean_stdout == act.clean_expected_stdout

This version of the test uses the EXPLAINED version of the execution plan. To

avoid the need to preserve the indentation of the expected output, we will use a

cleaned version of the output for comparison.

Also this test can be used as a template in which you just need to change the query

being executed and the expected execution plan.

Parameterized tests

Another common case is the use of parameterized queries. For example, for our

first test, the query used by the application might look like this:

 select JOB_CODE, JOB_TITLE, JOB_COUNTRY from JOB

 where JOB_COUNTRY = ?;

Also in this case, ISQL will not suffice, and we will have to use code in Python. The

Firebird driver for Python makes working with parameterized queries very easy, all

we need to figure out is how large sets of parameters we want to use and how to

supply them to the test function.

22

First of all, we recommend using only a limited set of parameters. Collections in the

range of two to ten different query calls are usually fully sufficient to verify

common and borderline query call cases. Additionally, smaller sets can be directly

part of the test code. Larger sets should be loaded from a file.

To supply parameters to the query we can, for example, use a cycle. But it is much

more convenient to use the support for test parameterization provided directly by

pytest. Tests parameterized using pytest are executed separately for each set of

parameters, as separate variants. So if an execution fails with a certain set of

parameters, it won’t affect the results of other calls, making it much easier to

identify the real source of the problem.

The parametrized test may look as follows:

"""

ID: query.parametrized.01

TITLE: Query from JOB with index filter

DESCRIPTION: This one demostrates the use of parametrized query and

​ parametrized test

"""

import pytest

from firebird.qa import *

db = existing_db_factory(filename='#employee')

test_query = """

select JOB_CODE, JOB_TITLE, JOB_COUNTRY from JOB

where JOB_COUNTRY = ?;

"""

List of expected outputs from parametrized query

expected_outputs = [

​ """JOB_CODE JOB_TITLE JOB_COUNTRY

​-------- ------------------------- ---------------

SRep Sales Representative France

""",

​ """JOB_CODE JOB_TITLE JOB_COUNTRY

-------- ------------------------- ---------------

Eng Engineer Japan

SRep Sales Representative Japan

"""

]

23

expected_plan = """Select Expression

-> Filter

​ -> Table "JOB" Access By ID

​ -> Bitmap

​ -> Index "RDB$FOREIGN3" Range Scan (full match)

"""

fixture for test execution and evaluation

act = python_act('db')

Test parameterization

@pytest.mark.parametrize('query_parameter, output_index',

​ [("France", 0), ("Japan", 1)])

def test_1(act: Action, capsys, query_parameter, output_index):

​ # Open the connection ("with" ensures cleanup)

​ with act.db.connect() as con:

​ # Create cursor

​ with con.cursor() as cur:

​ cur.execute(test_query, [query_parameter])

​ # Print data from cursor to stdout

​ act.print_data(cur)

​ # capsys is pytest fixture to capture stdout/stderr content

​ act.stdout = capsys.readouterr().out

​ act.expected_stdout = expected_outputs[output_index]

​ assert act.clean_stdout == act.clean_expected_stdout

​ # It's necessary to reinitialize the output cleaning because

​ # it's cached

​ act.reset()

​ # Check the execution plan

​ act.stdout = cur.statement.detailed_plan

​ act.expected_stdout = expected_plan

​ assert act.clean_stdout == act.clean_expected_stdout​

Test parameterization is defined by the @pytest.mark.parametrize

decorator. The first parameter of the decorator is a list of test function parameters

to be filled from the dataset. The second parameter is a data set consisting of a list

of tuples of parameters. In this case, each tuple consists of a query parameter and

an index into a list of expected query outputs (since the query output is not large,

we include it in the test).

Data from the cursor is written to standard output by the helper function

print_data provided by the Action object. The capsys fixture provided by

pytest is used to capture the printout.

24

Since we do not expect the execution plan to vary according to the parameters

passed, it is not used to parameterize the test function. However, if histogram

support will be added to Firebird, the plans may start to differ and will need to be

included in the parameterization.

If we run the test, we get output like this:

============================= test session starts =============================

​platform linux -- Python 3.11.9, pytest-8.2.0, pluggy-1.5.0

​System:

​ encodings: sys:utf-8 locale:UTF-8 filesystem:utf-8

​Firebird:

​ configuration: firebird-driver.conf

​ ODS: 13.1

​ server: local [v5.0.0.1306, SuperServer, Firebird/Linux/AMD/Intel/x64]

​ home: /opt/firebird

​ bin: /opt/firebird/bin

​ client library: libfbclient.so.2

​rootdir: /home/job/qa-user

​configfile: pytest.ini

​plugins: firebird-qa-0.20.0

​collected 2 items

​query.parametrized.01 .. [2/2]

​============================== 2 passed in 0.14s ==============================

Note that the test was performed twice. Each time with a different set of

parameters.

When a test fails

In addition to successful execution, the test can end with either an error or a

failure. An error is reported if an unexpected exception occurs during test

execution. Test failure is reported if any test condition is evaluated as false. In such

a case, pytest will print the test and failure location, and an analysis of the tested

condition.

25

An example of a test failing due to a difference with the expected query output:

============================= test session starts =============================

​platform linux -- Python 3.11.9, pytest-8.2.0, pluggy-1.5.0

​System:

​ encodings: sys:utf-8 locale:UTF-8 filesystem:utf-8

​Firebird:

​ configuration: firebird-driver.conf

​ ODS: 13.1

​ server: local [v5.0.0.1306, SuperServer, Firebird/Linux/AMD/Intel/x64]

​ home: /opt/firebird

​ bin: /opt/firebird/bin

​ client library: libfbclient.so.2

​rootdir: /home/job/qa-user

​configfile: pytest.ini

​plugins: firebird-qa-0.20.0

​collected 1 item

​query.03 F [1/1]

​=================================== FAILURES ==================================

​___________________________ tests/test_03.py::test_1 __________________________

act = <firebird.qa.plugin.Action object at 0x7fa529a11b50>

 def test_1(act: Action):

​ act.expected_stdout = expected_stdout

​ act.execute()

​ # This evaluates test outcome

​> assert act.clean_stdout == act.clean_expected_stdout

​E assert

​E Select Expression

​E -> Filter

​E -> Table "JOB" Access By ID

​E -> Bitmap

​E - -> Index "JOB_FK1" Range Scan (full match)

​E ? ^ ^^^^^\n

​E + -> Index "RDB$FOREIGN3" Range Scan (full match)...

​E

​E ...Full output truncated (4 lines hidden), use '-vv' to show

tests/test_03.py:41: AssertionError

​============================ short test summary info ==========================

​FAILED tests/test_03.py::test_1 - assert

​=============================== 1 failed in 0.15s =============================

26

Processing test results

The results of the test run are printed on the standard output, which is enough for

quick orientation. For a more detailed analysis of the results, the XML format is

more suitable. Pytest allows you to save results in the standard JUnitXML format

using the --junit-xml=filepath switch.

