INnterBase 6

API Guide

Borland /INPRISE

100 Enterprise Way, Scotts Valley, CA 95066 http://www.interbase.com

Inprise/Borland may have patents and/or pending patent applications covering subject matter in this document.
The furnishing of this document does not convey any license to these patents.

Copyright 1999 Inprise/Borland. All rights reserved. All InterBase products are trademarks or registered
trademarks of Inprise/Borland. All Borland products are trademarks or registered trademarks of Inprise/Borland.
Other brand and product names are trademarks or registered trademarks of their respective holders.

1INTO055WW21001 6ETR0699

Table of Contents

List of Tables

CHAPTER 1

Part I API User’s Guide

CHAPTER 2

CHAPTER 3

API GUIDE

.................................... Xiii
Using the API Guide
Who should use this guide 17
Topics covered in this guide 18
Sample database and applications 19
Application Requirements
Requirements for all applications 24
Including ibase.h. oo L 24
Database requirements 24
Transaction requirements. 25
Additional requirements 26
Microsoft Windows requirements 26
DSQL requirements 27
Blob requirements, 27
Array requirements 28
Event requirements 29
Error-handling requirements 29
Services requirements 30
Compiling and linking 30
Programming with the InterBase API
Basic procedure for application development 31
Supported development environments 32
User name and password requirements 32
Specifying user name and password 33
Using environment variables 33
Setting a default database directory 34
Setting a user name and password. 34

CHAPTER 4

CHAPTER 5

Datatypes 34

Calling conventions 35

Building applications 35
Compilers. 35
Linking 36
Include files. 36
Using Microsoft C++. 37
Using Borland C/C++ 38
Setting up the Integrated Development
Environment IDE). 39
The module definition file 39
Using dynamic link libraries (DLLs) 40
Example programs. 40

Working with Databases

Connecting to databases 42
Creating database handles 42
Creating and populatingaDPB 44
Adding parameterstoaDPB 48
Attaching to a database 49

Requesting information about an attachment 51
Requesting buffer items and result buffer values. 51
isc_database_info() call example 56

Disconnecting from databases 57

Deleting a database, 58

Working with Transactions

Starting transactions Lo 60
Creating transaction handles 61
Creating a transaction parameter buffer 62
Calling isc_start_transaction() 70
Calling isc_start_multiple() 71

Ending transactions L. 73
Using isc_commil_transaction(). 74

INTERBASE 6

CHAPTER 6

CHAPTER 7

API GUIDE

Using isc_prepare_transaction2()

Using isc_rollback_transaction()

Working with Dynamic SQL

Overview of the DSQL programming process

DSQL API limitations
Accessing databases
Handling transactions
Creating a database
Processing Blobdata
Processing arraydata

Writing an API application to process SQL statements
Determining if API calls can process an SQL statement .
Representing an SQL statement as a character string . .
Specifying parameters in SQL statement strings

Understanding the XSOQLDA
XSOLDA field descriptions
Input descriptors.
Output descriptors.
Using the XSOLDA_LENGTH macro
SQL datatype macro constants
Handling varying string datatypes
Handling NUMERIC and DECIMAL datatypes
Coercing datatypes.
Aligning numerical data.,

DSQL programming methods
Method 1: Non-query statements without parameters . .
Method 2: Non-query statements with parameters.
Method 3: Query statements without parameters
Method 4: Query statements with parameters

Determining an unknown statement type at runtime

Working with Blob Data

. 84
. 84

85
85
87
89
89
90
90
93
93
94
95
96

. 96

98
101
106

118

CHAPTER 8

CHAPTER 9

CHAPTER 10

Vi

How are Blob data stored? 119

Blob subtypes. 119
Blob database storage 120
Blob data operations 120
Reading data fromaBlob. 121
Writing datatoaBlob. 126
DeletingaBlob. 130
Requesting information about an open Blob 131
Item-list buffer items and result buffer values 131
isc_blob_info() call example 133
Blob descriptors 134
Populating a Blob descriptor 135
Filtering Blobdata 136
Using your own filters. 136
Declaring an external Blob filter to the database 137
Writing an external Blob filter 137
Writing an application that requests filtering. 142

Working with Array Data

Introduction to arrays 150
Array database storage 151
Array descriptors. oL 151
Populating an array descriptor. 152

Accessing arraydata Lo 153
Reading data from an array. 154
Writing datato an array. 160
Deleting an array. 166

Working with Conversions

Converting date and times from InterBase to C format 168
Converting dates from C to InterBase format 169
Reversing byte order of numbers with isc_vax_integer() . . . 170

Handling Error Conditions

Setting up an error status vector 172

INTERBASE 6

Using information in the status vector 172

Checking the status vector for errors 173
Displaying InterBase error messages 173
Capturing InterBase error messages. 174
Setting an SQLCODE value on error 176
Displaying SQL error messages. 176
Capturing SQL error messages 177
Parsing the status vector 178

CHAPTER 11 Working with Events

Understanding the event mechanism 188
Event parameter buffers. 188
Synchronous event notification. 189
Asynchronous event notification 189
Transaction control of events. 189

Creating EPBs with isc_event block() 190

Waiting on events with isc_wait_for_event() 191

Continuous processing with isc_que_events() 192
Creatingan AST 193
A complete isc_que_events() example 193

Determining which events occurred with isc_event_counts() . 196

Canceling interest in asynchronous events
with isc_cancel_events() 197

CHAPTER 12 Working with Services

Overview of the Services API 200
General information 200
Using services parameter buffers. 200
Attaching to the Services Manager
with isc_service_attach(). 202
Detaching from a Services Manager
with isc_service_detach() 203

Invoking service tasks with isc_service_start() 204
Using request buffers 204
Overview of task identifiers. 204

API GUIDE vii

Backing up and restoring databases. 205

Setting database properties. 211
Invoking database maintenance 213
Requesting database and server status reports. 216
Configuringusers 217
Administering software activation certificates 219
Querying the Services Manager 220
Blocking and specifying timeout. 220
Services API query example 221
Using result buffers 222
Querying server configuration 224
Querying security configuration 231
Querying servicetasks 237
Using the Services API with Delphi and C++Builder 239

Part II: API Reference Guide

CHAPTER 13 API Function Reference

viii

Function categories 243
Array functions. L 244
Blob functions 245
Database functions. 246
Conversion functions 246
DSQL functions. 247
Error-handling functions 248
Event functions. 248
Information functions 249
Security functions L. 249
Services functions, 250
Transaction control functions. 250
Using function definitions 251
isc_add_user() 251
isc_array_get_slice() 254
isc_array_lookup_bounds() 259

INTERBASE 6

API GUIDE

isc_array_lookup_desc() 263

isc_array_put_slice() 266
isc_array_set_desc() o 273
isc_attach_database() 276
isc_blob_default_desc() 279
isc_blob_gen_bpb() 281
isc_blob_info() 282
isc_blob_lookup_desc() 284
isc_blob_set_desc() 286
isc_cancel_blob() 287
isc_cancel_events() 289
isc_close_blob() 290
isc_commit_retaining() 291
isc_commit_transaction() 292
isc_create_blob2() 294
isc_create_database() 297
isc_database_info() 297
isc_decode_sql_date() 299
isc_decode_sql_time() 300
isc_decode_timestamp() 301
isc_delete_user() 302
isc_detach_database() 305
isc_drop_database() 306
isc_dsql_allocate_statement() 308
isc_dsql_alloc_statement2() 310
isc_dsql_describe() 312
isc_dsql_describe_bind() 314
isc_dsql_execute() 317
isc_dsql_execute2() 321
isc_dsql_execute_immediate() 325
isc_dsql_exec_immed2() 328
isc_dsql_fetch() 330
isc_dsql_free_statement() 334

[

isc_dsql_prepare() 336

isc_dsql_set_cursor_name() 339
isc_dsql_sql_info() 342
isc_encode_sql_date() 344
isc_encode_sql_time() 345
isc_encode_timestamp() 346
isc_event_block() 347
isc_event_counts() 349
isc_expand_dpb() 351
isc_get_segment() 353
isc_interprete() 355
isc_modify_user() 356
isc_open_blob2() 360
isc_prepare_transaction() 362
isc_prepare_transaction2() 363
isc_print_sqlerror() 365
isc_print_status() 366
isc_put_segment() 367
isc_que_events() 369
isc_rollback_retaining() 373
isc_rollback_transaction() 375
isc_service_attach() 376
isc_service_detach() 377
isc_service_query()o 378
isc_service_start() 380
isc_sqlcode(') 381
isc_sql_interprete(’) 382
isc_start_multiple() 383
isc_start_transaction() 386
isc_transaction_info() oo 389
isc_vax_integer() 391
isc_version() e 392
isc_wait_for_event() 394

INTERBASE 6

APPENDIX A InterBase Document Conventions
The InterBase documentationset 398
Printing conventions 399
Syntax conventions 400
APPENDIX B Data Structures
Array descriptor 402
Datatypes for array descriptors 403
Blob descriptor 403
Charactersets 404
Blob information buffers 404
Blob bufferitems. 406
Blob parameter buffer., 406
Database information request buffer and result buffer 407
Requestbuffer 408
Resultbuffer 408
Request buffer items and result buffer values 409
SQL datatype macro constants 418
Status vector 420
Meaning of the first long ina cluster 420
Transaction parameter buffer 422
XSOLDA and XSOLVAR o v oo 425
XSQLDA field descriptions 427
XSQLVAR field descriptions 428
Index i
API GUIDE xi

Xii INTERBASE 6

List of Tables

Table 1.1
Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 7.5
Table 7.6
Table 8.1
Table 10.1
Table 10.2

API GUIDE

API Guide chapters. 18
Environment variables used by InterBase 33
InterBase library filenames 36
Microsoft C compiler options 37
Borland C compileroptions 38
API database functions oL 42
DPB parameterso 45
Alphabetical list of DPB parameters. 46
DPB parameters recognized by isc_expand_dpb() 48
isc_expand_dbp() parameters 48
Database information items for database characteristics 52
Database information items for environmental characteristics 54
Database information items for performance statistics 55
Database information items for operation counts 56
API transaction functions 60
Additional API transaction functions 60
TPB ConStantso v 63
Isolation level interaction with read and write operations 67
SQL statements that cannot be processed by the APT 84
XSQLDA field descriptions L. 87
XSQLVAR field descriptions 88
SQL datatypes, macro expressions, and C datatypes 90
SQL statement strings and recommended processing methods . . . 96
Statement types 114
API Blob functions o 118
Blob request and returnitems 132
Status message returnitemso 132
isc_blob_ctl structure field descriptions 140
Actionconstants 142
Blob parameter buffer parameter types 145
API array access functions 150
Error-handling functions 171
Interpretation of status vector clusters 179

Xl

Table 10.3
Table 11.1
Table 12.1
Table 12.2
Table 12.3
Table 12.4
Table 12.5
Table 12.6
Table 12.7
Table 12.8
Table 12.9
Table 12.10
Table 12.11
Table 12.12
Table 12.13
Table 12.14
Table 12.15
Table 12.16
Table 12.17
Table 12.18
Table 12.19
Table 12.20
Table 13.1
Table 13.2
Table 13.3
Table 13.4
Table 13.5
Table 13.6
Table 13.7
Table 13.8
Table 13.9
Table 13.10
Table 13.11
Table 13.12
Table 13.13
Table 13.14

XV

LIST OF TABLES

#defines for status vector numeric descriptors 180
AP event functions 187
Syntax of Services Manager connect string, by protocol 202
Services APT tasks 204
Services API database backup arguments 206
Services API database restore arguments 208
Services API database properties arguments 211
Services API database validation arguments. 213
Services API database sweep arguments. 214
Services API limbo transaction arguments 215
Services API status report arguments 216
Services API display users arguments 217
Services API add user arguments 217
Services API remove user arguments 218
Services API software activation certificate arguments 219
Services API server configuration query items 224
Services API software activation certificate arguments 227
Services API security configuration query items 231
Services API user information arguments 232
Services API database connection information arguments 235
Services API task queryitems 237
Services API limbo transaction arguments 238
Array functions 244
Blob functions 245
Database functions 246
Date and conversion functions 246
DSQL functions 247
Error-handling functionso L. 248
Event functions 248
Information functions L. 249
Security functions 249
Service functions 250
Transaction control functions 250
Function description format 251
Error messages for user security functions 253
Datatypes for array descriptor fields 261

INTERBASE 6

Table 13.15
Table 13.16
Table 13.17
Table 13.18
Table 13.19
Table 13.20
Table 13.21
Table 13.22
Table A.1
Table A.2
Table A.3
Table B.1
Table B.2
Table B.3
Table B.4
Table B.5
Table B.6
Table B.7
Table B.8
Table B.9
Table B.10
Table B.11
Table B.12
Table B.13
Table B.14
Table B.15
Table B.16
Table B.17
Table B.18
Table B.19

API GUIDE

Datatypes for array descriptor fields 264
Datatypes for array descriptor fields 274
Blob descriptor fields L. 280
Blob descriptor fields L. 285
Error messages for user security functions 304
Error messages for user security functions 358
Transaction information requestitem 389
Status message return items 390
Books in the InterBase 6 documentationset 398
Text conventionso 399
Syntax conventions 400
Array descriptor fieldso oL 402
Datatypes for array descriptors 403
Blob descriptor fields 404
Blob information items and return values 406
Status message returnitems 406
Blob parameter buffer parameter types 407
Status message returnitemso 409
Database information items for database characteristics 410
Database information items for environmental characteristics . . . 412
Database information items for performance statistics 413
Database information items for operation counts 414
DPB parameterso oo 415
Alphabetical list of DPB parameters 416
SQL datatypes, macro expressions, and C datatypes 418
Interpretation of status vector clusters 421
#defines for status vector numeric descriptors 422
TPB CONStANntS v oo 423
XSQLDA field descriptions 427
XSQLVAR field descriptions 428

XV

LIST OF TABLES

XVI INTERBASE 6

CHAPTER

Using the APl Guide

The InterBase API Guide is a task-oriented explanation of how to write, preprocess,
compile, and link database applcations using the InterBase Applications Programming
Interface (API), and a host programming language, either C or C++.

This chapter describes the focus of this book, and provides a brief overview of its
chapters.

Who should use this guide

API GUIDE

The InterBase API Guide is intended for knowledgeable database applications
programmers. It assumes full knowledge of:

® SQL and dynamic SQL (DSQL).
® Relational database programming.

® C programming.

17

CHAPTER 1 USING THE API GUIDE

Topics covered in this guide

The API Guide is divided into two parts:

= A task-oriented user’s guide that explains how to use API function calls to perform related
database tasks, such as attaching to and detaching from a database.

= An API function call reference that describes the purpose of each function, its syntax, its
parameters, requirements, restrictions, and return values, as well as examples of use and
cross-references to related functions.