JUnit XML specification seems to indicate that "time" attribute should report total

test execution times, including setup and teardown. It is the default pytest

behavior. To report just call durations instead, add next option to the pytest.ini file:

 junit_duration_report = call

The Firebird plugin defines the --extend-xml switch, which when used together

with --junit-xml produces JUnitXML file with additional metadata for

testsuite and testcase elements recorded as property sub-elements. Please

note that using this feature will break schema verifications for the latest JUnitXML

schema. This might be a problem when used with some CI servers.

With a sufficient set of tests, you can very quickly detect any problems with the

transition of your applications to the new version of Firebird. Any test failures will

show you problem areas, as well as the source of problems. By processing the

JUnitXML output, it is possible to compare the execution times of individual tests

for individual versions of Firebird. However, for a more accurate evaluation of the

running time, we recommend repeating the tests, e.g. using the pytest-repeat

plugin.

27

...

Conclusion

In this short introduction to the use of Firebird QA tools, we have only touched

very superficially on the possibilities of their use, and we have completely omitted

some types of tests (e.g. writing to the database, calling procedures, etc.). However,

our goal was not an exhaustive instruction manual, as detailed description of the

features and various guides can be found in the documentation for pytest, Firebird

QA plugin and Firebird driver for Python. Our goal was primarily to demonstrate

two aspects of the use of these tools. First, that even with a minimum of work (and

even without knowledge of Python if you have a usable template) you can create

full-fledged tests of the application’s interaction with the database, and secondly,

that the presented tools and methodology have a much greater potential for use.

We hope that we have succeeded in achieving it.

In the archive attached to this issue you will find a repository with used tests and

databases. Another source of inspiration for possible test implementations can be

the Firebird test repository, especially the tests in the tests/functional

directory.

Resources:

1. pytest https://docs.pytest.org

2. Firebird QA tools https://firebird-qa.rtfd.io

3. Firebird tests https://github.com/FirebirdSQL/firebird-qa

4. Firebird driver for Python https://firebird-driver.rtfd.io

28

https://docs.pytest.org/
https://firebird-qa.rtfd.io/
https://github.com/FirebirdSQL/firebird-qa
https://firebird-driver.rtfd.io/

Interview with Hajime Nakagami
If you program for Firebird in Python, Go, Rust, Julia, Erlang or Elixir, then you

probably use a Firebird driver created by Hajime Nakagami. That's why we asked

him a number of questions for you.​

29

First, can you introduce yourself to our readers who don’t already know you?
Where do you live and what do you do for a living? Is your job in any relation to
Firebird or your Open Source projects?

I was born in 1967 and have lived in Japan my entire life. Currently, I work at

BeProud (https://www.beproud.jp/), focusing on developing web systems using

Python, Django, and MySQL. Firebird isn’t part of my job toolkit, and I don’t engage

in Open Source Software development as part of my professional duties. This lack

of dependency on Firebird and OSS in my role has had a positive influence. For

instance, it grants me the freedom to participate in interviews like this one.

Your portfolio of projects on GitHub is indeed impressive, and almost all of them
are active. How do you manage it over all these years, and how much time does
it cost you?

I’m mostly active on weekends. When starting a new project, I spend a few months

going through the documentation and protocols to understand if it’s feasible. If it

seems doable, I use my weekends to finish the first version in about 2-3 months.

After that, I work on it when I want to or as issues come up. I handle several

projects simultaneously, but I might not invest as much time in each as you might

expect. Sometimes I lose interest and switch between them, so my time isn’t evenly

distributed across all projects.

If I remember correctly, and feel free to correct me if I’m wrong, the oldest
project related to Firebird is a Python driver called firebirdsql. What was your
reason for creating this driver?

Yes, pyfirebirdsql is probably the oldest project in my repository on Github.

Back in 2002, I was working on a simple web application using Zope and Firebird

on a Windows platform. I opted for Firebird due to its straightforward installation

process and usability on Windows.

However, when the maintainer of KInterbaseDB passed away, I realized there was

no way to access Firebird from Python3. Upon examining the KInterbasDB source

code, I concluded that it would be impossible for me to maintaining it.

30

https://www.beproud.jp/

Firebird is a pretty RDBMS, compact and compliant with SQL standards, and I

thought it will be a great loss for Firebird if it became inaccessible from Python.

This prompted me to begin developing pyfirebirdsql. Initially it worked only with

Python3. Later, due to many requests, I made it work with Python 2.7 as well.

I would stay with this driver for a while, because as the author of the "official"
Firebird drivers for Python, I have been following your work on firebirdsql almost
from the beginning. I have to admit that when I was creating the FDB driver in
2011 as a replacement for KInterbasDB, which lost its main developer (and on
which Firebird testing was built), I had no idea that someone else was working
on something similar. When I proudly published the first version of FDB in
December 2011, thinking that Firebird finally has a supported driver for Python
again, it was a big surprise for me when I discovered your driver on PyPI the very
next day, which at that time (in version 0.6.5) was already a year in development
and with 20 released versions. So I hereby publicly declare that although FDB is
(was, now it’s firebird-driver) the "official" Firebird driver for Python, your
firebirdsql is older and thus more original. Anyway, for 14 years now users can
choose which driver they want to use (and I know that both are used). So the
question is, how do they differ from each other, when and how is it more
advantageous to use particular driver? The main difference between the drivers
is that FDB (and its successor firebird-driver) uses the Firebird API through the
client library, while firebirdsql directly implements the Firebird communication
protocol and therefore does not need a client library at all. Can you think of any
other differences?

Another difference is that pyfirebirdsql can connect to Firebird from version 2.5 to

version 5.0 (and possibly 6.0), and supports both Python 2.7 and 3+.

And I think that just as there are multiple driver implementations of MySQL and

PostgreSQL, it is worthwhile to have multiple implementations for Firebird.

Yes, I fully agree. While FDB supports Firebird 2.5/3.0 and both Python lines, it
does not support Firebird 4+, and firebird-driver supports only Firebird 3+ and
Python 3. With pyfirebirdsql, users are not forced to choose the path they want
to constraint themselves. Especially for users that are still on Python 2.7, your
driver is a better choice.

31

However, from personal experience I know that it is quite challenging to
maintain a project for two so much different versions of Python. So, are you
considering deprecating support for Python 2.7?

If possible, I would like to continue to support Python 2.7 as well. However, there’s

a possibility that future developments may make it challenging to sustain

compatibility with both Python lines using a single source. If that happens, I will

have to drop 2.7 support.

But maybe there is already no demand for Python 2.7? I don’t know.

Most of your projects are written in Python. Considering how Python is rapidly
developing, are you considering changing the minimum supported version to a
higher one? Personally, I have been considering moving to at least version 3.10
for some time, mainly for the possibility of using Structural Pattern Matching to
simplify and clarify the processing of variable data structures (there are many
such places in drivers).

When new versions of Python adds new features (such as time zone support), I

may discontinue support for older versions to use those features. I also

discontinue support for Python versions that are no longer supported by Github

Actions. However, I do not actively use the latest version features to clean up

internal processes.

I think I would use Pattern Matching when starting some new project.

It could be said that your projects mainly fall into two large groups. The first
consists of Python drivers for various database servers (MySQL, PostgreSQL,
SQLServer, MongoDB, Redis, Cassandra, and others), and the second consists of
Firebird drivers for various languages (besides Python, it also includes Rust,
Golang, Julia, Erlang, and Elixir). What was your reason for creating these
projects? Was it needed for other projects/work, or just purely out of interest in
the issue or for fun?

Just for fun.

I write drivers for various databases in Python because Python is the programming

language I am most familiar with, and I choose Firebird drivers as a subject to learn

a new programming language because I am familiar with Firebird’s wire protocol.

32

If I’m not mistaken, almost all your drivers are based on the network protocol of
individual databases. Can you compare the complexity of these protocols? How
Firebird’s protocol stands in comparison to other databases? Which
implementation was the most interesting and which the most challenging for
you, and why?

I can only judge by experience with protocols that I worked with, but among

RDBMS, Firebird protocol is the most complex and sophisticated. I think that

Interbase developers were clever.

PostgreSQL’s protocol is the simplest, but this does not mean it has poor

performance. Since there are many databases that follow PostgreSQL’s wire

protocol, PostgreSQL’s simple wire protocol is probably the best.

Drivers for non-OSS RDBMS are more difficult to implement, but for reasons other

than being complex or sophisticated. That was not fun for me.

When you evaluate your experience with creating Firebird drivers in different
languages, which language was the best / most interesting experience? Did you
come across any surprises?

I was happy when the first Python driver I implemented worked well. However, I

can’t say that working with these programming languages would bring too

different experiences.

Rather, I think good experiences come from collaboration. Drivers that get a lot of

feedback and pull requests are good experience. I had the best experience with the

Go driver, because it has many users and I have got a lot of feedback.​

Currently, most boring for me is the Rust driver, because there is very little

feedback on the code!​

​https://crates.io/crates/firebirust

For me, a programming language that is used by many people provides a good

experience.

What are your plans for the future? What are you up to this year?

I don’t have a plan. I don’t want to learn a new programming language right now,

but I want to get more experience with Elixir. So I would like write something in it.

33

https://crates.io/crates/firebirust

Since there hasn’t been an international Firebird conference for many years,
we’ve lost even the little contact with the community in Japan. Can you
enlighten us about the popularity of Firebird in your country, and how it is with
the Firebird user community there in general?

Unfortunately, Firebird is not used much in Japan. Therefore, the user group is also

mostly dormant. I think it’s because many systems use managed cloud databases.

However, Firebird is getting better with each new version, and as long as the

development of Firebird continues, I believe that the time will come when many

people will use it and gather again.

Thanks for you time!​

34

...

Development update: 2024/Q2
A regular overview of new developments and releases in Firebird Project​

Releases:
Jaybird 5.0.5, released 14.6.2024

DBD:Firebird PERL extension 1.38, released 21.5.2024

Firebird SQL Client Library for Kotlin Multiplatform 1.0, released 2.6.2024

Python firebird-base 1.8.0, released 3.5.2024

firebird-driver for Python 1.10.4, release 7.5.2024

firebird-qa 0.20.0, released 9.5.2024

35

https://www.firebirdsql.org/en/jdbc-driver/
https://metacpan.org/release/DAM/DBD-Firebird-1.38
https://github.com/hgourvest/Firebird-Client-KMP
https://pypi.org/project/firebird-base/
https://pypi.org/project/firebird-driver/
https://pypi.org/project/firebird-qa/

Firebird release schedule

The Firebird 5.0.1 should be released in June. Releases of 4.0.5 and 3.0.12 should

follow shortly after.

Update to 5.0.1 and 4.0.5 is highly recommended due to Security advisory.

The official Firebird lifecycle policy is V+2, i.e. only the last two released versions

are maintained. Therefore, after the release of Firebird v5.0, maintenance of

Firebird v3.0 should be discontinued. But the migration to v4/v5 has been quite

slow and many users are still using v3 and would certainly appreciate bug fixes. So

the fate of the v3.0 series has not yet been sealed. It will probably be maintained

until the end of this year (with a 3.0.12 release coming soon). It has not yet been

decided whether it will be preserved after this time.

Trouble with Schemas

Schema support is scheduled for Firebird v6.0, and the design and development

was going well so far. However, there are some dragons hiding in the dark corners.

The ARRAY type

The legacy API function isc_array_lookup_bounds is working with database

metadata performing a query on system tables. This (client) function, when dealing

with database engine that supports schemas, should look for relationName

using the a search path like for other name resolutions.

But should we also create a new function (isc_array_lookup_bounds2) also

expecting an explicit relationSchema? Relying on user encoding a schema

inside relationName is not going to work, as currently it’s possible to create

object names that have dots and double quotes and would make things ambiguous.

36

https://github.com/FirebirdSQL/firebird/security/advisories/GHSA-6fv8-8rwr-9692

Nobody expected that this problem will open a can of worms.

This function is vital for implementing support of ARRAY type in any Firebird

driver that uses either Legacy or new OO API (as there is no equivalent in OO API).

However, introduction of new schema-aware function will require adjustment in

drivers that are almost impossible to implement. They would need to become a

schema aware as well to pass the proper value to this new function, with no clear

way how to achieve that. It seems that Schema and ARRAY type will become

mutually exclusive features.

Well, the number of Firebird users that use the ARRAY type in their databases is

likely zero, but nobody can tell for sure. There is only one known application that

supports it (Firebird’s ISQL tool) and only small number of drivers (official Python

drivers for example). For years, the ARRAY type was treated as deprecated,

although the Firebird project never officially deprecated it. The neglect went so

far, that Firebird 5.0.0 was even released with the ARRAY support broken, see

#8100.

As ARRAY is once again popular type due to AI frenzy, it’s likely that Firebird will

see ARRAYs completely redesigned, rather than deprecated. But it’s unlikely that

this will happen in Firebird 6.0, as its feature set is already defined and will not be

extended with other major features. For next version, we’ll have to live with such

mutual exclusivity.

Few words about ARRAYs from Jim Starkey:

The impetus for the Interface array feature set was a requirement from the Boeing
Aircraft noise group. They collected large number of sound samples from microphone
arrays and needed to store and crunch these. They had been using an ad hoc
database with array support and didn’t like having to use to two different database
systems.

In retrospect, I’m inclined to think that it was seriously over designed, but it had to
work in an environments of tiny main memory (by today’s standards) and networks
that topped out at 10mbs. Then, a complete transfer of a large array was problem;
now, not much.

37

https://github.com/FirebirdSQL/firebird/issues/8100

In today’s AI obsessed world, arrays, hierarchical navigable small world indexes, and a
nearest operator are sine quo non if you want to play with the state of the art.

The Amorphous array info call and array descriptors are:

virtual int getArray(Array* descriptor) = 0; // returns length of array in bytes

struct Array
{
int size; // number of elements
int type; // data type of element
union
{
const double* doubles;
const float* floats;
const int* ints;
const unsigned char* bytes;
const void* data; // used for generic references
} array;
};

But, like I said, I may extend/redefine this for a vector of array bounds. And,
incidentally, for AI stuff, 16 bit floats are very important; similarity vectors care a great
deal more about magnitude than precision.