The following table provides a brief description of each chapter in the API Guide:

Chapter

Description

Chapter 2, “Application Requirements”

Chapter 3, “Programming with the InterBase API”

Chapter 4, “Working with Databases”

Chapter 5, “Working with Transactions”

Chapter 6, “Working with Dynamic SQL”

Chapter 7, “Working with Blob Data”

Chapter 8, “Working with Array Data”

Chapter 9, “Working with Conversions”

Chapter 10, “Handling Error Conditions”

Chapter 11, “Working with Events”

Describes support structures and elements common to
programming with API calls

Describes special requirements for programming InterBase
applications with the InterBase API

Describes how to attach to and detach from databases, and how to
request information about attachments

Explains how to start transactions in different modes, and how to
commit them or roll them back

Describes how to process DSQL data definition and data
manipulation statements using API calls

Describes how to select, insert, update, and delete Blob data in
applications

Describes how to select, insert, update, and delete array data in
applications

Describes how to select, insert, update, and delete date and time
data in applications, and how to reverse the byte order of numbers
with isc_vax_integer()

Describes how to trap and handle database errors in applications

Explains how triggers interact with applications and describes how
to register interest in events, wait on them, and respond to them in
applications

TABLE1.1 API Guide chapters

18

INTERBASE 6

SAMPLE DATABASE AND APPLICATIONS

Chapter

Description

Chapter 12: “Working with Services”
Chapter 13, “API Function Reference”

”

Appendix A, “InterBase Document Conventions

Appendix B, “Data Structures”

Describes the syntax of each function call in detail.

Lists typefaces and special characters used in this book to describe
syntax and identify object types.

Lists and describes the data structures, constants, and buffers that
are defined in ibase.h.

TABLE 1.1 API Guide chapters (continued)

Sample database and applications

The InterBase Examples subdirectory contains a sample database and sample application
source code. The examples in this API Guide make use of this sample database and
source code wherever possible.

API GUIDE

19

20

CHAPTER 1 USING THE API GUIDE

INTERBASE 6

PART |

AP]
User’s
Guide

IIIIIIII

‘- -
'y W e
w w
W

CHAPTER

Application Requirements

This chapter summarizes programming requirements for using categories of API
functions in database applications, and provides cross-references to more detailed
information in later chapters.

All API applications must use certain API functions and support structures. For example,
all applications connect to at least one database, and run at least one transaction. All
applications, therefore, must declare and initialize database handles and transaction
handles. They may also need to declare and populate database parameter buffers (DPBs),
transaction parameter buffers (TPBs), and service parameter buffers (SPBs). This chapter
outlines those requirements, and points you to more detailed information later in this
book.

Some API applications may use specific API functions, such as the functions that permit
an application to process dynamic SQL (DSQL) statements. These applications have
additional requirements that are also outlined in this chapter along with pointers to more
detailed information elsewhere in this book.

API GUIDE 23

CHAPTER 2 APPLICATION REQUIREMENTS

Requirements for all applications

The following sections outline these requirements for all API applications:
® Including ibase.h
® Database requirements

® Transaction requirements

Including ibase.h

The InterBase subdirectory, incude, contains the ibase.h header file, which should be
included in all source code modules for API applications. ibase.h contains API function
prototypes. It also contains structure typedefs, parameter definitions, and macros
required by various API functions.

To include ibase.h in a source code module, insert the following #include near the start of
the source code:

#i ncl ude <i base. h>

If ibase.h is not on your compiler’s search path, you may need to provide a full path
specification and enclose the file name in quotation marks.

Failure to include ibase.h can prevent the successful compilation and linking of an
application.

Database requirements

All applications that work with databases must provide one database handle for each
database to be accessed. A database bandle is a long pointer that is used in API functions
to attach to a database and to reference it in subsequent API calls. The InterBase header
file, ibase.h, contains a #define useful for declaring database handles.

When establishing a connection to a database, optional database attachment
characteristics, such as a user name and password combination, can be passed to the
attachment through a database parameter buffer (DPB). Usually, one DPB is set up for
each database attachment, although database attachments can also share a DPB.

24 INTERBASE 6

REQUIREMENTS FOR ALL APPLICATIONS

API GUIDE

» Declaring database handles

A database handle must be declared and initialized to zero before use. The following code
illustrates how to declare and initialize a database handle:

#i ncl ude <i base. h>

/* Declare a database handle. */
i sc_db_handl e dbi;

/* Initialize the handle. */

dbl = OL;

For more information about declaring, initializing, and using database handles, see
Chapter 4, “Working with Databases.”

» Selting up a DPB

A DPB is a byte array describing optional database attachment characteristics. A DPB
must be set up and populated before attaching to a database. Parameters that can be
passed to the DPB are defined in ibase.h.

For more information about setting up, populating, and using a DPB, see Chapter 4,
“Working with Databases.”

Transaction requirements

All applications must provide one transaction handle for each transaction to be accessed.
A transaction handle is a long pointer that is used in API functions to start a transaction
and to reference it in subsequent API calls. The InterBase header file, ibase.h, contains a
#define useful for declaring transaction handles.

When starting a transaction, optional transaction characteristics, such as access method
and isolation level, can be passed to the start-up call through a transaction parameter
buffer (TPB). Usually, one TPB is set up for each transaction, although transactions with
the same operating characteristics can also share a TPB.

» Declaring transaction handles

A transaction handle must be declared and initialized to zero before use. The following
code illustrates how to declare and initialize a transaction handle:

#i ncl ude <i base. h>

/* Declare a transaction handle. */
isc_tr_handle tri;

25

CHAPTER 2 APPLICATION REQUIREMENTS

/* Initialize the handle. */
trl = OL;

For more information about declaring, initializing, and using transaction handles, see
Chapter 5, “Working with Transactions.”

» Seiting up a TPB

A TPB is a byte array containing parameters that describe optional transaction
characteristics. In these cases, the TPB must be set up and populated before starting a
transaction. Parameters that can be passed to the TPB are defined in ibase.h.

For more information about setting up, populating, and using a TPB, see Chapter 5,
“Working with Transactions.”

Additional requirements

26

The following sections outline possible additional requirements for API applications
developed on certain system platforms, such as Microsoft Windows, and for general
classes of API functions, such as those that process DSQL statements.

Microsoft Windows requirements

InterBase client applications for Microsoft Windows have programming requirements
specific to that environment and the C/C++ compilers available there.

The InterBase header file, ibase.h, provides prototypes of all API functions. For Windows
applications, these prototypes make use of the following declarations:

#define | SC FAR _ far
#define | SC_EXPORT | SC FAR _ cdecl __|oadds __export

For example, the isc_attach_database() prototype in ibase.h is:

| SC_STATUS | SC_EXPORT i sc_attach_dat abase(
| SC_STATUS | SC FAR *,
short,
char | SC_FAR,
i sc_db_handl e | SC FAR *,
short,
char | SC_FAR *);

INTERBASE 6

ADDITIONAL REQUIREMENTS

IMPORTANT

API GUIDE

When Windows client applications make calls and cast C datatypes, they should make
explicit use of the ISC_FAR declaration.

Note The ISC_EXPORT keyword is omitted from the API function reference because on all
non-Windows platforms it is undefined.

For more information about Windows requirements, see Chapter 3, “Programming
with the InterBase APL.”

DSQL requirements

API applications that build or prompt for DSQL queries at run time require careful
declaration, initialization, and population of extended SQL descriptor area (XSQLDA)
structures for data transfer to and from the database. In addition, many API functions,
such as isc_dsql_allocate_statement() and isc_dsql_describe(), also make use of
statement handles for DSQL processing.

ibase.h provides typedefs for the XSQLDA structure, and its underlying structure, the
XSQLVAR. Tt also provides a #define for the statement handle, a macro for allocating the
appropriate amount of space for an instance of an XSQLDA in an application, and #defines
for DSQL information parameters passed to isc_dsql_sql_info().

The following code illustrates how to declare an XSQLDA structure for use in an
application, and how to declare a statement handle:

#i ncl ude <i base. h>
XSQLDA *insql da;

isc_stm _handl e sql _stnt;

For more information about DSQL programming with the API, see Chapter 6, “Working
with Dynamic SQL.”

Blob requirements

To work with Blob data that must be filtered, an API application must set up a Blob
parameter buffer (BPB) for each Blob. A BPB is a variable-length byte vector declared in
an application to store control information that dictates Blob access. The BPB can contain
a number of constants, defined in ibase.h, that describe the Blob and the Blob subtypes
that specify Blob filtering.

Blob filtering is not available on NetWare servers.

27

28

CHAPTER 2 APPLICATION REQUIREMENTS

Applications that work with Blob data in an international environment must also declare
and populate a Blob descriptor that contains character set information for the Blob. The
Blob descriptor structure is defined in ibase.h. To declare a Blob descriptor, an application
must provide code like this:

#i ncl ude <i base. h>

| SC BLOB DESC to_desc;

Except on NetWare servers, where they are not supported, Blob filters enable a Blob to
be translated from one format to another, such as from a compressed state to an
decompressed state or vice versa. If Blob filters are desired, separate filter functions must
be created and defined to the database to ensure their use when Blob data is accessed.

Finally, to access Blob data, applications must make extensive use of API DSQL functions.

For more information about working with Blob data and Blob filters, see
Chapter 7, “Working with Blob Data.”For more information about DSQL, see Chapter
6, “Working with Dynamic SQL.”

Array requirements

API functions that handle array processing require the use of an array descriptor structure
and array IDs, defined in ibase.h. In addition, applications accessing arrays must make
extensive use of API DSQL functions.

The following code illustrates how to declare an array descriptor and array ID variable,
and how to initialize an array ID to zero before use:

#i ncl ude <i base. h>

| SC_ARRAY_DESC desc;
| SC_QUAD array_id;

array_id = OL;

For more information about working with arrays, see Chapter 8, “Working with Array
Data.”For more information about DSQL, see Chapter 6, “Working with Dynamic
SQL.”

INTERBASE 6

ADDITIONAL REQUIREMENTS

API GUIDE

Event requirements

InterBase events are messages passed from a trigger or stored procedure to an application
to announce the occurrence of specified conditions or actions, usually database changes
such as insertions, modifications, or deletions of records.

Before an application can respond to an event, it must register interest in an event. To
register interest in an event, the application must establish and populate two event
parameter buffers (EPBs), one for holding the initial occurrence count values for each
event of interest, and another for holding the changed occurrence count values. These
buffers are passed as parameters to several API event functions, and are used to
determine which events have occurred.

In C, each EPB is declared as a char pointer, as follows:

char *event buffer, *result_buffer;

Once the buffers are declared, isc_event_block() is called to allocate space for them, and
to populate them with starting values.

For more information about events, see Chapter 11, “Working with Events.”

Error-handling requirements

Most API functions return status information in an error status vector, an array of 20
longs. To handle InterBase error conditions, should they arise, applications should
declare a status vector as follows:

#i ncl ude <i base. h>

| SC_STATUS status_vector[20];

ISC_STATUS is a #define in ibase.h provided for programming convenience and platform
independence.

ibase.h also contains #defines for all InterBase error conditions. Applications can use API
error-handling functions to construct error messages from the status vector that are based
on these error conditions, or can examine the status vector directly for particular error
conditions using the #defines in place of error numbers. Using #defines in this manner
makes source code easier to understand and maintain.

For more information about error handling, see Chapter 11, “Working with Events.”

29

CHAPTER 2 APPLICATION REQUIREMENTS

Services requirements

InterBase provides an API interface to enable your applications to request information
about server and database properties, and to invoke tasks to administer servers and
databases. Your application can initiate a connection to a local instance of the InterBase
server, or to a remote server over a network. Through this connection, your application
submits requests to the server and receives resultant data.

For more information about using this API facility, see Chapter 12, “Working with
Services.”

Compiling and linking

30

On most development platforms, an API application is compiled like any standard C or
C++ application. For more information about a particular compiler, consult the
compiler’s documentation.

On most platforms, InterBase supports dynamic linking of its library at run time.
One exception to this scenario is on Microsoft Windows, where an application must
explicitly link to the InterBase library (gds32.lib or gds32_ms.lib).

On Microsoft Windows, there are particular compiling options to be aware of. For more
information about linking under Windows, see Chapter 3, “Programming with
the InterBase APL.”

For all other platforms, see the InterBase Embedded SQL Guide for specific compiling and
linking guidelines.

INTERBASE 6

CHAPTER

Programming with
the InterBase API

This chapter provides information specific to programming InterBase applications on a
client with C/C++. It assumes familiarity with Borland C/C++ or Microsoft C/C++,
InterBase, and the IntderBase documentation set, particularly the Language Reference.

Basic procedure for application development

The basic steps in application development using the InterBase Client are:

® Determine which client and server platforms the application will run on. InterBase clients
and servers include Microsoft Windows 95/98, Windows NT, Linux, and several brands of
UNIX. The InterBase server also runs on Novell NetWare 4.

® Code the application in C or C++.
® Compile and link the application.
® Test and debug the application.

® Deploy the application on the production client platform.

API GUIDE 31

CHAPTER 3 PROGRAMMING WITH THE INTERBASE API

Supported development environments

The InterBase client library enables developers to design InterBase SQL client
applications that connect to remote InterBase servers on Windows 95/98, Windows NT,
UNIX, or NetWare.

See the Operations Guide for more specific information about this topic.

User name and password requirements

32

When an InterBase client application is compiled, linked, and run, the client must always
send a valid user name and password combination to the InterBase server. The server
checks the user name and password against the user name and password combinations
stored in its security database. If a match is found, the client can attach to InterBase
databases on the server. If a match is not found, the server denies the attachment request.

For a successful attachment to occur, the following steps must be taken:

1. A user with SYSDBA privileges must add a client’s user name and password to
the server’s security database (isc4.gdb). Use the Server Manager to do this on
Windows platforms. On UNIX, use the gsec utility.

2. The client must send a valid user name and password combination to the
server. Password is case-sensitive.

Note Under some circumstances, you can connect to a database even if you don’t have
a user name in the InterBase security database. In order for this to happen, the following
things must be true:

- Both the client and server are running under UNIX
- Your current login exists on the server host

- You are logging in from a trusted client; a trusted client is one that is listed in the
/etc/hosts.equiv or /etc/gds_hosts.equiv file on the server or in the .rhosts file in your home
directory on the server

- You have not specified a user name and password in the connect string

Note InterBase comes with one user ID predefined. This is the SYSDBA user ID. The
default password is mast er key. This user ID is for use by the database administrator, and
it has special privileges that are not available to any other user ID. Do not use this user
ID for end-users’ application.

INTERBASE 6

SPECIFYING USER NAME AND PASSWORD

Specifying user name and password

A client application must specify a user name and password when it attaches to a
database. Failure to provide a valid user name and password combination results in an
error. Use the following methods to provide user names and passwords:

® Create a database parameter block (DPB) with isc_dpb_user_name and
isc_dpb_password, and pass the parameter block using isc_attach_database().

® Add isc_dpb_user_name and isc_dpb_password parameters to an existing DPB with
isc_expand_dpbQ).

For more information about the DPB, isc_attach_database(), and isc_expand_dpb(), see
Chapter 4, “Working with Databases.”

Using environment variables

InterBase client applications can use three environment variables to establish program
parameters. These variables must be set so that they are available to the application when
it is running. For example, setting these variables within a DOS window after Windows
has been started does not affect any Windows programs, but affects DOS applications in
that window.