Replication

Replication may work within different engine versions, but this depends on data

types of used fields and even DDL commands. It’s certainly not recommended for

production, but this setup may help when you update your Firebird server but still

want to maintain database of old version until the upgrade is fully validated.

However, there is no straightforward way to make this work when schemas are

introduced and one of the sides do not support schemas, specially in the case of

async replication. The consensus so far is that this case should be initially declared

as unsupported.

38

Toolbox: DBeaver CE
The DBeaver CE is a free cross-platform database tool for developers, database

administrators, analysts, and everyone working with data. It supports all popular

SQL databases, including Firebird.

Windows users can install it using the executable installer, via Chocolatey, or from

the Microsoft Store. Linux users can find it in the community repositories for their

distribution, install it via the supplied Debian or RPM packages, or use Flatpack or

Snap packages. MacOS users won’t be left out either, with packages available for

both Intel and Apple Silicon. DBeaver is also available as an Eclipse plugin.

DBeaver is written in Java and uses the JayBird driver to access Firebird. If you

don’t have this driver installed, DBeaver will automatically download and install it

when you configure the first Firebird database connection.

[1]

39

In addition to the Community Edition, you can also purchase commercial DBeaver

PRO with NoSQL and Cloud database support, visual database performance tools,

and more. However, we will only focus on the CE version in this review.

When you launch DBeaver for the first time, you will encounter several initial

setup windows. The first window you may see is the Create Sample Database

dialog. If you don’t want to play around a bit with the sample SQLite database, you

can skip it.

To do anything useful with DBeaver, you must first define a connection to a

database. You can proceed via the "Database" menu, or the icon or context menu

on the Database Navigator panel. After selecting the Firebird server (and possible

automatic installation of the JayBird driver), you will get to setting the connection

parameters.

Connection dialog

40

...

Note that this is a generic JDBC connection setup where you can set any JayBird

driver parameters. If you are not familiar with them, there is a link to the

documentation. You also have the option to set up a secure connection via an SSH

tunnel.

Driver settings

41

...

...

Configuration parameters for DBeaver can also be set. It mainly concerns display

modes, allowed operations, running scripts, etc.

DBeaver connection settings

Given the configurability, it makes sense to define multiple connections to the

same database for different purposes. Connections can be organized into folders

and subfolders.

The user interface consists of one window with standard elements: a menu bar, a

toolbar, a workspace with one or more editors and views, and a status bar. It

appears simple and straightforward, but could be very confusing. First, almost all

panels could be minimized, maximized, resized or detached, and tabs moved

around. Once you minimize a panel, it appears on one of two shortcut bars (left or

right one) as icon. Sometimes it takes a while to figure out where things are.

42

...

But the most annoying thing is that an object once detached to a separate window

cannot be reattached back to the main window (this bug was reported in May

2023 and is still open today). If you disconnect a significant panel like the Database

Navigator and change your mind later, there is no easy way back because the

layout persists between sessions (you have to use the Help→Reset Settings menu

item).​

DBeaver main window

However, you can get used to the peculiarities of the environment, and its

configurability can be an advantage compared to the more static interfaces of

other similar tools.

The first thing you’ll notice is that DBeaver is designed to work with existing

databases, and its options for modifying the database structure are limited. You

can use dialogs to modify existing objects, to add tables and views, indexes and

referential constraints, but not triggers or stored procedures. However, what

cannot be done using dialogs can be done using SQL commands.

43

...

The display of data in tables (or queries) is particularly pleasant, where in addition

to the data itself you can also display aggregations, function results, data from

linked tables, etc.

Data view

ER diagrams are available for visualizing relationships, both for the entire database

and for individual tables or views.

The SQL console offers the usual functions of editing SQL commands, including

syntax highlighting and command completion, and a few less common functions

such as SQL templates or searching for marked text using Google. DBeaver PRO

users can also use AI (ChatGPT) to create SQL commands based on a text

description. Support for SQL command parameters is also nice

In addition to displaying query results in a table (grid or text), an SQL terminal is

also available where the results of all commands (ie not only queries) are displayed.

The display of the execution plan is limited to the standard format only. What will

certainly please you are the wide range of data export options.

44

...

SQL console

DBeaver also supports the generation of SQL commands, however, it is oriented

towards working with data in tables and views. For the table, SQL commands can

be generated from the Data grid for SELECT (WHERE = or IN), INSERT, UPDATE,

DELETE selected row or CREATE table. From Database navigator, you can

generate SELECT, INSERT, UPDATE, DELETE, MERGE or DDL commands for

selected table.

Unfortunately, DBeaver is not able to work with Firebird DOMAINs. They will

appear in the "Data types" category of Database Navigator, but are not listed for

table items or procedure parameters where they are used. Instead DOMAIN

reference, you’ll get the basic SQL types used by the relevant DOMAIN. This

inconvenience is also reflected in the generated DDL commands. It will also do not

generate commands to create other related objects like triggers.

45

...

Unlike the limited usability of generated SQL scripts, a pleasant surprise is the

possibility to create dashboards with visualization of any data or metrics. There

are no default elements defined for Firebird, but it is not difficult to design and

define your own.

Dashboard panel definition

46

...

Dashboard with panels

DBeaver also offers other interesting functions, the description of which, however,

goes far beyond the scope of this review, because they mainly concern the

DBeaver PRO version or are more usable with other types of servers than Firebird.

If you are interested in this product, we recommend that you read its (relatively

well-crafted) documentation.

Summary

DBeaver CE is an interesting tool, whose target group is definitely not database

developers, but primarily database administrators and data analysts, to whom it

offers a number of extremely useful and ergonomic functions. Its biggest

advantage is the support of a wide range of different databases and data

platforms, and the biggest weakness is the generic, and therefore limited, support

for Firebird.

47

...

So if you work mainly with data in operational databases, DBeaver is a very

interesting choice, especially if you also use systems other than Firebird. If your

day job is creating or supporting database applications for Firebird, then DBeaver

probably won’t satisfy you.

Advantages:​

Multiplatform

Freeware

Dashboards

ER diagrams

Support for many database types

Disadvantages:

Very generic support for Firebird

An interface that doesn’t suit everyone

Advanced features not available in Community Edition

Our Rating:

For Firebird: 5/10

For other databases: 8/10

Resources:

1. DBeaver CE​, https://dbeaver.io/​​

48

https://dbeaver.io/

Answers to your questions
Documentation is said to be a collection of answers to unspoken questions. If you

ask a search engine, it will answer you with a link to a document that (hopefully)

contains the answer. There are documents, forums and entire systems like Stack

Overflow that consisting only of questions and answers. And now an army of AIs is

starting to chase us to answer our questions. Questions and answers cannot be

avoided, there is no hiding place.

However, amidst the sea of routine questions and responses, there lie truly

captivating inquiries and answers, like hidden treasures. Our commitment is to

regularly present you with a curated collection of these precious gems.