The following table summarizes these variables and their uses:

Variable Purpose Example

ISC_DATABASE Specifies a default server and SET | SC_DATABASE =
database directory to use on the i ngol d: / usr/interbase/ exanpl es
remote server

ISC_USER Specifies a user name forthe PC~ SET | SC_USER = HERMES

client application

ISC_PASSWORD Specifies a case-sensitive password SET | SC_PASSWORD = | chneunon
for the PC client application

TABLE3.1 Environment variables used by InterBase

The ISC_USER and ISC_PASSWORD environment variables are used together to establish a
valid user name and password combination to pass to the remote InterBase database
server.

API GUIDE 33

CHAPTER 3 PROGRAMMING WITH THE INTERBASE API

IMPORTANT Do not use the ISC_PASSWORD environment variable when security is a concern. Anyone
with access to a client where an ISC_PASSWORD environment variable is defined in a file
such as autoexec.bat can easily view the password.

Setting a default database directory

To connect automatically to a default database directory on a remote server, create the
ISC_DATABASE environment variable and set it to the full path specification for the desired
database directory, including host and path names.

Note Host name specification is specific to the server’s operating system and network
protocol. The host syntax in the previous example is for a generic UNIX server. For other
servers and operating systems, see that system’s reference manuals.

Setting a user name and password

To set up a default user name and password for use on a PC client, create two
environment variables, ISC_USER, and ISC_PASSWORD.

Even if ISC_USER and ISC_PASSWORD are set, a different user name and password may be
specified in a DPB used as an argument to isc_attach_database(). A user name or
password specified in a database parameter block overrides the OS environment
variables.

Note Using environment variables in this manner is not secure, and therefore not
recommended.

Datatypes

InterBase supports a wide variety of datatypes for application development. These
datatypes are defined in a typedef to be platform-independent. The InterBase client
libraries are also compiled with packed data structures to be compatible with a variety of
platforms.

For more information about InterBase datatypes, see the Language Reference.

34 INTERBASE 6

CALLING CONVENTIONS

Calling conventions

Conventions for calling functions vary from platform to platform. Specifically:

® On UNIX platforms, use the C calling conventions (cdecl) in all cases.

® On Windows 95 and Windows NT, use the standard calling conventions (_stdcall) for all
functions that have a fixed number of arguments. There are only three functions that have

a variable number of arguments. For these three—isc_start_transaction(,
isc_expand_dpb(), and isc_event_block()—use the cdecl conventions.

Building applications

This section discusses compilers and libraries that are needed to build InterBase
applications.

HELP WITH LINKING AND COMPILING On each platform, there is a makefile in the

API GUIDE

examples directory that contains detailed platform-specific information about linking and

compiling. Open the makefile in a text editor to access the information.

Compilers

The import libraries included with InterBase have been tested with the following
compilers:

Windows platforms

® Borland C++ 5.0

® Microsoft Visual C++ 2.0

® Microsoft Visual C++ 4.0

Solaris
=C
" CH++
= COBOL
= ADA
® FORTRAN

SPARCWorks SC4.2 C compiler
SPARCWorks SC3.0.1 C++ compiler
MicroFocus Cobol 4.0

SPARCWorks SC4.0 Ada compiler
SPARCWorks SC4.0 Fortran compiler

35

36

TABLE3.2

CHAPTER 3 PROGRAMMING WITH THE INTERBASE API

HP-UX

=C HP C/HP-UX Version A.10.32

" CH++ HP C++/HP-UX Version A.10.22

= COBOL MicroFocus Cobol 4.0

= ADA Alsys Ada - AdaWorld V5.5.4

® FORTRAN HP Fortran/9000 10.20 Release
Linking

The InterBase library files reside in the lib subdirectory of the installation directory.
Applications must link with the InterBase client library. This library name varies
depending on the platform and the compiler.

Platform/compiler InterBase library file

Windows/Borland C++ gds32.lib

Windows/Microsoft Visual C++ 2.0 and 4.0 gds32_ms.lib
Solaris/all gdsmt
HPUX/all gds

InterBase library file names

Borland compilers earlier than 5.0 do not work with gds32.lib.

Include files

Applications must include the ibase.h header file to pick up the InterBase type definitions
and function prototypes. This file is in the include subdirectory of the InterBase install
directory.

On UNIX platforms, the gds.h file is available in the installation directory for backward
compatibility.

INTERBASE 6

BUILDING APPLICATIONS

Using Microsoft C++

Use the following options when compiling applications with Microsoft C++:

Option Action

C Compile without linking (DLLs only)

Zi Generate complete debugging information
DWIN32 Defines “WIN32" to be the null string
D_MT Use a multi-thread, statically-linked library

TABLE33 Microsoft C compiler options

For example, these commands use the Microsoft compiler to build a DLL that uses

InterBase:

cl -c -Zi -DWN32 -D_MI -LD udf.c

lib-out:udf.lib -def:funclib.def -nmachine:i 586 -subsystem consol e
link -DLL -out:funclib.dl | -DEBUG full, mapped - DEBUGTYPE: CV
-machi ne: i 586 -entry: DI | Mai nCRTSt art up@.2 -subsystem consol e
-verbose udf.obj udf.exp gds32.lib ib_util_ns.lib crtdll.lib

This command builds an InterBase executable using the Microsoft compiler:

cl -Zi -DWN32 -D Mr -MD udftest.c udf.lib gds32.1ib
ib_util_ns.lib crtdll.lib

Note See “Working with UDFs” in the Developer’s Guide for more about compiling and

linking user-defined libraries.

Using the Dynamic Runtime Library If you are

- using a Microsoft Visual C++ 2.0 or Microsoft Visual C++ 4.0
- compiling and linking separately, and

- using the Dynamic Runtime Library (msvcrt20.dll or msvert40.dil)

you need to use the /MD compiler flag to compile with the run time library (RTL), as well

as linking with the correct import library.

API GUIDE

TABLE 3.4

CHAPTER 3 PROGRAMMING WITH THE INTERBASE API

Using Borland ¢/C++
Use the following options when compiling applications with Borland C++:
Option Action
v Turns on source debugging
a4 Structure padding/byte alignment
DWIN32 « Defines the string “WIN32”
« With no argument, it defines it to the null string
twm Makes the target multi-threaded
twe: + Makes the target a console .EXE with all functions exportable

« Cannot be used with the -tW(D option

tWcD Makes the target a console .DLL with all functions exportable; cannot be used
with the -tWC option

Borland C compiler options

The following command creates a DLL named fundib.dll from a source file named udf.c:

implib nygds32.1ib \interbas\bin\gds32.dlI
bcc32 -v -a4 -DWN32 -tWM -tWCD -efunclib.dll udf.c nmygds32.1ib

The following commands create an InterBase executable named udftest.exe (which calls
into fundib.dll) from a source file named udftest.e containing embedded SQL commands.

inplib udf.lib funclib.dll
gpre -e udftest.e
bcc32 -v -a4 -DWN32 -tWM -tWC udftest.c udf.lib mygds32.1ib

When linking applications with Borland C command line linker, use the / ¢ option (case
sensitive link).

Note There are equivalent general linker options within the Borland Integrated
Development Environment (IDE). The default in the IDE is case-sensitive link (/ ¢ option)
alone, which causes unresolved linker errors for all of the InterBase entry points.

INTERBASE 6

BUILDING APPLICATIONS

API GUIDE

Setting up the Integrated Development Environment (IDE)
The Borland Integrated Development Environment (IDE) offers options that are

equivalent to the command line options.

» IDE default
The case-sensitive link (/ ¢ option) is the default in the IDE.

» IDE Project Options dialog box

Choose the following options from the IDE Project Options dialog box. The
corresponding command-line option is also listed.

DIRECTORIES

Include directory: interbase_home_din\indude

Library directory: interbase_home_dir\lib

Note The default InterBase home directory is c:\Program Files\InterBase Corp\InterBase.

COMPILER

Source language compliance: Borland extensions
32-bit Compiler

Data alignment: Byte (- a4 option for 4 byte alignment)

LINKER

Choose Case-sensitive link ON (/ ¢ option).

The module definition file

Creating a module definition file can solve certain issues that arise during linking and
compiling with the Borland C++ Builder:

® Set the STACKSIZE parameter to at least 10 kilobytes (10,240 bytes); 16 kilobytes (16,384
bytes) is recommended. A sample .def file is included in the examples subdirectory of the
InterBase installation directory.

39

40

CHAPTER 3 PROGRAMMING WITH THE INTERBASE API

® Because the Borland C++Builder prepends an underscore to some API functions that
gds32.dll exports without the underscore, you may need to add aliases for these functions
to your module definition file, as in the following example:

| MPORTS
_isc_start_transaction = GDS32.isc_start_transaction

Using dynamic link libraries (DLLs)

InterBase applications use the gds32.dll dynamic link library, which in turn loads the
appropriate network DLLs. These DLLs unload automatically when the last calling
application terminates. If the calling application exits abnormally (for example, from a
protection fault), it is possible that DLLs will not be unloaded from memory. If this occurs,
exit and restart Windows to free the resources.

Example programs

Example programs demonstrating how to use the InterBase API are included in the
examples subdirectory of the InterBase installation directory. There is also a sample .def
file.

On NT, there are two make files, makefile.bc for the Borland compiler and linker, and
makefile.msc for the Microsoft compiler and linker. In both files, you must modify the IBASE
environment variable to point to an absolute path.

In the .bc make file, modify the BCDIR variable to point to the absolute path to the Borland
compiler and linker.

In the .msc make file, modify the MSCDIR variable to point to the absolute path to the
Microsoft compiler and linker.

To build the example applications on NT using Borland C++, use the following
command:

make -B -f makefile.bc all

To build the example applications using Microsoft C++, use this command:

nmake -B -f makefile.nsc all

On UNIX systems, the command to build the example applications is as follows:

make al |

INTERBASE 6

CHAPTER

Working with Databases

This chapter describes how to set up a database parameter buffer (DPB) that specifies
database attachment parameters, how to set up and initialize database handles, and how
to use the five API functions that control database access. It also explains how to set up
item request and return buffers prior to retrieving information about an attached
database.

API GUIDE 41

TABLE4.1

CHAPTER 4 WORKING WITH DATABASES

The following table lists the API functions for working with databases. The functions are
listed in the order that they typically appear in an application.

Call Purpose

isc_expand_dpb() Specifies additional parameters for database access, such as user names
and passwords elicited from a user at run time; uses a previously declared
and populated DPB

isc_attach_database() ~ Connects to a database and establishes initial parameters for database
access, such as number of cache buffers to use; uses a previously declared
and populated DPB

isc_database_info() Retrieves requested information about an attached database, such as the
version of the on-disk structure (ODS) that it uses

isc_detach_database() Disconnects from an attached database and frees system resources
allocated to that attachment

isc_drop_database() Deletes a database and any support files, such as shadow files

API database functions

Connecting to databases

42

Connecting to one or more databases is a four-step process:
1. Creating and initializing a database handle for each database to be attached.
2. Creating and populating a DPB for each database to be attached.

3. Optionally calling isc_expand_dpb() prior to actual attachment to add more
database parameters to a previously created and populated DPB.

4. Calling isc_attach_database() for each database to which to connect.

These steps are described in the following sections of this chapter.

Creating database handles

Every database that is accessed in an application must be associated with its own
database handle, a pointer to a FILE structure that is used by all API database functions.
The ibase.h header file contains the following C typedef declaration for database handles:

typedef void | SC FAR *i sc_db_handl e;

INTERBASE 6

CONNECTING TO DATABASES

API GUIDE

To use this typedef for declaring database handles in an application, include ibase.h in
each source file module:

#i ncl ude <i base. h>

» Declaring database handles

To establish database handles for use, declare a variable of type isc_db_handle for each
database that will be accessed at the same time. The following code declares two handles:

#i ncl ude <i base. h>

i sc_db_handl e dbi;
i sc_db_handl e dbh2;

Once a database is no longer attached, its handle can be assigned to a different database
in a subsequent attachment. If an application accesses several databases, but only
accesses a subset of databases at the same time, it is only necessary to declare as many
handles as there will be simultaneous database accesses. For example, if an application
accesses a total of three databases, but only attaches to two of them at a time, only two
database handles need be declared.

» Initializing database handles

Before a database handle can be used to attach to a database, it must be set to zero. The
following code illustrates how two database handles are set to zero:

#i ncl ude <i base. h>

i sc_db_handl e dbl;
i sc_db_handl e db2;

/* Set database handles to zero before attaching to a database. */
dbl = OL;
db2 = OL;

Once a database handle is initialized to zero, it can be used in a call to
isc_attach_database() to establish a database connection. If a nonzero database handle
is passed to isc_attach_database(), the connection fails and an error code is returned.
For more information about establishing a database connection with
isc_attach_database(), see “Attaching to a database” on page 49.

43

44

Tip

CHAPTER 4 WORKING WITH DATABASES

Creating and populating a DPB

Database attachments can optionally be tailored in many ways by creating a database
parameter buffer (DPB), populating it with desired database characteristics, and passing
the address of the DPB to isc_attach_database().

For example, the DPB can contain a user name and password for attaching to a database
on a remote server, and it might also contain a parameter that activates a database
shadow file. For a list of all possible DPB parameters, see Table 4.2, “DPB parameters,”
on page 45.

Usually a separate DPB is created for each database attachment, but if different
attachments use the same set of parameters, they can share a DPB. If a DPB is not created
or is not passed to isc_attach_database(), the database attachment uses a default set of
parameters.

Some of the DPB parameters correspond directly to gfix options. In fact, that’s how dfix is
implemented: it sets certain DPB parameters and attaches to a database, where it
performs the requested operation (sweep, set async writes, shutdown, and so on).

A DPB is a char array variable declared in an application, that consists of the following
parts:

1. A byte specifying the version of the parameter buffer, always the
compile-time constant, isc_dpb_version1.

2. A contiguous series of one or more clusters of bytes, each describing a single
parameter.

Each cluster consists of the following parts:

1. A one-byte parameter type. There are compile-time constants defined for all
the parameter types (for example, isc_dpb_num_buffers).

2. A one-byte number specifying the number of bytes that follow in the
remainder of the cluster.

3. A variable number of bytes, whose interpretation (for example, as a number
or as a string of characters) depends on the parameter type.

For example, the following code creates a DPB with a single parameter that sets the
number of cache buffers to use when connecting to a database:

char dpb_buffer[256], *dpb, *p;

short dpb_I engt h;

[* Construct the database paraneter buffer. */

dpb = dpb_buffer;

*dpb++ = isc_dpb_versionl;

INTERBASE 6

CONNECTING TO DATABASES

IMPORTANT

*dpb++ = i sc_num buffers;
*dpb++ = 1;
*dpb++ = 90;

dpb_l ength = dpb - dpb_buffer;

All numbers in the database parameter buffer must be represented in a generic format,
with the least significant byte first, and the most significant byte last. Signed numbers

should have the sign in the last byte. The API function isc_vax_integer() can be used to
reverse the byte order of a number. For more information, see “isc_vax_integer()” on

page 391.

The following table lists DPB items by purpose:

User validation

User name isc_dpb_user_name
Password isc_dpb_password
Encrypted password isc_dpb_password_enc
Role name isc_dpb_sql_role_name

System database administrator’s user name
Authorization key for a software license

Database encryption key

isc_dpb_sys_user_name
isc_dpb_license

isc_dpb_encrypt_key

Environmental control

Number of cache buffers

dbkey context scope

isc_dpb_num_ buffers

isc_dpb_dbkey_scope

System management

Force writes to the database to be done asynchronously or synchronously isc_dpb_force_write

Specify whether or not to reserve a small amount of space on each database isc_dpb_no_reserve
page for holding backup versions of records when modifications are made

System management

Specify whether or not the database should be marked as damaged isc_dpb_damaged

Perform consistency checking of internal structures isc_dpb_verify

TABLE4.2 DPB parameters

API GUIDE 45

CHAPTER 4 WORKING WITH DATABASES

Shadow control

Activate the database shadow, an optional, duplicate, in-sync copy of the
database

Delete the database shadow

isc_dpb_activate_shadow

isc_dpb_delete_shadow

Replay logging system control

Activate a replay logging system to keep track of all database calls

Deactivate the replay logging system

isc_dpb_begin_log
isc_dpb_quit_log

Character set and message file specification

Language-specific message file

Character set to be utilized

isc_dpb_lIc_messages

isc_dpb_Ic_ctype

TABLE4.2 DPB parameters (continued)

The following table lists DPB parameters in alphabetical order. For each parameter, it lists
its purpose, the length, in bytes, of any values passed with the parameter, and the value

to pass.

Parameter Purpose Length Value

isc_dpb_activate_shadow Directive to activate the database shadow, which is 1 (Ignored) 0 (Ignored)
an optional, duplicate, in-sync copy of the database

isc_dpb_damaged Number signifying whether or not the database 1 Oor1
should be marked as damaged
1 =mark as damaged
0 = do not mark as damaged

isc_dpb_dbkey_scope Scope of dbkey context. 0 limits scope to the current 1 Oor1
transaction, 1 extends scope to the database session

isc_dpb_delete_shadow Directive to delete a database shadow thatisno 1(Ignored) 0 (Ignored)
longer needed

isc_dpb_encrypt_key String encryption key, up to 255 characters Number of bytes String containing key

in string

TABLE43 Alphabetical list of DPB parameters

46

INTERBASE 6

CONNECTING TO DATABASES

Parameter Purpose Length Value

isc_dpb_force_write Specifies whether database writes 1 Oor1
are synchronous or asynchronous.

0 =asynchronous; 1 = synchronous

isc_dpb_Ic_ctype String specifying the character set to be utilized ~ Number of bytes String containing
in string character set name
isc_dpb_Ic_messages String specifying a language-specific message file Number of bytes String containing
in string message file name
isc_dpb_license String authorization key for a software license Number of bytes String containing key
in string
isc_dpb_no_reserve Specifies whether or not a small amount of space on 1 Oor1

each database page is reserved for holding backup
versions of records when modifications are made;
keep backup versions on the same page as the
primary record to optimize update activity

0 (default) = reserve space

1=do not reserve space

isc_dpb_num_buffers Number of database cache buffers to allocate for use 1 Number of buffers to
with the database; default=75 allocate
isc_dpb_password String password, up to 255 characters Number of bytes String containing
in string password
isc_dpb_password_enc String encrypted password, up to 255 characters Number of bytes in String containing
string password
isc_dpb_sys_user_name String system DBA name, up to 255 characters Number of bytes in String containing
string SYSDBA name
isc_dpb_user_name String user name, up to 255 characters Number of bytes in String containing
string user name

TABLE43 Alphabetical list of DPB parameters (continued)

Note Some parameters, such as isc_dpb_delete_shadow, are directives that do not
require additional parameters. Even so, you must still provide length and value bytes for
these parameters. Set length to 1 and value to 0. InterBase ignores these parameter
values, but they are required to maintain the format of the DPB.

API GUIDE 47

TABLE 4.4

IMPORTANT

48

TABLE4.5

CHAPTER 4 WORKING WITH DATABASES

Adding parameters to a DPB

Sometimes it is useful to add parameters to an existing DPB at run time. For example,
when an application runs, it might determine a user’s name and password and supply
those values dynamically. The isc_expand_dpb() function can be used to pass the
following additional parameters to a previously created and populated DPB at run time:

Parameter Purpose

isc_dpb_user_name String user name, up to 255 characters
isc_dpb_password String password, up to 255 characters
isc_dpb_Ic_messages String specifying a language-specific message file

isc_dpb_Ic_ctype String specifying the character set to be utilized

DPB parameters recognized by isc_expand_dpb()

If you expect to add any of these parameters at run time, then create a larger than
necessary DPB before calling isc_expand_dpb(), so that this function does not need to
reallocate DPB storage space at run time. isc_expand_dbp() can reallocate space, but
that space is not automatically freed when the database is detached.

isc_expand_dpb() requires the following parameters:

Parameter Type Description

dpb char ** Pointer to a DPB

dpb_size unsigned short * Pointer to the current size, in bytes, of the DPB
char * Pointers to item type and items to add to the DPB

isc_expand_dbp() parameters
The third parameter in the table, “...”, indicates a variable number of replaceable
parameters, each with different names, but each a character pointer.

The following code demonstrates how isc_expand_dpb() is called to add a user name
and password to the DPB after they are elicited from a user at run time:

char dpb_buffer[256], *dpb, *p;
char unane[256], upass[256];
short dpb_I engt h;

/* Construct a database parameter buffer. */

INTERBASE 6

CONNECTING TO DATABASES

API GUIDE

dpb = dpb_buffer;

*dpb++ = isc_dpb_versionl;
*dpb++ = i sc_num buffers;
*dpb++ = 1;
*dpb++ = 90;

dpb_l ength = dpb - dpb_buffer;
/* Now ask user for name and password. */
pronpt _user ("Enter your user name: ");
get s(unane) ;
pronpt _user ("\nEnter your password: ");
get s(upass);
/* Add user nanme and password to DPB. */
dpb = dbp_buffer;
i sc_expand_dpb(&dpb, &dpb_I ength,

i sc_dpb_user _nane, unane,

i sc_dpb_password, upass,

NULL) ;

Attaching to a database

After creating and initializing a database handle, and optionally setting up a DPB to
specify connection parameters, use isc_attach_database() to establish a connection to an
existing database. Besides allocating system resources for the database connection,
isc_attach_database() also associates a specific database with a database handle for use
in subsequent API calls that require a handle.

isc_attach_database() expects six parameters:

® A pointer to an error status array, where attachment errors can be reported should they
occur.

® The length, in bytes, of the database name for the database to open. If the database name
includes a node name and path, these elements must be counted in the length argument.

® A string containing the name of the database to attach. The name can include a node
name and path specification.

= A pointer to a previously declared and initialized database handle with which to associate
the database to attach. All subsequent API calls use the handle to specify access to this
database.

® The length, in bytes, of the DPB. If no DPB is passed, set this value to zero.
®= A pointer to the DPB. If no DPB is passed, set this to NULL.

Each database attachment requires a separate call to isc_attach_database().

49

CHAPTER 4 WORKING WITH DATABASES

The following code establishes an attachment to the InterBase example database,
employee.gdb, and specifies a DPB to use for the attachment:

#i ncl ude <i base. h>

i sc_db_handl e dbl;

char dpb_buffer[256], *dpb, *p;
short dpb_I engt h;

char *str = "enpl oyee. gdb";

| SC_STATUS st atus_vector[20];

/* Set database handle to zero before attaching to a database. */
dbl = OL;

/* Initialize the DPB. */

dpb = dpb_buffer;

*dpb++ = isc_dpb_versionl;
*dpb++ = i sc_num buffers;
*dpb++ = 1;
*dpb++ = 90;

dpb_l ength = dpb - dpb_buffer;
/* Attach to the database. */
i sc_attach_dat abase(status_vector, strlen(str), str, &db1l,
dpb_I engt h,
dbp_buffer);
if (status_vector[0] == 1 && status_vector[1])
{

error_exit();

}

The following code illustrates how to attach to a database without passing a DPB:

#i ncl ude <i base. h>

i sc_db_handl e dbi;
char *str = "enpl oyee. gdb";
| SC_STATUS st atus_vector[20];

/* Set database handle to zero before attaching to a database. */
dbl = OL;

/* Attach to the database. */

i sc_attach_dat abase(status_vector, strlen(str), str, &bl, 0, NULL);
if (status_vector[0] == 1 && status_vector[1])

INTERBASE 6

REQUESTING INFORMATION ABOUT AN ATTACHMENT

error_exit();

Requesting information about an attachment

API GUIDE

After an application attaches to a database, it may need information about the
attachment. The isc_database_info() call enables an application to query for attachment
information, such as the version of the on-disk structure (ODS) used by the attachment,
the number of database cache buffers allocated, the number of databases pages read from
or written to, or write-ahead log information.

In addition to a pointer to the error status vector and a database handle,
isc_database_info() requires two application-provided buffers, a request buffer, where
the application specifies the information it needs, and a result buffer, where InterBase
returns the requested information. An application populates the request buffer with
information prior to calling isc_database_info(), and passes it both a pointer to the
request buffer, and the size, in bytes, of that buffer.

The application must also create a result buffer large enough to hold the information
returned by InterBase. It passes both a pointer to the result buffer, and the size, in bytes,
of that buffer, to isc_database_info(). If InterBase attempts to pass back more
information than can fit in the result buffer, it puts the value, isc_info_truncated, defined
in ibase.h, in the final byte of the result buffer.

Requesting buffer items and result buffer values

The request buffer is a char array into which is placed a sequence of byte values, one per
requested item of information. Each byte is an item type, specifying the kind of
information desired. Compile-time constants for all item types are defined in ibase.h.

The result buffer returns a series of clusters of information, one per item requested. Each
cluster consists of three parts:

1. A one-byte item return type. There are compile-time constants defined for all
the item return types in ibase.h.

2. A two-byte number specifying the number of bytes that follow in the
remainder of the cluster.

51

52

CHAPTER 4 WORKING WITH DATABASES

3. A wvalue, stored in a variable number of bytes, whose interpretation (for
example, as a number or as a string of characters) depends on the item return

type.

A calling program is responsible for interpreting the contents of the result buffer and for
deciphering each cluster as appropriate. In many cases, the value simply contains a
number or a string (sequence of characters). But in other cases, the value is a number of
bytes whose interpretation depends on the item return type.

The clusters returned to the result buffer are not aligned. Furthermore, all numbers are
represented in a generic format, with the least significant byte first, and the most
significant byte last. Signed numbers have the sign in the last byte. Convert the numbers
to a datatype native to your system, if necessary, before interpreting them. The API call,
isc_vax_integer(), can be used to perform the conversion.

» Database characteristics

Several items are available for determining database characteristics, such as its size and
major and minor ODS version numbers. The following table lists the request buffer items
that can be passed, and the information returned in the result buffer for each item type

Request buffer item Result buffer contents

allocation Number of database pages allocated
base_level Database version (level) number:

+ 1 byte containing the number 1
+ 1 byte containing the version number

db_id « Database file name and site name:

+ 1 byte containing the number 2 for a local connection or 4 for a
remote connection

+ 1 byte containing the length, d, of the database file name in bytes
« A string of d bytes, containing the database file name

+ 1 byte containing the length, /, of the site name in bytes

+ A string of / bytes, containing the site name

implementation Database implementation number:
+ 1 byte containing a 1
+ 1 byte containing the implementation number
+ 1 byte containing a “class” number, either 1 or 12

Database information items for database characteristics

INTERBASE 6

REQUESTING INFORMATION ABOUT AN ATTACHMENT

TABLE4.6

API GUIDE

Request buffer item

Result buffer contents

no_reserve

ods_minor_version

ods_version

page_size

version

Oor1

+ 0 indicates space is reserved on each database page for holding
backup versions of modified records [Default]

« Tindicates no space is reserved for such records

On-disk structure (ODS) minor version number; an increase in a minor
version number indicates a non-structural change, one that still allows
the database to be accessed by database engines with the same major
version number but possibly different minor version numbers

0DS major version number; databases with different major version
numbers have different physical layouts

A database engine can access only databases with a particular ODS
major version number; trying to attach to a database with a different
ODS number results in an error

Number of bytes per page of the attached database; use with
isc_info_allocation to determine the size of the database

Version identification string of the database implementation:
+ 1 byte containing the number 1

+ 1 byte specifying the length, n, of the following string
* n bytes containing the version identification string

Database information items for database characteristics (continued)

53

54

TABLE4.7

CHAPTER 4 WORKING WITH DATABASES

» Environmental characteristics

Several items are provided for determining environmental characteristics, such as
the amount of memory currently in use, or the number of database cache buffers
currently allocated. These items are described in the following table:

Request buffer item Result buffer contents

current_memory Amount of server memory (in bytes) currently in use

forced_writes Number specifying the mode in which database writes are performed (0
for asynchronous, 1 for synchronous)

max_memory Maximum amount of memory (in bytes) used at one time since the first
process attached to the database

num_buffers Number of memory buffers currently allocated

sweep_interval Number of transactions that are committed between “sweeps” to remove

database record versions that are no longer needed

user_names Names of all the users currently attached to the database; for each such
user, the result buffer contains an isc_info_user_names byte followed by
a 1-byte length specifying the number of bytes in the user name, followed
by the user name

Database information items for environmental characteristics

Note Not all environmental information items are available on all platforms.

» Performance statistics

There are four items that request performance statistics for a database. These statistics
accumulate for a database from the moment it is first attached by any process until the
last remaining process detaches from the database.

For example, the value returned for isc_info_reads is the number of reads since the
current database was first attached, that is, an aggregate of all reads done by all attached
processes, rather than the number of reads done for the calling program since it attached
to the database.

INTERBASE 6

REQUESTING INFORMATION ABOUT AN ATTACHMENT

Table 4.8 summarizes the request performance statistics:

Request buffer item Result buffer contents

fetches Number of reads from the memory buffer cache
marks Number of writes to the memory buffer cache
reads Number of page reads

writes Number of page writes

TABLE4.8 Database information items for performance statistics

API GUIDE

» Database operation counts

Several information items are provided for determining the number of various database
operations performed by the currently attached calling program. These values are
calculated on a per-table basis.

When any of these information items is requested, InterBase returns to the result buffer:
® 1 byte specifying the item type (for example, isc_info_insert_count).
= 2 bytes telling how many bytes compose the subsequent value pairs.

® A pair of values for each table in the database on which the requested type of operation
has occurred since the database was last attached.

Each pair consists of:
® 2 bytes specifying the table ID.

® 4 bytes listing the number of operations (for example, inserts) done on that table.

Tip To determine an actual table name from a table ID, query the system table,
RDB$RELATION.