49

Why table of "key-value" type takes so much disk space?​

Bruce Dickinson asked:​

I want to keep key-value data associated with some object (ID_MASTER) in master

table. Currently I have 59 such parameters. Most of the time I am using only 2-5, so

I thought that this structure will be ideal to save some space on the disk:

CREATE TABLE DETAILS_DATA (ID_MASTER INTEGER NOT NULL,

​ ID_PARAM INTEGER NOT NULL,

​ PARAM_VALUE VARCHAR(64) NOT NULL);

ALTER TABLE DETAILS_DATA ADD CONSTRAINT FK_DETAILS_DATA_ID_MASTER

​ FOREIGN KEY (ID_MASTER) REFERENCES MASTER_DATA (ID);

CREATE UNIQUE INDEX UNQ_DETAILS_DATA ​ ON DETAILS_DATA (ID_MASTER,ID_PARAM);

However, after running some tests I saw that database grows quickly. So for

another test I created another table, this time with all keys in one row (i.e. 59

columns):

CREATE TABLE FLAT_DATA

​ (ID_MASTER INTEGER NOT NULL,

​ P1 VARCHAR(64),

​ P2 VARCHAR(64),

​ P3 VARCHAR(64),

​ -- P4..P57

​ P58 VARCHAR(64),

​ P59 VARCHAR(64));

ALTER TABLE FLAT_DATA ADD CONSTRAINT FK_FLAT_ID_MASTER

​ FOREIGN KEY (ID_MASTER) REFERENCES MASTER_DATA (ID);

I’ve put to this table exactly the same data that was in DETAILS_DATA table.

Obviously, most of the P1-P59 columns were NULL.

50

Here is the comparison of space taken by both tables:

DETAILS_DATA:

Size of the table: 9592 MB

FK_DETAILS_DATA_ID_MASTER: 953 MB

UNQ_DETAILS_DATA: 1161 MB

TOTAL SPACE: 11706 MB

FLAT_DATA:

Size of the table: 2084 MB

FK_FLAT_ID_MASTER: 52 MB

TOTAL SPACE: 2136 MB

As you can see DETAILS_DATA takes 5 times more of space. I was completely

surprised by this result, after all I am not wasting space for 50+ columns. Could you

explain me this phenomenon?

Dmitry Yemanov answers:

How long are actual strings inside PARAM_VALUE? It’s worth looking at the gstat -

r output and compare the average record size in both cases.

With the former (DETAILS_DATA) approach, the table is very narrow. Storage

overhead (record header size, 13 bytes) is nearly the same as the data itself

(perhaps even more, considering the data compression). It could explain the

wasted space.

Bruce Dickinson confirms:

Here are the results of gstat:

FLAT_DATA (290)

​ Primary pointer page: 5239142, Index root page: 5239147

​ Average record length: 213.90, total records: 8288203

​ Average version length: 0.00, total versions: 0, max versions: 0

​ Data pages: 533746, data page slots: 533746, average fill: 88%

​ Fill distribution:

​ 0 - 19% = 0

​ 20 - 39% = 0

​ 40 - 59% = 0

​ 60 - 79% = 30

​ 80 - 99% = 533716

51

DETAILS_DATA (262)

​ Primary pointer page: 842, Index root page: 843

​ Average record length: 20.19, total records: 164512578

​ Average version length: 0.00, total versions: 0, max versions: 0

​ Data pages: 2455600, data page slots: 2455600, average fill: 61%

​ Fill distribution:

​ 0 - 19% = 0

​ 20 - 39% = 1

​ 40 - 59% = 0

​ 60 - 79% = 2455599

​ 80 - 99% = 0

I guess this confirms your statement about record header size.

FLAT_DATA record length is 213.90 which is over 10 times more than

DETAILS_DATA record length 20.19. However in DETAILS_DATA we have

164512578 records which is 19.8 times more than in FLAT_DATA.

The maximum key size limit revisited

Geoff Worboys asked:

Firebird v2.5.3 - Windows 32bit server Database page size is 8192, ODS v11.2.

I’m getting "key size exceeds implementation restriction for index" when I try to

create the following index:

 CREATE INDEX MyIndex1 ON MyTable1 (Field1, Field2);

where:

 Field1 is VARCHAR(80)

 Field2 is VARCHAR(255)

both use the database default CHARACTER SET WIN1252 with collation

WIN1252_NOCASE as defined like this:

 CREATE COLLATION WIN1252_UNICODE FOR WIN1252

 CREATE COLLATION WIN1252_NOCASE FOR WIN1252

 FROM WIN1252_UNICODE CASE INSENSITIVE

52

As it happens, I’m happy not to have this particular index, but I’d like to understand

what’s going on.

I’ve looked at ​​ Index Calculator​ and I cannot find a combination for the above

specification that exceeds 2048 bytes (1/4 page size) - 1260 is the figure it would

lead me to expect, I think, though I’m not all that clear about the distinctions

between the levels of collation. But even UTF8 at those sizes is reported at only

1675 bytes.

Is the restriction in this case expected, or should I be looking for some other

problem? Maybe I have my collation set up incorrectly?

Dmitry Yemanov answers:

IIRC, unicode derived case/accent insensitive collations use six bytes per
character encoding. This gives us 2010 bytes which is pretty near the 1/4 page

size. Given that some overhead should be taken into account, the key length may in

fact overflow the limit.

Geoff Worboys confirms:

That fits. For example I can create an expression index of the same (335 character)

size, and that works, so it must be the multi-segment overhead that is killing it.

On a test database with page size 4096 I just tried these:

 CREATE INDEX myindex ON testtable COMPUTED BY

 (CAST(afield || 'a' AS VARCHAR(169)) COLLATE WIN1252_NOCASE);

that one ((169 * 6) + 9 = 1023) works.

 CREATE INDEX myindex ON testtable COMPUTED BY

 (CAST(afield || 'a' AS VARCHAR(170)) COLLATE WIN1252_NOCASE);

that one ((170 * 6) + 9 = 1029) fails with: "key size exceeds implementation

restriction for index".

Which seems to confirm what you’ve said.

53

http://www.firebirdfaq.org/ip_ib_indexcalculator.htm

Optimization of the database structure
In general, it is recommended to reoptimize the database once in a while
using backup and restore. However, most users have no idea under what
conditions or how often to perform this operation, what problems it solves,
and which ones it doesn’t.

This article explains how the internal structure of the database affects the
efficiency of the Firebird engine, how this structure typically changes over
time, and how it can be modified in a way that improves Firebird’s
performance.

54

A database is made up of blocks of equal length, called pages. The pages are

divided into groups according to the type of data they contain, for example there

are Data pages in which the data of individual tables are stored, BLOB pages or

pages containing only links to other pages. The efficiency of the engine's work is

influenced by both the internal organization of data on individual pages and the

location of pages within the database.

Page types

Currently (ODS v13.1) there are 10 page types. Their detailed description can be

found, for example, in "Firebird Internals" . Here we will focus only on the role of

individual pages in relation to the efficiency of Firebird’s work.​​

Header Page

This page is always the first page in the database and contains basic information

about its structure and parameters. This page is updated very often (e.g. at the

start of each transaction.) and is therefore forcibly written to disk. This fact has no

major effect on performance. However, you should be aware that even otherwise

read only transactions always perform some writes.