55

56

TABLE4.9

CHAPTER 4 WORKING WITH DATABASES

The following table describes the items which return count values for operations on the

database:

Request buffer item

Result buffer contents

backout_count
delete_count

expunge_count

insert_count

purge_count

read_idx_count

read_seq_count

update_count

Number of removals of a version of a record
Number of database deletes since the database was last attached

Number of removals of a record and all of its ancestors, for records
whose deletions have been committed

Number of inserts into the database since the database was last
attached

Number of removals of old versions of fully mature records (records
that are committed, so that older ancestor versions are no longer
needed)

Number of reads done via an index since the database was last
attached

Number of sequential sequential table scans (row reads) done on each
table since the database was last attached

Number of database updates since the database was last attached

Database information items for operation counts

isc_database_info() call example

The following code requests the page size and the number of buffers for the currently

attached database, then examines the result buffer:

char db_items[] = {
i sc_info_page_size, isc_info_numbuffers,
i sc_info_end};

char res_buffer[40], *p, item

int |ength;

SLONG page_size = OL, num buffers = OL;

| SC_STATUS st at us_vector[20];

i sc_dat abase_i nf o(
stat us_vector,
&handle, /* Set in previous isc_attach_database()

call. */

INTERBASE 6

DISCONNECTING FROM DATABASES

si zeof (db_i tens),
db_itens,
si zeof (res_buffer),
res_buffer);

if (status_vector[0] == 1 && status_vector[1]) {
/* An error occurred. */
isc_print_status(status_vector);

return(l);
b
/* Extract the values returned in the result buffer. */
for (p = res_buffer; *p !'=1isc_info_end ;) {
item= *p++
length = isc_vax_integer(p, 2);
p += 2
switch (item({
case isc_info_page_size:
page_size = isc_vax_integer(p, |length);
br eak;
case isc_info_num buffers:
num buffers = isc_vax_integer(p, |ength);
br eak;
defaul t:
br eak;
}
p += |l ength;
b

Disconnecting from databases

API GUIDE

When an application is finished accessing a database, and any changes are committed or
rolled back, the application should disconnect from the database, release system
resources allocated for the attachment, and set the database handle to zero with a call to
isc_detach_database().

isc_detach_database() requires two arguments: a pointer to the error status vector, and
a pointer to the handle of the database from which to detach. For example, the following
statement detaches from the database pointed to by the database handle, db1:

i sc_det ach_dat abase(status_vector, &dbl);

Each database to detach requires a separate call to isc_detach_database().

57

CHAPTER 4 WORKING WITH DATABASES

Deleting a database

58

To remove a database from the system if it is no longer needed, use isc_drop_database().
This function permanently wipes out a database, erasing its data, metadata, and all of its
supporting files, such as secondary files, shadow files, and write-ahead log files.

A database can only be deleted if it is previously attached with a call to
isc_attach_database(). The call to isc_attach_database() establishes a database handle
for the database. That handle must be passed in the call to isc_drop_database().

For example, the following code deletes the database pointed to by the database handle,
dabi:

#i ncl ude <i base. h>

i sc_db_handl e dbl;
char *str = "enpl oyee. gdb";
| SC_STATUS st atus_vector[20];

/* Set database handle to zero before attaching to a database. */
dbl = OL;

/* Attach to the database. */

i sc_attach_dat abase(status_vector, strlen(str), str, &bl, 0, NULL);

if (status_vector[0] == 1 && status_vector[1])
{
error_exit();
}
i sc_drop_dat abase(status_vector, &dbl);
if (status_vector[0] == 1 && status_vector[1])
{
error_exit();
}

INTERBASE 6

CHAPTER

Working with
Transactions

This chapter describes how to set up a transaction parameter buffer (TPB) that contains
parameters, how to set up and initialize transaction handles, and how to use the API
functions that control transactions. It also explains how to retrieve a transaction ID.

All data definition and data manipulation in an application takes place in the context of
one or more {ransactions, one or more statements that work together to complete a
specific set of actions that must be treated as an atomic unit of work.

API GUIDE 59

CHAPTER 5 WORKING WITH TRANSACTIONS

The following table summarizes the API functions most commonly used when working
with transactions. Functions are listed in the order they typically appear in an application.

Function Purpose

isc_start_transaction() Starts a new transaction against one or more databases.; use a
previously declared and populated TPB

isc_commit_retaining() Commits a transaction’s changes, and preserves the transaction
context for further transaction processing

isc_commit_transaction() Commits a transaction’s changes, and ends the transaction

isc_rollback_transaction() Rolls back a transaction’s changes, and ends the transaction

TABLES.1 APl transaction functions

In addition to these functions, the following table lists less frequently used API
transaction functions in the order they typically appear when used:

Function Purpose

isc_start_multiple() Starts a new transaction against one or more databases; used
instead of isc_start_transaction() for programming languages such
as FORTRAN, that do not support variable numbers of arguments to
functions

isc_prepare_transaction() Performs the first phase of a two-phase commit, prior to calling
isc_commit_transaction(); used only when it is absolutely necessary
to override InterBase’s automatic two-phase commit

isc_prepare_transaction2() Performs the first phase of a two-phase commit, prior to calling
isc_commit_transaction(); used only when absolutely necessary to
override InterBase’s automatic two-phase commit

TABLES.2 Additional API transaction functions

Starting transactions

Starting transactions is a three-step process:

1. Creating and initializing a transaction handle for each simultaneous
transaction to be started.

2. Optionally creating and populating a TPB for each transaction.

60 INTERBASE 6

STARTING TRANSACTIONS

API GUIDE

3. Calling isc_start_transaction() for each transaction to start.
These steps are described in the following sections of this chapter.

Note Programmers writing applications that do not permit function calls to pass a
variable number of parameters must use isc_start_multiple() instead of
isc_start_transaction().

Creating transaction handles

Every transaction that is used in an application must be associated with its own
transaction handle, a pointer to an address that is used by all API transaction functions.
The ibase.h header file contains the following C typedef declaration for transaction
handles:

typedef void | SC FAR *isc_tr_handl e;

To use this typedef for declaring transaction handles in an application, include ibase.h in
each source file module:

#i ncl ude <i base. h>

» Declaring transaction handles

To establish transaction handles for use, declare a variable of type isc_tr_handle for each
simultaneously active transaction. The following code declares two handles:

#i ncl ude <i base. h>

isc_tr_handle tr1;
isc_tr_handle tr2;

Once a transaction is committed or rolled back, its handle can be assigned to a different
transaction in a subsequent call to isc_start_transaction(). If an application uses several
transactions, but only starts a subset of transactions at the same time, it is only necessary
to declare as many handles as there will be simultaneously active transactions. For
example, if an application starts a total of three transactions, but only runs two of them
at the same time, only two transaction handles need be declared.

» Initializing transaction handles

Before a transaction handle can be used to start a new transaction, it must be set to zero.
The following code illustrates how two transaction handles are set to zero:

#i ncl ude <i base. h>

isc_tr_handle tri;

61

CHAPTER 5 WORKING WITH TRANSACTIONS

isc_tr_handle tr2;

/* Set transaction handles to zero before starting a transaction. */
trl = OL;
tr2 = 0OL;

Once a transaction handle is initialized to zero, it can be used in a call to
isc_start_transaction() to establish a new transaction. If 2 nonzero transaction handle is
passed to isc_start_transaction(), the startup fails and an error code is returned. For
more information about starting a new transaction with isc_start_transaction(), see
“Calling isc_start_transaction()” on page 70.

Creating a transaction parameter buffer

The transaction parameter buffer (TPB) is an optional, application-defined byte vector,
passed as an argument to isc_start_transaction(), that sets up a transaction’s attributes,
its operating characteristics, such as whether the transaction has read and write access to
tables, or read-only access, and whether or not other simultaneously active transactions
can share table access with the transaction. Each transaction may have its own TPB, or
transactions that share operating characteristics can use the same TPB.

Note If a TPB is not created for a transaction, a NULL pointer must be passed to
isc_start_transaction() in its place. A default set of attributes is automatically assigned to
such transactions. For more information about the default TPB, see “Using the default
TPB” on page 69.

A TPB is declared in a C program as a char array of one-byte elements. Each element is
a parameter that describes a single transaction attribute. A typical declaration is as
follows:

static char isc_tpb[] = {isc_tpb_version3,
isc_tpb_wite,
isc_tpb_read _conmitted,
i sc_tpb_no_rec_version,
isc_tpb_wait};

INTERBASE 6

STARTING TRANSACTIONS

This example makes use of parameter constants defined in the InterBase header file,
ibase.h. The first element in every TPB must be the isc_ipb_version3 constant. The
following table lists available TPB constants, describes their purposes, and indicates
which constants are assigned as a default set of attributes when a NULL TPB pointer is
passed to isc_start_transaction():

Parameter

Description

isc_tpb_version3
isc_tpb_ consistency

isc_tpb_concurrency

isc_tpb_shared

isc_tpb_protected

isc_tpb_wait

isc_tpb_nowait

isc_tpb_read

isc_tpb_write

isc_tpb_lock_read

isc_tpb_lock_write

InterBase version 3 transaction
Table-locking transaction model

High throughput, high concurrency transaction with acceptable
consistency; use of this parameter takes full advantage of the InterBase
multi-generational transaction model [Default]

Concurrent, shared access of a specified table among all transactions; use
in conjunction with isc_tpb_lock_read and isc_tpb_lock_write to
establish the lock option [Default]

Concurrent, restricted access of a specified table; use in conjunction with
isc_tpb_lock_read and isc_tpb_lock_write to establish the lock option

Lock resolution specifies that the transaction is to wait until locked
resources are released before retrying an operation [Default]

Lock resolution specifies that the transaction is not to wait for locks to be
released, but instead, a lock conflict error should be returned immediately

Read-only access mode that allows a transaction only to select data from
tables

Read-write access mode of that allows a transaction to select, insert,
update, and delete table data [Default]

Read-only access of a specified table. Use in conjunction with
isc_tpb_shared, isc_tpb_protected, and isc_tpb_exclusive to establish the
lock option.

Read-write access of a specified table. Use in conjunction with
isc_tpb_shared, isc_tpb_protected, and isc_tpb_exclusive to establish the
lock option [Default]

TABLE5.3 TPB constants

API GUIDE

63

64

TABLES.3

CHAPTER 5 WORKING WITH TRANSACTIONS

Parameter Description

isc_tpb_read_committed High throughput, high concurrency transaction that can read changes
committed by other concurrent transactions. Use of this parameter takes
full advantage of the InterBase
multi-generational transaction model.

isc_tpb_rec_version Enablesan isc_tpb_read_committedtransaction to read the most recently
committed version of a record even if other, uncommitted versions are
pending.

isc_tpb_no_rec_version Enables an isc_tpb_read_committed transaction to read only the latest
committed version of a record. If an uncommitted version of a record is
pending and isc_tpb_wait is also specified, then the transaction waits for
the pending record to be committed or rolled back before proceeding.
Otherwise, a lock conflict error is reported at once.

TPB constants (continued)

TPB parameters specify the following classes of information:

® Transaction version number is used internally by the InterBase engine. It is always be
the first attribute specified in the TPB, and must always be set to isc_tpb_version3.

® Access mode describes the actions that can be performed by the functions associated with
the transaction. Valid access modes are:

isc_tpb_read
isc_tpb_write

® [solation level describes the view of the database given a transaction as it relates to
actions performed by other simultaneously occurring transactions. Valid isolation levels
are:

isc_tpb_concurrency

isc_lpb_consistency

isc_tpb_read_committed, isc_ipb_rec_uversion
isc_tpb_read_committed, isc_tpb_no_rec_uversion

® Jock resolution describes how a transaction should react if a lock conflict occurs. Valid
lock resolutions are:

isc_tpb_wait

isc_tpb_nowait

INTERBASE 6

STARTING TRANSACTIONS

API GUIDE

® Table reservation optionally describes an access method and lock resolution for a
specified table that the transaction accesses. When table reservation is used, tables are
reserved for the specified access when the transaction is started, rather than when the
transaction actually accesses the table. Valid reservations are:

isc_tpb_shared, isc_tpb_lock_write
isc_tpb_shared, isc_tpb_lock_read
isc_tpb_protected, isc_tpb_lock_write
isc_tpb_protected, isc_tpb_lock_read

TPB parameters are described in detail in the following sections.

b Specifying the transaction version number

The first parameter in a TPB must always specify the version number for transaction
processing. It must always be set to isc_tpb_version3. The following TPB declaration
illustrates the correct use and position of this parameter:

static char isc_tpb[] = {isc_tpb_version3, ...};

» Specifying access mode

The access mode parameter describes the actions a transaction can perform against a
table. The default access mode, isc_tpb_write, enables a transaction to read data from a
table and write data to it. A second access mode, isc_tpb_read, restricts table access to
read only. For example, the following TPB declaration specifies a read-only transaction:

static char isc_tpb[] = {isc_tpb_version3, isc_tpb_read};

A TPB should specify only one access mode parameter. If more than one is specified, later
declarations override earlier ones.

If a TPB is declared that omits the access mode parameter, InterBase interprets
transaction access as read and write.

b Specifying isolation level

The isolation level parameter specifies the view of the database permitted a transaction
as it relates to actions performed by other simultaneously occurring transactions.

65

66

CHAPTER 5 WORKING WITH TRANSACTIONS

ISC_TPB_CONCURRENCY

By default, after a transaction starts it cannot access committed changes to a table made
by other simultaneous transactions, even though it shares access to the table with them.
Such a transaction has an isolation level of isc_tpb_concurrency, meaning it can have
concurrent access to tables also accessed simultaneously by other transactions. The
following declaration creates a TPB specifying an isolation level of isc_tpb_concurrency:

static char isc_tpb[] = {isc_tpb_version3,
isc_tpb_wite,
i sc_tpb_concurrency};

ISC_TPB_READ_COMMITTED

A second isolation level, isc_tpb_read_committed, offers all the advantages of the
isc_tpb_concurrency isolation level and additionally enables a transaction to access
changes committed by other simultaneous transactions. Two other parameters,
isc_tpb_rec_version, and isc_tpb_no_rec_version, should be used with the
isc_tpb_read_committed parameter. They offer refined control over the committed
changes a transaction is permitted to access:

- isc_tpb_no_rec_version, the default refinement, specifies that a transaction can only
read the latest version of a row. If a change to a row is pending, but not yet committed,
the row cannot be read.

- isc_tpb_rec_version specifies that a transaction can read the latest committed version
of a row, even if a more recent uncommitted version is pending.

The following declaration creates a TPB with a read committed isolation level, and
specifies that the transaction can read the latest committed version of a row:

static char isc_tpb[] = {isc_tpb_version3,
isc_tpb_wite,
isc_tpb_read_conmitted,
isc_tpb_rec_version};

ISC_TPB_CONSISTENCY

InterBase also supports a restrictive isolation level. isc_tpb_consistency prevents a
transaction from accessing tables if they are written to by other transactions; it also
prevents other transactions from writing to a table once this transaction writes to it. This
isolation level is designed to guarantee that if a transaction writes to a table before other
simultaneous read and write transactions, then only it can change a table’s data. Because
it essentially restricts (and often prevents) shared access to tables, isc_tpb_consistency
should be used with care.

INTERBASE 6

STARTING TRANSACTIONS

A TPB should only specify one isolation mode parameter (and one refinement parameter,
if isolation mode is isc_ipb_read_committed). If more than one is specified, later
declarations override eatlier ones.

If a TPB is declared that omits the isolation mode parameter, InterBase interprets it as
isc_tpb_concurrency.