Page Inventory Page

This type of page is used to register all other used and free pages in the database in

a very economical format (one bit per page). The number of these pages in the

database is typically low, and their update frequency is also low. So they have a

completely negligible effect on the efficiency of Firebird’s work. However, you

won’t spoil anything if the page size corresponds to the (expected) total size of the

database. E.g. at a page size of 8K, one PIP contains information about 65,312

pages, and at a size of 16K, information about 130,848 pages. So in a 200GB

database with an 8K page size there will be a total of 401 PIP pages, but using 16K

pages there will be only 101 PIP pages.

[1]

55

Pages of this type are distributed evenly in the database, and their placement

cannot be influenced in any way.

Transaction Inventory Page

This type of page is used to record the status of transactions. Basically, it is a

persistent version of a data structure stored in memory. Information from these

pages is used only when Firebird is started, and is an important part of the

recovery mechanism after a system crash. In normal operation, these pages are

written at the end of each transaction, while only one TIP is ever written, on which

the status of the transaction is stored.

The number of TIP pages corresponds to the current size of the transaction map in

memory (NEXT - OIT), where the state of one transaction is stored in two bits.

Although the number of TIP pages does not have a major impact on Firebird’s

performance, working with these pages is one of the factors that contributes to

the gradual fragmentation of the database over time.

Pointer Page

A pointer page is used internally to hold a list of all data pages (see below) that

make up a single table. Large tables may have more than one pointer page but

every table, system or user, will have a minimum of one pointer page.

The list of pointer pages is stored in the RDB$PAGES table, and you can find the

pointer pages for any table by running the query like:

 SELECT P.RDB$PAGE_SEQUENCE, P.RDB$PAGE_NUMBER, P.RDB$RELATION_ID

 FROM RDB$PAGES P

 JOIN RDB$RELATIONS R ON (R.RDB$RELATION_ID = P.RDB$RELATION_ID)

 WHERE R.RDB$RELATION_NAME = 'MYTABLE'

 AND P.RDB$PAGE_TYPE = 4

 ORDER BY 1;

56

The number of Data Pages that single Pointer Page holds depends on page size (for

example 1,632 pages for 8K page, and 3,270 for 16K page). Since Firebird v3.0, the

gstat output also includes number of Pointer Pages for each listed table.

The list of data pages stored on Pointer pages is a fundamental data structure used

to address rows of data, and the well-known RDB$DB_KEY refers to, among other

things, the sequence number of the data page in this list. A simple calculation is

used to identify a specific Pointer Page and the location of the number of the

searched data page in the list stored there. The number of pages of this type has a

certain influence on the efficiency of Firebird’s work. Although a single page of this

type is sufficient to find one specific row, the processing of more rows may require

the processing of more Pointer pages, and therefore greater demands on the size

of the database cache. Therefore, if you do not use Firebird in the SuperServer

architecture, it is necessary to take into account the processed amount of these

pages when calculating the optimal cache size.

The location of Pointer pages within the database can only be influenced with

difficulty, as they are created as needed. Typically, these pages intersperse

sequences of Data, BLOB and Index B-tree pages.

Data Page

Each data page belongs exclusively to a single table. Beside the page header it

contains an array of pairs (called slots) of offset / length unsigned short values

that points to actual data contents. This array fills from the lowest address

(increasing) while the actual data it points to is stored on the page from the highest

address (descending). Part of well-known RDB$DB_KEY refers to particular slot

on Data page.

Individual slots can contain not only data records, but also fragments of (too long)

records, versions of individual records, or ARRAY or BLOB type values.

The internal structure and location of individual data pages within the database

play a significant role in the efficiency and thus the performance of Firebird.

57

The most important attribute of each data page is its occupancy. This can be

expressed by the absolute amount of stored data or the number of occupied slots.

The output from the gstat program provides a basic overview of the occupancy

of the data pages for the analyzed tables.

AR (140)

​ Primary pointer page: 297, Index root page: 299

​ Total formats: 1, used formats: 1

​ Average record length: 2.79, total records: 120

​ Average version length: 16.61, total versions: 105, max versions: 1

​ Average fragment length: 0.00, total fragments: 0, max fragments: 0

​ Average unpacked length: 120.00, compression ratio: 42.99

​ Pointer pages: 1, data page slots: 3

​ Data pages: 3, average fill: 86%

​ Primary pages: 1, secondary pages: 2, swept pages: 0

​ Empty pages: 0, full pages: 1

​ Blobs: 125, total length: 11237, blob pages: 0

​ Level 0: 125, Level 1: 0, Level 2: 0

​ Fill distribution:

​ 0 - 19% = 0

​ 20 - 39% = 0

​ 40 - 59% = 0

​ 60 - 79% = 1

​ 80 - 99% = 2

Page fill factor in absolute amount of stored data is presented only as average page

fill and as a histogram of absolute page fill distribution in segments of 20 percent.

The number of used slots is presented only as an aggregate number for all data

pages of the given table. In addition, it is divided into individual types of records:

primary records, versions, fragments and BLOBs (gstat does not distinguish

between ARRAY and BLOB values because they are stored in the same way).

Therefore, for the total number of slots used, it is necessary to add up all partial

values. In the example above, the total number of slots is 350 (the sum of 'total

records', 'total versions' and 'Blobs'), and the average occupancy is therefore 116

slots per page.

58

The occupancy of the pages is double-edged. High fill speeds up data processing.

Especially for queries that process a large number of records, the performance

gain can be very significant. On the other hand, it degrades performance if data is

updated or deleted (not on insert), because the row versions often cannot be

placed on the same page as the primary record. This reduces the speed of not only

the update itself, but also the subsequent reading of the data, if it is necessary to

find the required record in the chain of versions. For that reason, when writing new

records, the data pages are not filled to full capacity by default, but a reserve

(approx. 20 percent) is left for possible changes.

However, it is not only about the amount of data on the page, but also about the

amount of records (occupied slots). The amount of primary records on a page is

sometimes referred to as page density. The higher this value, the faster the data

processing speed. Page density is affected by the presence of BLOB/ARRAY values ​​

or record versions that are stored in separate slots and therefore take up space for

primary records. Firebird since version 3.0 tries to alleviate this problem by

dividing the data pages into primary and secondary. Primary pages contain only

primary records and possibly their versions, secondary pages contain only record

versions, fragments and small BLOB (level 0) values. E.g. in the example above, the

table has one primary and two secondary data pages. During data processing, the

most often processed data are primary records. Moving other types of records to

separate pages not only increases the density of primary records on a page, but

also reduces the total number of pages that are processed.

But this optimization is not an universal solution. For tables that do not contain

BLOB values, its benefit will only be seen in applications that repeatedly update

the same data and therefore create longer chains of versions that overflow into

separate secondary pages.

An inappropriate database design can then overwhelm any optimization. The

amount of data in a record is determined by the structure of the table. A larger

amount of data in the record automatically translates into a lower data density. In

the worst case, fragmentation of records (forced division into multiple pages) can

occur when there is no longer enough space for the entire record when writing to

the page.