ISOLATION LEVEL INTERACTIONS

To determine the possibility for lock conflicts between two transactions accessing the
same database, each transaction’s isolation level and access mode must be considered.
The following table summarizes possible combinations:

isc_tpb_concurrency,

isc_tpb_read_committed isc_tpb_consistency

isc_tpb_write isc_tpb_read | isc_tpb_write | isc_tpb_read
isc_tpb_write Some simultaneous | — Conflicts Conflicts
concurrency, updates may conflict
read_committe
d isc_tpb_read — — — _
isc_tpb_write Conflicts — Conflicts Conflicts
consistency isc_tpb_read Conflicts — Conflicts —

TABLES4 Isolation level interaction with read and write operations

As this table illustrates, isc_tpb_concurrency and isc_ipb_read_committed transactions
offer the least chance for conflicts. For example, if ¢1 is an isc_tpb_concurrency

transaction with isc_tpb_write access, and 2 is an isc_tpb_read_committed transaction
with isc_tpb_write access, t1 and £2 only conflict when they attempt to update the same
rows. If t1 and 2 have isc_ipb_read access, they never conflict with other transactions.

An isc_Ipb_consistency transaction with isc_tpb_write access is guaranteed that if it gains
access to a table that it alone can update a table, but it conflicts with all other
simultaneous transactions except for isc_ipb_concurrency and isc_tpb_read_committed
transactions running in isc_ipb_read mode. An isc_ipb_consistency transaction with
isc_tpb_read access is compatible with any other read-only transaction, but conflicts with
any transaction that attempts to insert, update, or delete data.

» Specifying lock resolution

The lock resolution parameter describes what happens if a transaction encounters an
access conflict during a write operation (update and delete operations on existing rows).
There are two possible choices for this parameter:

API GUIDE 67

68

CHAPTER 5 WORKING WITH TRANSACTIONS

® jsc_tpb_wait, the default, specifies that the transaction should wait until locked resources
are released. Once the resources are released, the transaction retries its operation.

® jsc_tpb_nowait specifies that the transaction should return a lock conflict error without
waiting for locks to be released.

For example, the following declaration creates a TPB with write access, a concurrency
isolation mode, and a lock resolution of isc_tpb_nowait:

static char isc_tpb[] = {isc_tpb_version3,
isc_tpb_wite,
i sc_tpb_concurrency,
isc_tpb_nowait};

A TPB should only specify one lock resolution parameter. If more than one is specified,
later declarations override earlier ones.

If a TPB is declared that omits the lock resolution parameter, InterBase interprets it as
isc_tpb_concurrency.

b Specifying table reservation

Ordinarily, transactions gain specific access to tables only when they actually read from
or write to them. Optional table reservation parameters can be passed in the TPB. Table
reservation optionally describes an access method and lock resolution for a specified
table that the transaction accesses. When table reservation is used, tables are reserved for
the specified access when the transaction is started, rather than when the transaction
actually accesses the table. Table reservation is only useful in an environment where
simultaneous transactions share database access. It has three main purposes:

Prevent possible deadlocks and update conflicts that can occur if locks are taken only
when actually needed (the default behavior).

Provide for dependency locking, the locking of tables that may be affected by triggers and
integrity constraints. While explicit dependency locking is not required, it can assure that
update conflicts do not occur because of indirect table conflicts.

Change the level of shared access for one or more individual tables in a transaction. For
example, an isc_ipb_write transaction with an isolation level of isc_tpb_concurrency
may need exclusive update rights for a single table, and could use a reservation
parameter to guarantee itself sole write access to the table.

Valid reservations are:

- isc_tpb_shared, isc_tpb_lock_write, which permits any transaction with an access mode
of isc_tpb_write and isolation levels of isc_tpb_concurrency or
isc_tpb_read_committed, to update, while other transactions with these isolation levels
and an access mode of isc_tpb_read can read data.

INTERBASE 6

STARTING TRANSACTIONS

API GUIDE

- isc_tpb_shared, isc_tpb_lock_read, which permits any transaction to read data, and any
transaction with an access mode of isc_tpb_write to update. This is the most liberal
reservation mode.

- isc_lpb_protected, isc_tpb_lock_write, which prevents other transactions from
updating. Other transactions with isolation levels of isc_tpb_concurrency or
isc_tpb_read_committed can read data, but only this transaction can update.

- isc_tpb_protected, isc_tpb_lock_read, which prevents all transactions from updating,
but permits all transactions to read data.

The name of the table to reserve must immediately follow the reservation parameters. For
example, the following TPB declaration reserves a table, EMPLOYEE, for protected read
access:

static char isc_tpb[] = {isc_tpb_version3,
isc_tpb_wite,
i sc_tpb_concurrency,
isc_tpb_nowait,
isc_tpb_protected, isc_tpb_|ock read, "EWMPLOYEE"};

Several tables can be reserved at the same time. The following declaration illustrates how
two tables are reserved, one for protected read, the other for protected write:

static char isc_tpb[] = {isc_tpb_version3,
isc_tpb_wite,
i sc_tpb_concurrency,
isc_tpb_nowait,
isc_tpb_protected, isc_tpb_|lock_read, "COUNTRY",
isc_tpb_protected, isc_tpb_lock wite, "EMPLOYEE"};

» Using the default TPB

Providing a TPB for a transaction is optional. If one is not provided, then a NULL pointer
must be passed to isc_start_transaction() in place of a pointer to the TPB. In this case,
InterBase treats a transaction as if the following TPB had been declared for it:

static char isc_tpb[] = {isc_tpb_version3,
isc_tpb_wite,
i sc_tpb_concurrency,
isc_tpb_wait};

69

70

CHAPTER 5 WORKING WITH TRANSACTIONS

Calling isc_start_transaction()

Once transaction handles and TPBs are prepared, a transaction can be started by calling
isc_start_transaction() using the following syntax:

| SC_STATUS isc_start_transaction(
| SC_STATUS *status vector,
isc_tr_handle *trans_handl e,
short db_count,
i sc_db_handl e *&db_handl e,
unsi gned short tpb_length,
char *tpb_ad);

For a transaction that runs against a single database, set db_count to 1. db_handle
should be a database handle set with a previous call to isc_attach_database(Q). ipb_length
is the size of the TPB passed in the next parameter, and {pb_ad is the address of the TPB.
The following code illustrates a typical call to isc_start_transaction():

#i ncl ude <i base. h>

| SC_STATUS st at us_vector[20];

i sc_db_handl e dbl;

isc_tr_handle tr1;

static char isc_tbp[] = {isc_tpb_version3,
isc_tpb_wite,
i sc_tpb_concurrency,
isc_tpb_wait};

/* Initialize database and transaction handl es here. */
dbl = OL;
trl = OL;

/* Code for attaching to database here is omtted. */
isc_start_transaction(status_vector,

&r1l,

1,

&db1l,

(unsi gned short) sizeof (isc_tpb),

i sc_tpb);

INTERBASE 6

STARTING TRANSACTIONS

A transaction can be opened against multiple databases. To do so, set the db_count
parameter to the number of databases against which the transaction runs, then for each
database, repeat the db_handle, 1pb_length, and tpb_ad parameters as a group once for
each database. For example, the following code fragment assumes that two databases are
connected when the transaction is started:

isc_start_transaction(status_vector,
&r1l,
2,
&db1l,
(unsi gned short) sizeof (isc_tpb),
&t pb) ;
&db2,
(unsi gned short) sizeof (isc_tpb),
&t pb) ;

For the complete syntax of isc_start_transaction(), see page 386.

Calling isc_start_multiple()
An alternate method for starting a transaction against multiple databases is to use
isc_start_multiple(). Using isc_start_multiple() is not recommended unless you:

® Are using a language that does not support a variable number of arguments in a function
call.

® Do not know how many databases you want to attach to when coding the start of a
transaction.

C programmers should seldom need to use this function.

isc_start_multiple() passes information about each target database to InterBase through
an array of transaction existence blocks (TEBs). There must be one TEB for each database
against which a transaction runs. A TEB is a structure you must declare in your
applications as follows:

typdef struct {

| ong *db_ptr;

| ong tpb_Ien;

char *tpb_ptr;
} | SC TEB;

API GUIDE 71

CHAPTER 5 WORKING WITH TRANSACTIONS

db_ptr is a pointer to a previously declared, initialized, and populated database handle.
1pb_len is the size, in bytes, of the transaction parameter buffer (TPB) to use for the
database, and #pb_ptr is a pointer to the TPB itself. For information about declaring,
initializing, and populating a database handle, see “Creating database handles” on
page 42. For more information about creating and populating a TPB, see “Creating a
transaction parameter buffer” on page 62.

To use a TEB structure in an application, declare an array variable of type ISC_TEB. The
number of array dimensions should correspond to the number of databases that the
transaction runs against. For example, the following declaration creates an array of two
TEBs, capable of supporting two databases:

| SC_TEB teb_array[2];

Once an array of TEBs is declared, and corresponding TBPs are created and populated
for each database, values may be assigned to the appropriate fields in the TEBs. For
example, the following code illustrates how two TEBs are filled:

| SC_STATUS status_vector[20];
i sc_db_handl e dbl, db2;
isc_tr_handl e trans;

| SC_TEB teb_array[2];

dbl = db2 = OL;

trans = OL;

/* Code assumes that two TPBs, isc_tpbl, and isc_tpb2, are created
here. */

/* Code assunes databases are attached here. */
/* assign values to TEB array */
teb_array[0].db_ptr = &db1l;

teb_array[0].tpb_l en = sizeof (isc_tpbl);
teb_array[0].tpb_ptr = isc_tpbl;
teb_array[1].db_ptr = &db2;

teb_array[1].tpb_l en = sizeof (isc_tpb2);
teb_array[1l].tpb_ptr = isc_tpb2;

INTERBASE 6

ENDING TRANSACTIONS

After the TEBs are loaded with values, isc_start_mulitiple() can be called using the
following syntax:

| SC_STATUS isc_start_multiple(
| SC_STATUS *status_vector,
isc_tr_handl e *trans_handl e,
short db_handl e_count,
void *teb_vect or _address);

For example, the following statements starts a two-database transaction:

| SC_STATUS st atus_vector[20];
i sc_db_handl e dbl, db2;
isc_tr_handl e trans;

| SC_TEB teb_array[2];

dbl = db2 = OL;

trans = OL;

/* Code assumes that two TPBs, isc_tpbl, and isc_tpb2, are created
here. */

/* Code assunes databases are attached here. */

/* assign values to TEB array */

teb_array[0].db_ptr = &db1l;

teb_array[0].tpb_l en = sizeof (isc_tpbl);
teb_array[0].tpb_ptr = isc_tpbl;

teb_array[1l].db_ptr = &db2;

teb_array[1].tpb_l en = sizeof (isc_tpb2);
teb_array[1].tpb_ptr = isc_tpb2;

[* Start the transaction */
isc_start_nultiple(status_vector, &rans, 2, teb_array);

Ending transactions

When a transaction’s tasks are complete, or an error prevents a transaction from
completing, the transaction must be ended to set the database to a consistent state. There
are two API functions that end transactions:

® jsc_commit_transaction() makes a transaction’s changes permanent in the database. For
transactions that span databases, this function performs an automatic, two-phase commit
to ensure that all changes are made successfully.

API GUIDE 73

IMPORTANT

74

CHAPTER 5 WORKING WITH TRANSACTIONS

® jsc_rollback_transaction() undoes a transaction’s changes, returning the database to its
previous state, before the transaction started. This function is typically used when one or
more errors occur that prevent a transaction from completing successfully.

Both isc_commit_transaction() and isc_rollback_transaction() close the record streams
associated with the transaction, reinitialize the transaction name to zero, and release
system resources allocated for the transaction. Freed system resources are available for
subsequent use by any application or program.

isc_rollback_transaction() is frequently used inside error-handling routines to clean up
transactions when errors occur. It can also be used to roll back a partially completed
transaction prior to retrying it, and it can be used to restore a database to its prior state
if a program encounters an unrecoverable error.

The API offers three additional functions for controlling transactions:

isc_commit_retaining() commits a transaction but retains the current transaction’s
context—the system resources and cursor states used in the transaction—without
requiring the overhead of ending a transaction, starting a new one, and reestablishing
cursor states. In a busy, multi-user environment, maintaining transaction context for each
user speeds up processing and uses fewer system resources than closing a transaction and
opening a new one.

® jsc_prepare_transaction() and isc_prepare_transaction2() enable an application to
perform the first phase of an automatic, two-phase commit in its own time, then issue a
call to isc_commit_transaction() to complete the commit.

If the program ends before a transaction ends, a transaction is automatically rolled back,
but databases are not closed. If a program ends without closing the database, data loss
or corruption is possible. Therefore, open databases should always be closed by issuing
an explicit call to isc_detach_database().

For more information about detaching from a database, see Chapter 4, “Working with
Databases.”

Using isc_commit_transaction()

Use isc_commit_transaction() to write transaction changes permanently to a database.
isc_commit_transaction() closes the record streams associated with the transaction,
resets the transaction name to zero, and frees system resources assigned to the
transaction for other uses. The complete syntax for isc_commit_transaction() is:

| SC_STATUS i sc_comit_transaction(
| SC_STATUS *status_vector,
isc_tr_handle *trans_handl e);

INTERBASE 6

ENDING TRANSACTIONS

API GUIDE

Tip

For example, the following call commits a transaction:

isc_comit_transaction(status_vector, &trans);

where status_vector is a pointer to a previously declared error status vector, and trans is
a pointer to a previously declared and initialized transaction handle.

Even transactions started with an access mode of isc_ipb_read should be ended with a
call to isc_commit_transaction() rather than isc_rollback_transaction(). The database
is not changed, but the overhead required to start subsequent transactions is greatly
reduced.

» Using isc_commit_retaining()

To write transaction changes to the database without establishing a new transaction
context—the names, system resources, and current state of cursors used in a
transaction—use isc_commit_retaining() instead of isc_commit_transaction(). In a
busy, multi-user environment, maintaining the transaction context for each user speeds
up processing and uses fewer system resources than closing and starting a new
transaction for each action. The complete syntax for isc_commit_retaining() is:

| SC_STATUS i sc_comit_retaining(
| SC_STATUS *status_vector,
isc_tr_handle *trans_handl e);

isc_commit_retaining() writes all pending changes to the database, ends the current
transaction without closing its record stream and cursors and without freeing its system
resources, then starts a new transaction and assigns the existing record streams and
system resources to the new transaction.

For example, the following call commits a specified transaction, preserving the current
cursor status and system resources:

isc_commit_retaining(status_vector, &trans);

where status_vector is a pointer to a previously declared error status vector, and trans is
a pointer to a previously declared and initialized transaction handle.

A call to isc_rollback_transaction() issued after isc_commit_retaining() only rolls back
updates and writes occurring after the call to isc_commit_retaining().

75

76

CHAPTER 5 WORKING WITH TRANSACTIONS

» Using isc_prepare_transaction()

When a transaction is committed against multiple databases using
isc_commit_transaction(), InterBase automatically performs a two-phase commit.
During the first phase of the commit, the InterBase engine polls all database participants
to make sure they are still available, writes a message describing the transaction to the
RDB$TRANSACTION_DESCRIPTION field of the RDB§TRANSACTION system table, then puts the
transaction into a limbo state. It is during the second phase that transaction changes are
actually committed to the database.