59

Another factor affecting the efficiency of data processing is the distribution of data

pages within the database. Data pages belonging to individual tables are added as

needed. These pages are usually added to the end of the database, but Firebird can

also use any free pages inside the database created, for example, by deleting a

large amount of data, changing indexes, freeing unnecessary TIP pages, etc. It is

therefore common that data pages are scattered in the database in non-

contiguous blocks . This so-called fragmentation of the database reduces the

efficiency of I/O operations, especially with classic disks. With SSD disks, this

problem does not manifest itself in any fundamental way, but the use of SSD has its

own disadvantages and limitations.

Index Root Page

Every table in the database has an Index Root Page which holds data that describes

the indexes for that table, even if there are no indices defined for the table.

Pages of this type are static, and their internal structure or location within the

database has no effect on data processing efficiency.

Index (B-tree) Page

The Index Root Page points to the first page in the index. That page will be a Index

B-Tree Page, as will all the other pages that make up this index. Each index has its

own range of dedicated pages in the database. Pages are linked to the previous and

next pages making up this index.

The content of these pages is quite complex and dynamic. Although Firebird

strives for the maximum occupancy of index pages, in practice it can be very

different, because when the content of the index changes, not only new pages are

added, but also they are divided or merged. It is therefore quite common for

indexes to be highly variable in their effectiveness, and to contribute significantly

to database fragmentation.

60

Important properties of the index structure can be found from the output of the

`gstat' program:

Index IDX_OBJ_OWNER (26)

​ Root page: 163419, depth: 2, leaf buckets: 159, nodes: 519623

​ Average node length: 4.94, total dup: 519621, max dup: 518196

​ Average key length: 2.00, compression ratio: 0.50

​ Average prefix length: 1.00, average data length: 0.00

​ Clustering factor: 9809, ratio: 0.02

​ Fill distribution:

​ 0 - 19% = 0

​ 20 - 39% = 1

​ 40 - 59% = 0

​ 60 - 79% = 0

​ 80 - 99% = 158

The most important values ​​are:

1. Depth. Specifies the number of index pages that must be processed to find a

specific key. A value of 4 or greater already means a measurable drop in index

performance, especially for non-range operations. The depth of the index can be

influenced only with difficulty. For indexes with low page occupancy, rebuilding

the index (by deactivating and reactivating) may be sufficient. The only other

option is to increase the database page size (if possible).

2. Fill distribution. If the average occupancy of the pages is 60 percent or less, it is

advisable to rebuild the index. However, the ideal value is 80 percent or more.

3. Clustering factor. Clustering factor is the relationship between the order of the

table and the order of the index. Indexes are always stored in key value

sequence, while tables are stored in the order of the inserts. The higher the

clustering factor is, the more the index points to different data pages. Indexes

are efficient when they point to just a few of the table data pages. It comes into

play with Range Scan operations when executing SQL commands, where it

translates to more data page reads (roughly: ratio * number of keys in range).

The best clustering factor is equal to the number of primary Data pages.

The remaining data are also useful, but their importance from the point of view of

the internal structure of the database is rather supplementary.

61

BLOB Page

Pages of this type are only used for BLOB values ​​larger than can be stored as a

normal record on a data page (i.e. type 1 and 2). Because BLOB values ​​are typically

stored along with the rows that reference them, BLOB pages in a database

typically interleave sequences of data and index pages. Values ​​that do not fit on

one BLOB page usually form a continuous block of BLOB pages.

Generator Page

Every database has at least one Generator Page, even if no generators (sequences)

have been defined by the user. A blank database consisting only of system tables

and indices already has a number of generators created for use in naming

constraints, indices, etc.

This page contains generator values ​​only. Information about the generator

(identification number, name, etc.) is stored in the system table

RDB$GENERATORS. The list of existing Generator pages can be found from the

RDB$PAGES table by querying:

 SELECT RDB$PAGE_NUMBER

 FROM RDB$PAGES

 WHERE RDB$PAGE_TYPE = 9;

In normal cases, the effect of Generator pages on performance is absolutely zero,

unless you trip over a peculiarity of the implementation of generators: If you

delete a generator, the freed space on the Generator page is not reused. So if you

get the idea to use temporary generators, e.g. to simulate semaphores to

synchronize between stored procedures, triggers, etc., the number of Generator

pages in the database will grow continuously with all its unpleasant consequences.

62

SCN (Page Scan) Inventory Page

These pages contain a global array of SCN numbers (used by NBACKUP) for each

database page. They are updated whenever a page is assigned a new SCN and are

usually evenly distributed across the database. However, if you are not using

NBACKUP, these pages are not present in the database. If present, they have no

effect on the efficiency of data processing.

Evolution of the Database

​If you are not using the database in read-only mode, the internal structure of the

database undergoes gradual evolution. It varies depending on the type of

application, the way data is handled and the number of concurrent users.

Nevertheless, the way of working with the database shows certain common

features in most applications. One of the typical features is the proportional

distribution between inserting, changing and deleting data. In most applications,

inserting new records makes up the majority of all operations (about 80 percent).

The rest of the operations are mostly updates, and data deletion is only a tiny

fraction.

This is because most of the data is no longer changed (except for occasional

corrections), and in many cases is not even deleted. If the deletion occurs, then

typically in batches as part of cleaning the content from historical data that is no

longer needed.

A certain exception to this rule are databases whose design includes tables

containing aggregated data (for example, the amount of goods in stock), which

have a higher percentage of updates than the rest of the data. However, since such

a design significantly reduces throughput when multiple users work

simultaneously, it has not been used much in the last twenty years.

Most databases begin their journey as mostly empty containers that gradually fill

up. First with auxiliary data in the form of code lists, configurations, etc., then

comes the main phase of entering and processing data from the main problem

domain.

63

During the main phase of the database’s life, individual pages are created

according to current needs. The result is automatic fragmentation of the database,

when logically related pages are scattered throughout the database, as they were

gradually created. But pages don’t always have to be arranged in chronological

order, because if the data from an entire page is released, that page is reused for a

new purpose.

There is also gradual fragmentation of the data stored on the Data and Index

pages. Data pages are fragmented only for tables whose data is updated or

deleted. Index pages are always fragmented for table indexes that are updated or

deleted, however, even indexes for tables that are only added to are not spared

from fragmentation, especially if the values ​​of the added keys do not form an

ascending sequence.

Data and index page content fragmentation can be evaluated using the gstat

report. Unfortunately, Firebird does not offer any tool that would allow you to map

the level of database fragmentation at the level of individual page types and their

logical groups. When assessing the level of fragmentation at the page level, the

user is therefore only dependent on indirect indicators.

The basic fact is that any added data is automatically fragmented at the page level.

The more users simultaneously participate in inserting new data into different

tables, the greater the fragmentation. Thus, for example, a database that stores

data from sensors inserted by a single application in batches at regular intervals

will have a significantly lower level of page fragmentation than a database that

stores data from a CMS system with which dozens of people from different

departments work at the same time.

Revitalization of the database

The aim of revitalizing the database is to reduce the fragmentation of the content

of both individual pages and the database as a whole. Typically, revitalization is

done by restoring from a backup with the gbak program (however, there are other

methods as well). But when to carry out this revitalization?

64

There is no simple answer to this question, as it depends on a number of factors.