Some applications may have their own, additional requirements to make of the two-phase
commit. These applications can call isc_prepare_transaction() to execute the first phase
of the two-phase commit, then perform their own, additional tasks before completing the
commit with a call to isc_commit_transaction().

The syntax for isc_prepare_transaction() is:

| SC_STATUS i sc_prepare_transacti on(
| SC_STATUS *st at us_vect or,
isc_tr_handle *trans_handl e);

For example, the following code fragment illustrates how an application might call
isc_prepare_transaction(), then its own routines, before completing a commit with
isc_commit_transaction():

| SC_STATUS st atus_vector[20];
i sc_db_handl e dbl;
isc_tr_handl e trans;

/* Initialize handles. */
dbl = OL;
trans = OL;

/* Code assunes a database is attached here, */
/* and a transaction started. */

/[* Performfirst phase of two-phase commit. */
i sc_prepare_transaction(status_vector, &rans);
/* Application does its own processing here. */
nmy_app_function();

/* Now conpl ete the two-phase commit. */
isc_comt_transaction(status_vector, &trans);

INTERBASE 6

ENDING TRANSACTIONS

IMPORTANT It is generally a dangerous practice to delay the second phase of the commit after
completing the first, because delays increase the chance that network or server problems
can occur between phases.

Using isc_prepare_transaction2()

Like isc_prepare_transaction(), isc_prepare_transaction2() performs the first phase of a
two-phase commit, except that isc_prepare_transaction2() enables

an application to supply its own transaction description for insertion into the
RDB$TRANSACTION_DESCRIPTION field of the RDB§TRANSACTION

system table.

IMPORTANT Do not use this call without first examining and understanding the information
InterBase stores in RDB$§TRANSACTION_DESCRIPTION during an automatic, two-phase
commit. Storage of improper or incomplete information can prevent database recovery
if the two-phase commit fails.

See page 363 for the complete syntax of isc_prepare_transaction2().

Using isc_rollback_transaction()

Use isc_rollback_transaction() to restore the database to its condition prior to the start
of the transaction. isc_rollback_transaction() also closes the record streams associated
with the transaction, resets the transaction name to zero, and frees system resources
assigned to the transaction for other uses. isc_rollback_transaction() typically appears
in error-handling routines. The syntax for isc_rollback_transaction() is:

| SC_STATUS isc_roll back_transacti on(
| SC_STATUS *status_vector,
isc_tr_handle *trans_handl e);

For example, the following call rolls back a transaction:

i sc_roll back_transaction(status_vector, &trans);
where status_vector is a pointer to a previously declared error status vector, and trans is
a pointer to a previously declared and initialized transaction handle.

API GUIDE 77

78

CHAPTER 5 WORKING WITH TRANSACTIONS

INTERBASE 6

CHAPTER

Working with Dynamic
SQL

This chapter describes how to use API dynamic SQL (DSQL) functions to handle
dynamically created SQL statements for data definition and manipulation. Using
low-level API calls enables client applications to build SQL statements or solicit them
from end users at runtime, providing end users with a familiar database interface. It also
provides applications developers low-level access to InterBase features, such as multiple
databases, not normally available at a higher level with embedded DSQL statements. For
example, the InterBase isql utility is a DSQL application built on low-level API calls.

All API DSQL function names begin with “isc_dsql” to make it easier to distinguish them
from other API calls.

Overview of the DSQL programming process

API GUIDE

Building and executing DSQL applications with the API involve the following general
steps:

® Embedding DSQL API functions in an application.

® Using host-language facilities, such as datatypes and macros, to provide input and output
areas for passing statements and parameters at runtime.

79

CHAPTER 6 WORKING WITH DYNAMIC SQL

® Programming methods that use these statements and facilities to process SQL statements
at runtime.

These steps are described in detail throughout this chapter.

DSQL API limitations

Although DSQL offers many advantages, it also has the following limitations:

® Dynamic transaction processing is not permitted; all named transactions must be
declared at compile time.

® Dynamic access to Blob and array data is not supported; Blob and array data can be
accessed, but only through standard, statically processed SQL statements, or through
low-level API calls.

= Database creation is restricted to CREATE DATABASE statements executed within the context
of EXECUTE IMMEDIATE.

For more information about database access in DSQL, see “Accessing databases” on
page 80. For more information about handling transactions in DSQL applications, see
“Handling transactions” on page 81. For more information about working with Blob
data in DSQL, see “Processing Blob data” on page 83. For more information about
handling array data in DSQL, see “Processing array data” on page 83. For more
information about dynamic creation of databases, see “Creating a database” on

page 82.

Accessing databases

The InterBase API permits applications to attach to multiple databases simultaneously
using database handles. Database handles must be declared and initialized when an
application is compiled. Separate database handles should be supplied and initialized for
each database accessed simultaneously. For example, the following code creates a single
handle, db1, and initializes it to zero:

#i ncl ude <i base. h>
i sc_db_handl e dbi;

dbl = OL;

Once declared and initialized, a database handle can be assigned dynamically to a
database at runtime as follows:

#i ncl ude <i base. h>

80 INTERBASE 6

DSQL APILIMITATIONS

API GUIDE

char dbnane[129] ;
| SC_STATUS st atus_vector[20];

pronpt _user (" Name of database to open: ");
get s(dbnane) ;
i sc_attach_dat abase(status_vector, 0, dbname, &dbl, NULL, NULL);

A database handle can be used to attach to different databases as long as a previously
attached database is first detached with isc_detach_database(), which automatically sets
database handles to NULL. The following statements detach from a database, set the
database handle to zero, and attach to a new database:

i sc_det ach_dat abase(status_vector, &dbl);
i sc_attach_dat abase(status_vector, 0, "enployee.gdb", &dbl, NULL,
NULL) ;

For more information about API function calls for databases, see Chapter 4, “Working
with Databases.”

Handling transactions

InterBase requires that all transaction handles be declared when an application is
compiled. Once fixed at compile time, transaction handles cannot be changed at runtime,
nor can new handles be declared dynamically at runtime. Most API functions that process
SQL statements at runtime, such as isc_dsql_describe(), isc_dsql_describe_bind(),
isc_dsql_execute(), isc_dsql_execute2(), isc_dsql_execute_immediate(),
isc_dsql_exec_immed2(), and isc_dsql_prepare(), support the inclusion of a transaction
handle parameter. The SQL statements processed by these functions cannot pass
transaction handles even if the SQL syntax for the statement permits the use of a
TRANSACTION clause.

Before a transaction handle can be used, it must be declared and initialized to zero. The
following code declares, initializes, and uses a transaction handle in an API call that
allocates and prepares an SQL statement for execution:

#i ncl ude <i base. h>

isc_tr_handle trans; /* Declare a transaction handle. */
isc_stm _handle stnt; /* Declare a statenent handle. */
char *sqgl _stm = "SELECT * FROM EMPLOYEE";

i sc_db_handl e dbi;

| SC_STATUS status_vector[20];

81

CHAPTER 6 WORKING WITH DYNAMIC SQL

trans = OL; /* Initialize the transaction handle to zero. */
stmt = NULL; /* Set handle to NULL before allocation. */

/* This code assunes both that a database attachnent is made, */
/* and a transaction is started here. */

/* Allocate the SQL statenment handle. */

i sc_dsql _all ocate_statenment (status_vector, &dbl, &stnt);

/* Prepare the statenment for execution. */

i sc_dsql _prepare(status_vector, &rans, &tm, 0, sql_stnt, 1, NULL);

Note The SQL SET TRANSACTION statement cannot be prepared with isc_dsql_prepare(),
but it can be processed with isc_dsql_execute_immediate() if:

1. Previous transactions are first committed or rolled back.
2. The transaction handle is set to NULL.

For more information about using SQL statements, see the Embedded SQL Guide. For
more information about SQL statement syntax, see the Language Reference.

Creating a database

To create a new database in an API application:

1. Detach from any currently attached databases with isc_detach_database().
Detaching from a database automatically sets its database handle to NULL.

2. Build the CREATE DATABASE statement to process.

3. Execute the statement with isc_dsql_execute_immediate() or
isc_dsql_exec_immed2().

For example, the following statements disconnect from any currently attached databases,
and create a new database. Any existing database handles are set to NULL, so that they
can be used to connect to the new database in future DSQL statements.

char *str = "CREATE DATABASE \"new enp. gdb\"";
i sc_det ach_dat abase(status_vector, &dbl);

i sc_dsql _execute_i nmedi at e(status_vector, &dbl, &trans, 0, str, 1,
NULL) ;

INTERBASE 6

WRITING AN API APPLICATION TO PROCESS SQL STATEMENTS

Processing Blob data

Blob processing is not directly supported using DSQL, nor are Blob cursors supported.
Applications that process SQL statements can use API calls to handle Blob processing. For
more information about processing Blob data, see Chapter 7, “Working with Blob
Data.”

Processing array data

Array processing is not directly supported using DSQL. DSQL applications can use API
calls to process array data. For more information about array calls, see Chapter 8,
“Working with Array Data.”

Writing an APl application to process SQL statements

API GUIDE

Writing an API application that processes SQL statements enables a developer to code
directly to InterBase at a low level, while presenting end users a familiar SQL interface.
API SQL applications are especially useful when any of the following are not known until
runtime:

® The text of the SQL statement
® The number of host variables
® The datatypes of host variables
= References to database objects

Writing an API DSQL application is more complex than programming embedded SQL
applications with regular SQL because for most DSQL operations, the application needs
explicitly to allocate and process an extended SQL descriptor area (XSQLDA) data structure
to pass data to and from the database.

To use the API to process a DSQL statement, follow these basic steps:
1. Determine if API calls can process the SQL statement.
2. Represent the SQL statement as a character string in the application.

3. If necessary, allocate one or more XSQLDAs for input parameters and return
values.

4. Use appropriate API programming methods to process the SQL statement.

83

TABLE6.1

CHAPTER 6 WORKING WITH DYNAMIC SQL

Determining if API calls can process an SQL statement

Except as noted earlier in this chapter, DSQL functions can process most SQL statements.
For example, DSQL can process data manipulation statements such as DELETE and INSERT,
data definition statements such as ALTER TABLE and CREATE INDEX, and SELECT statements.

The following table lists SQL statements that cannot be processed by DSQL functions:

Statement Statement
CLOSE DECLARE CURSOR
DESCRIBE EXECUTE
EXECUTE IMMEDIATE FETCH

OPEN PREPARE

SQL statements that cannot be processed by the AP

These statements are used to process DSQL requests or to handle SQL cursors, which
must always be specified when an application is written. Attempting to use them with
DSQL results in run-time errors.

Representing an SQL statement as a character string

Within a DSQL application, an SQL statement can come from different sources. It might
come directly from a user who enters a statement at a prompt, as does isql. Or it might be
generated by the application in response to user interaction. Whatever the source of the
SQL statement, it must be represented as an SQL statement string, a character string that
is passed to DSQL for processing.

SQL statement strings do not begin with the EXEC SQL prefix or end with a semicolon (;)
as they do in typical embedded applications. For example, the following host-language
variable declaration is a valid SQL statement string:

char *str = "DELETE FROM CUSTOVER WHERE CUST_NO = 256";

Note The semicolon that appears at the end of this char declaration is a C terminator,
and not part of the SQL statement string.

INTERBASE 6

UNDERSTANDING THE XSQLDA

Specifying parameters in SQL statement strings

SQL statement strings often include value parameters, expressions that evaluate to a
single numeric or character value. Parameters can be used anywhere in statement strings
where SQL expects a value that is not the name of a database object.

A value parameter in a statement string can be passed as a constant, or passed as a
placeholder at runtime. For example, the following statement string passes 256 as a
constant:

char *str = "DELETE FROM CUSTOVER WHERE CUST_NO = 256";

It is also possible to build strings at runtime from a combination of constants. This
method is useful for statements where the variable is not a true constant, or it is a table
or column name, and where the statement is executed only once in the application.

To pass a parameter as a placeholder, the value is passed as a question mark (?)
embedded within the statement string:

char *str = "DELETE FROM CUSTOMVER WHERE CUST_NO = ?";

When a DSQL function processes a statement containing a placeholder, it replaces the
question mark with a value supplied in an extended SQL descriptor area (XSQLDA)
previously declared and populated in the application. Use placeholders in statements that
are prepared once, but executed many times with different parameter values.

Replaceable value parameters are often used to supply values in SQL SELECT statement
WHERE clause comparisons and in the UPDATE statement SET clause.

Understanding the XsqLDA

API GUIDE

All DSQL applications must declare one or more extended SQL descriptor areas
(XsorDAs). The xsQLDA structure definition can be found in the ibase.h header file in the
InterBase incude directory. Applications declare instances of the XSQrDA for use.

The XSQLDA is a host-language data structure that DSQL uses to transport data to or from
a database when processing an SQL statement string. There are two types of XSQLDAS:
input descriptors and output descriptors. Both input and output descriptors are
implemented using the XSQLDA structure.

One field in the XSQLDA, sqlvar, is an XSQLVAR structure. The sqlvar is especially
important, because one XSQLVAR must be defined for each input parameter or column
returned. Like the XSQLDA, the XSQLVAR is a structure defined in ibase.h in the InterBase
include directory.

85

86

CHAPTER 6 WORKING WITH DYNAMIC SQL

Applications do not declare instances of the XSQIVAR ahead of time, but must, instead,
dynamically allocate storage for the proper number of XSQLVAR structures required for
each DSQL statement before it is executed, then deallocate it, as appropriate, after

statement execution.

The following figure illustrates the relationship between the XSQLDA and the XSQLVAR:

Single instance of XSQLDA

short version

char sqldaid[8]
ISC_LONG sqldabc
short sqin

short sgld

XSQLVAR sqlvar[1]

Array of n instances of XSQLVAR

15tinstance nth instance
short sqltype short sqltype
short sqlscale short sqlscale
short sqlsubtype short sqlsubtype
short sgllen short sqllen
char *sqldata s oo char *sqldata

short *sqlind

short sginame_length
char sqiname[32]

short relname_length
char relname[32]

short ownname_length
char ownname[32]
short aliasname_length

char aliasname[32]

short *sqlind

short sqiname_length
char sqiname[32]

short relname_length
char relname[32]

short ownname_length
char ownname[32]
short aliasname_length

char aliasname[32]

INTERBASE 6

UNDERSTANDING THE XSQLDA

TABLE6.2

API GUIDE

An input XSQLDA consists of a single XSQLDA structure and one XSQLVAR structure for each
input parameter. An output XSQLDA also consists of one XSQLDA structure and one XSQLVAR
structure for each data item returned by the statement. An XSQLDA and its associated
XSQLVAR structures are allocated as a single block of contiguous memory.

The isc_dsql_prepare(), isc_dsql_describe(), and isc_dsql_describe_bind() functions can
be used to determine the proper number of XSQLVAR structures to allocate, and the
XSQLDA_LENGTH macro can be used to allocate the proper amount of space. For more
information about the XSQLDA_LENGTH macro, see “Using the XSQLDA_LENGTH macro”
on page 90.