Many Firebird users don’t care about this problem at all as long as they are

satisfied with the data processing speed. This is a perfectly reasonable approach,

especially if your database is less than 80GB (i.e. roughly 5 millions of 16K pages).

However, if you have a larger database, or if the largest table contains more than

10 million records, you can often achieve better performance by revitalizing the

database. Especially in the case of analytical processing of large amounts of data

(various reports, etc.), which normally take minutes or even hours, a substantial

acceleration of work can be achieved.

In general, the larger your database (in the order of hundreds of GB) and/or the

larger your tables (in the tens of millions of records), the greater the performance

gain. Quantitative estimation of this profit is difficult, because it depends on the

specific parameters of the database and the way of working with data, but in

general an average improvement in the range of 5-15 percent can be achieved, and

for specific tasks (reports, etc.) then even in tens of percent. If you’re interested in

such a performance gain, then your database is a good candidate for revitalization.

The conditions for when to carry out initial revitalization are therefore clear.

However, database fragmentation is a continuous process that cannot be

completely prevented, and revitalization should therefore be performed

repeatedly. But when to repeat it?

The main factors are the increase in database size, the amount of changed/deleted

content, and the level of fragmentation of data and index page content over time.

In general, it can be said that revitalization should be carried out whenever any of

the following conditions are met:

1. The database has grown by 20 percent or more since the last revitalization.

2. At least 15 percent of the database content has been changed or deleted since

the last revitalization.

3. The report from the gstat program indicates increased fragmentation of data

and/or index pages (see above).

65

gbak and others

Basic revitalization could be achieved by restoring from a backup with the gbak

program.

When restoring from backup, a single transaction is used to gradually insert the

data of individual tables, and then individual indexes are created. This achieves

minimal fragmentation of data and index pages within the database, so that the

pages of one table or index form a more or less continuous block (because they are

still sporadically interspersed with infrastructure pages, see Pointer and Page

Inventory Pages, but a better result cannot be technically achieved). Also,

information on data and index pages is stored with maximum efficiency and

density.

However, this revitalization has its limits:

1. The data pages contain a reserve for updates, so the data density is not at its

maximum (there are fewer records on the primary pages), regardless of whether

in practice the data in the given table is updated or only added (and the existing

data is therefore static). Although reserve retention can be turned off at the

database level, this practice is not recommended because it will cause problems

with updated tables.

2. Tables are inserted into the database in the order in which they were created,

and this order cannot be changed in any way. If it were possible to save the data

of tables that do not undergo changes or are only extended to the beginning of

the database, and only then the tables that change, the extent and speed of

fragmentation of the database would be reduced, because changes would only

occur in its specific part.

3. Table records are stored in the same order as they were inserted into the

original database. The Index Clustering of each index therefore remains exactly

the same and cannot be influenced in any way.

4. If you use the parallel processing option when restoring a backup, the index

pages are interleaved because multiple indexes are created simultaneously.

66

Of course, better results can be achieved, but not with gbak. After all, this is a

backup and recovery tool, not a database optimization tool. This alternative is the

IBPhoenix FBOpt program, which solves the above problems and thus allows you

to achieve an even better performance gain.

First of all, it allows the user to define or automatically detect tables whose data

either does not change or is only added. The data of these tables are then stored at

the beginning of the database without a reserve for updates, and therefore with

the maximum possible density. Subsequently, the indexes of these tables are

stored, and only then the data of the tables, the content of which is updated or

deleted, keeping the reserve for updates. Finally, the remaining indexes are stored.

Automatic detection is performed using a timeline analysis of stored data. By

heuristic analysis of this timeline, the mode of working with individual tables can

be determined with a fairly decent degree of reliability. However, for highly

reliable results, it is necessary to compare two snapshots taken with a sufficient

time interval (so all possible changes could be seen). FBOpt supports both

methods.

FBOpt also allows you to specify one index for each table, which should have the

maximum Clustering factor. The data is then inserted sorted by the key of the

specified index.

As the icing on the cake, FBOpt can also be used to upgrade or downgrade
databases between Firebird versions (ODS structures), convert databases to new

default character set, or to create regular gbak database backups with

simultaneous restore.

FBOpt works with Firebird version 3.0 or newer.

Resources:

1. Firebird Internals​

67

https://firebirdsql.org/file/documentation/html/en/firebirddocs/firebirdinternals/firebird-internals.html

...And now for something completely different

A young developer was tasked by his boss to optimize a complex SQL query for

Firebird. He struggled with it for several days without success, until finally he

began to despair. His older colleague couldn’t bear to watch it, so he sent him to

work outside in the fresh air to clear his head.

So the developer packed up his laptop and headed to a nearby beach, intending to

find a quiet spot and continue working. As he walks along the beach in thought, he

trips over a sealed bottle, absentmindedly picks it up and opens it. A genie jumps

out of the bottle and says: "For freeing me from my prison, I will grant you one

wish".

The young man looks at the genie and asks: "Do you know Firebird? I mean the

database server."

The genie smirks and says, "We genies have access to all the information in the

world, including the biggest secrets. Of course I know the Firebird database server.

I even read its source code when I was in the mood for modern poetry. What do

you need?"

68

And the young man opens the laptop and immediately starts: "You know, I want to

ask my boss for a raise, so I need him to see me as very capable and indispensable.

My only wish is that you help me with this. He gave me a task to optimize this SQL

query for Firebird to make it at least twice as fast, but I still can’t crack it. If you

help me solve it, I’m sure he won’t refuse my request."

The genie just looks at the SQL query with one eye and frowns, "You’re kidding,

right? This CTE is crazy, and I see more than thirty joins and subqueries. This will

take me at least a day and night! We genies know everything , but that doesn’t

mean we’re masters at everything. There has to be another, faster way to get you a

raise, right?

The young man thinks and says, "There would be one more possibility, and since

you genies know everything, including the biggest secrets, it should be a small

thing for you. You know, we run huge databases on Firebird, and my boss asked me

to find out how to verify the validity of the backup without having to restore it to

disk, which would save a lot of space. I’ll be a star if I can tell him how, but I can’t

find a way on the Internet. Do you know the answer?"

The genie grimaces and says: "Show me that query again".

Chuck Norris and Firebird once had a showdown. The result? Firebird now has a

secret setting called ​'ChuckMode​'. When activated, all queries are automatically

optimized to Chuck Norris standards – lightning-fast and unstoppable.​

Chuck Norris doesn't need indexes. He just stares at the database, and the rows

arrange themselves in fear. Firebird is the only one that can keep up with his gaze.

Chuck Norris doesn't do database optimization; he just whispers encouragement

to Firebird, and it runs faster than ever, trying to keep up with his expectations.

When Chuck Norris uses Firebird, the performance is so incredible that physicists

argue it defies the laws of relational dynamics. Chuck simply calls it 'database kung

fu.'

Chuck Norris doesn't need primary keys; he just points at a record, and Firebird

ensures it's the key record for life.

69

FBOpt Database Optimiser​FBOpt Database Optimiser​

20% OFF with code: EMBERSALE

Till end of July 2024

Buy on-line

...

https://shop.ibphoenix.com/products-eur/