XSQLDA field descriptions

The following table describes the fields that comprise the XSQLDA structure:

Field definition = Description

short version Indicates the version of the XSQLDA structure. Set by an application. The current
version is defined in ibase.h as SQLDA_VERSIONT

char sqldaid[8] Reserved for future use
ISC_LONG sqldabc ~ Reserved for future use

short sqin Indicates the number of elements in the sqlvar array; the application should set this
field whenever it allocates storage for a descriptor

short sqld Indicates the number of parameters for an input XSQLDA, or the number of select-list
items for an output XSQLDA; set by InterBase during an isc_dsql_describe(),
isc_dsql_describe_bind(), or isc_dsql_prepare()

For an input descriptor, an sqld of 0 indicates that the SQL statement has no
parameters; for an output descriptor, an sg/d of 0 indicates that the SQL statement
is not a SELECT statement

XSQLVAR sqlvar The array of XSQLVAR structures; the number of elements in the array is specified in
the sqin field
XSQLDA field descriptions
87

CHAPTER 6 WORKING WITH DYNAMIC SQL

The following table describes the fields that comprise the XSQLVAR structure:

Field definition Description

short sqltype Indicates the SQL datatype of parameters or select-list items; set by
InterBase during isc_dsql_describe(), isc_dsql_describe_bind(), or
isc_dsql_prepare()

short sqlscale Provides scale, specified as a negative number, for exact numeric
datatypes (DECIMAL, NUMERIC); set by InterBase during
isc_dsql_describe(), isc_dsql_describe_bind(), or isc_dsql_prepare()

short sqlsubtype Specifies the subtype for Blob data; set by InterBase during
isc_dsql_describe(), isc_dsql_describe_bind(), or isc_dsql_prepare()

short sqllen Indicates the maximum size, in bytes, of data in the sqldata field; set by
InterBase during isc_dsql_describe(), isc_dsql_describe_bind(), or
isc_dsql_prepare()

char *sqldata For input descriptors, specifies either the address of a select-list item or a
parameter; set by the application

For output descriptors, contains a value for a select-list item; set by
InterBase

short *sqlind On input, specifies the address of an indicator variable; set by an
application; on output, specifies the address of column indicator value for
a select-list item following a FETCH

A value of 0 indicates that the column is not NULL; a value of —1 indicates
the column is NULL; set by InterBase

short sqiname_length Specifies the length, in bytes, of the data in field, sqginame; set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

char sqiname[32] Contains the name of the column. Not NULL (\0) terminated; set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

short relname_length Specifies the length, in bytes, of the data in field, relname; set by InterBase
during isc_dsql_prepare() or isc_dsql_describe()

TABLE6.3 XSQLVAR field descriptions

88 INTERBASE 6

UNDERSTANDING THE XSQLDA

TABLE6.3

API GUIDE

Field definition Description

char relname[32] Contains the name of the table; not NULL (\0) terminated, set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

short ownname_length Specifies the length, in bytes, of the data in field, ownname; set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

char ownname[32] Contains the name of the table owner; not NULL (\0) terminated, set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

short aliasname_length Specifies the length, in bytes, of the data in field, aliasname; set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

char aliasname[32] Contains the alias name of the column. If no alias exists, contains the
column name; not NULL (\0) terminated, set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

XSQLVAR field descriptions (continued)

Input descriptors

Input descriptors are used to process SQL statement strings that contain parameters.
Before an application can execute a statement with parameters, it must supply values for
them. The application indicates the number of parameters passed in the XSQLDA sqld
field, then describes each parameter in a separate XSQLVAR structure. For example, the
following statement string contains two parameters, so an application must set sqld to 2,
and describe each parameter:

char *str = "UPDATE DEPARTMENT SET BUDGET = ? WHERE LOCATION = ?";
When the statement is executed, the first XSQLVAR supplies information about the BUDGET
value, and the second XSQLVAR supplies the LOCATION value.

For more information about using input descriptors, see “DSQL programming
methods” on page 96.

Output descriptors

Output descriptors return values from an executed query to an application. The sq/d field
of the XSQIDA indicates how many values were returned. Each value is stored in a
separate XSQLVAR structure. The XSQLDA sqlvar field points to the first of these XSQILVAR
structures. The following statement string requires an output descriptor:

char *str = "SELECT * FROM CUSTOMER WHERE CUST_NO > 100";

89

CHAPTER 6 WORKING WITH DYNAMIC SQL

For information about retrieving information from an output descriptor, see “DSQL
programming methods” on page 96.

Using the XSQLDA_LENGTH macro

The ibase.h header file defines a macro, XSQLDA_LENGTH, to calculate the number of bytes
that must be allocated for an input or output XSQLDA. XSQLDA_LENGTH is defined as
follows:

#define XSQLDA_LENGTH (n) (sizeof (XSQLDA) + (n—1) * sizeof(XSQLVAR))
n is the number of parameters in a statement string, or the number of select-list items
returned from a query. For example, the following C statement uses the XSQLDA_LENGTH

macro to specify how much memory to allocate for an XSQLDA with 5 parameters or return
items:

XSQLDA *my_xsqlda;

my_xsqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(5));

For more information about using the XSQLDA_IENGTH macro, see “DSQL programming
methods” on page 96.

SQL datatype macro constants

InterBase defines a set of macro constants to represent SQL datatypes and NULL status
information in an XSQLVAR. An application should use these macro constants to specify
the datatype of parameters and to determine the datatypes of select-list items in an SQL
statement. The following table lists each SQL datatype, its corresponding macro constant
expression, C datatype or InterBase typedef, and whether or not the sglind field is used
to indicate a parameter or variable that contains NULL or unknown data:

saQL sqlind
datatype Macro expression Cdatatype or typedef used?
Array SQL_ARRAY ISC_QUAD No
Array SQL_ARRAY +1 ISC_QUAD Yes
Blob SQL_BLOB ISC_QUAD No

TABLE6.4 SQL datatypes, macro expressions, and C datatypes

20

INTERBASE 6

UNDERSTANDING THE XSQLDA

saQL sqlind
datatype Macro expression Cdatatype or typedef used?
BLOB SQL_BLOB +1 ISC_QUAD Yes
CHAR SQL_TEXT char(] No
CHAR SQL_TEXT +1 charf(] Yes
DATE SQL_DATE ISC_DATE No
DATE SQL_DATE +1 ISC_DATE Yes
DECIMAL SQL_SHORT, SQL_LONG, SQL_DOUBLE, or SQL_INT64 int, long, double, or ISC_INT64 No
DECIMAL SQL_SHORT + 1, SQL_LONG +1,SQL_DOUBLE +1, int, long, double, or ISC_INT64 Yes
or SQL_INT64 + 1

DOUBLE SQL_DOUBLE double No
PRECISON

DOUBLE SQL_DOUBLE +1 double Yes
PRECISION

INTEGER SQL_LONG long No
INTEGER SQL_LONG +1 ISC_LONG Yes
FLOAT SQL_FLOAT float No
FLOAT SQL_FLOAT +1 float Yes
NUMERIC SQL_SHORT, SQL_LONG, SQL_DOUBLE, or SQL_INT64 int, long, double, or ISC_INT64 No
NUMERIC SQL_SHORT + 1, 5QL_LONG +1,SQL_DOUBLE +1, int, long, double, or ISC_INT64 Yes

or SQL_INT64 + 1

SMALLINT SQL_SHORT short No
SMALLINT SQL_SHORT +1 short Yes
TIME SQL_TIME ISC_TIME No
TIME SQL_TIME +1 ISC_TIME Yes
TIMESTAMP SQL_TIMESTAMP ISC_TIMESTAMP No

TABLE6.4 SQL datatypes, macro expressions, and C datatypes (continued)

API GUIDE

CHAPTER 6 WORKING WITH DYNAMIC SQL

saQL sqlind

datatype Macro expression Cdatatype or typedef used?
| TIMESTAMP SQL_TIMESTAMP + 1 ISC_TIMESTAMP Yes

VARCHAR SQL_VARYING First 2 bytes: short containing the length of ~ No

the character string; remaining bytes: charf]

VARCHAR SQL_VARYING + 1 First 2 bytes: short containing the length of ~ Yes
the character string; remaining bytes: charf]

TABLE6.4 SQL datatypes, macro expressions, and C datatypes (continued)

Note DECIMAL and NUMERIC datatypes are stored internally as SMALLINT, INTEGER, DOUBLE
PRECISION, or 64-bit integer datatypes. To specify the correct macro expression to provide
for a DECIMAL or NUMERIC column, use isql to examine the column definition in the table
to see how InterBase is storing column data, then choose a corresponding macro
expression.

The datatype information for a parameter or select-list item is contained in the sqltype
field of the XSQLVAR structure. The value contained in sqltype provides two pieces of
information:

® The datatype of the parameter or select-list item.

® Whether sqlind is used to indicate NULL values. If sqlind is used, its value specifies
whether the parameter or select-list item is NULL (-1), or not NULL (0).

For example, if sqltype equals SQL_TEXT, the parameter or select-list item is a CHAR that
does not use sqlind to check for a NULL value (because, in theory, NULL values are not

allowed for it). If sqltype equals SQL_TEXT + 1, then sglind can be checked to see if the
parameter or select-list item is NULL.

Tip The C language expression, sgltype & 1, provides a useful test of whether a parameter or
select-list item can contain a NULL. The expression evaluates to 0 if the parameter or
select-list item cannot contain a NULL, and 1 if the parameter or select-list item can
contain a NULL. The following code fragment demonstrates how to use the expression:

if (sgltype & 1 == 0)

{
/* parameter or select-list itemthat CANNOT contain a NULL */
}
el se
{
/* parameter or select-list item CAN contain a NULL */
}

92 INTERBASE 6

UNDERSTANDING THE XSQLDA

API GUIDE

By default, both isc_dsql_prepare() and isc_dsql_describe() return a macro expression of
type + 1, so sglind should always be examined for NULL values with these statements.

Handling varying string datatypes

VARCHAR, CHARACTER VARYING, and NCHAR VARYING datatypes require careful handling in
DSQL. The first two bytes of these datatypes contain string length information, while the
remainder of the data contains the actual bytes of string data to process.

To avoid having to write code to extract and process variable-length strings in an
application, it is possible to force these datatypes to fixed length using SQL macro
expressions. For more information about forcing variable-length data to fixed length for
processing, see “Coercing datatypes” on page 94.

Applications can, instead, detect and process variable-length data directly. To do so, they
must extract the first two bytes from the string to determine the byte-length of the string
itself, then read the string, byte-by-byte, into a null-terminated buffer.

Handling NUMERIC and DECIMAL datatypes

DECIMAL and NUMERIC datatypes are stored internally as SMALLINT, INTEGER, DOUBLE
PRECISION, or 64-bit integer datatypes, depending on the precision and scale defined for
a column definition that uses these types. To determine how a DECIMAL or NUMERIC value
is actually stored in the database, use isql to examine the column definition in the table.
If NUMERIC is reported, then data is actually being stored as DOUBLE PRECISION.

When a DECIMAL or NUMERIC value is stored as a SMALLINT, INTEGER, or 64-bit integer, the
value is stored as a whole number. During retrieval in DSQL, the sglscale field of the
XSQLVAR is set to a negative number that indicates the factor of 10 by which the whole
number (returned in sqldata), must be divided in order to produce the correct NUMERIC
or DECIMAL value with its fractional part. If sglcale is -1, then the number must be divided
by 10, if it is -2, then the number must be divided by 100,

-3 by 1000, and so forth.

93

IMPORTANT

94

CHAPTER 6 WORKING WITH DYNAMIC SQL

Coercing datatypes

Sometimes when processing DSQL input parameters and select-list items, it is desirable
or necessary to translate one datatype to another. This process is referred to as datatype
coercion. For example, datatype coercion is often used when parameters or select-list
items are of type VARCHAR. The first two bytes of VARCHAR data contain string length
information, while the remainder of the data is the string to process. By coercing the data
from SQL_VARYING to SQL_TEXT, data processing can be simplified.

Coercion can only be from one compatible datatype to another. For example,
SQL_VARYING to SQL_TEXT, or SQL_SHORT to SQL_LONG.

» Coercing character datatypes

To coerce SQL_VARYING datatypes to SQL_TEXT datatypes, change the sgitype field in the
parameter’s or select-list item’s XSQILVAR structure to the desired SQL macro datatype
constant. For example, the following statement assumes that var is a pointer to an
XSQLVAR structure, and that it contains an SQL_VARYING datatype to convert to SQL_TEXT:

var->sqgl type = SQ._TEXT;
After coercing a character datatype, provide proper storage space for it. The XSQLVAR field,

sqllen, contains information about the size of the uncoerced data.
Set the XSQLVAR sqldata field to the address of the data.

» Coercing numeric datatypes

To coerce one numeric datatype to another, change the sg/fype field in the parameter’s or
select-list item’s XSQLVAR structure to the desired SQL macro datatype constant. For
example, the following statement assumes that var is a pointer to an XSQLVAR structure,
and that it contains an SQL_SHORT datatype to convert to SQL_LONG:

var->sqgl type = SQ._LONG

Do not coerce a larger datatype to a smaller one. Data can be lost in such a translation.

) Setting a NULL indicator

If a parameter or select-list item contains a NULL value, the sqlind field should be used to
indicate its NULL status. Appropriate storage space must be allocated for sqlind before
values can be stored there.

Before insertion, set sqlind to —1 to indicate that NULL values are legal. Otherwise, set
sqlind to0 0.

After selection, an sglind of -1 indicates a field contains a NULL value. Other values
indicate a field contains non-NULL data.

INTERBASE 6

UNDERSTANDING THE XSQLDA

API GUIDE

Aligning numerical data

Ordinarily, when a variable with a numeric datatype is created, the compiler will ensure
that the variable is stored at a properly aligned address, but when numeric data is stored
in a dynamically allocated buffer space, such as can be pointed to by the XSQLDA and
XSQLVAR structures, the programmer must take precautions to ensure that the storage
space is properly aligned.

Certain platforms, in particular those with RISC processors, require that numerical data
in dynamically allocated storage structures be aligned properly in memory. Alignment is
dependent both on datatype and platform.

For example, a short integer on a Sun SPARCstation must be located at an address
divisible by 2, while a long on the same platform must be located at an address divisible
by 4. In most cases, a data item is properly aligned if the address of its starting byte is
divisible by the correct alignment number. Consult specific system and compiler
documentation for alignment requirements.

A useful rule of thumb is that the size of a datatype is always a valid alignment number
for the datatype. For a given type T, if size of (T) equals 7, then addresses divisible by 7
are correctly aligned for T. The following macro expression can be used to align data:

#define ALIGN(ptr, n) ((ptr + n - 1) & ~(n - 1))
where ptr is a pointer to char.
The following code illustrates how the ALIGN macro might be used:

char *buffer_pointer, *next_aligned;
next _aligned = ALI G\(buffer_pointer, sizeof(T));

95

CHAPTER 6 WORKING WITH DYNAMIC SQL

DSQL programming methods

96

Th

ere are four possible DSQL programming methods for handling an SQL statement

string. The best method for processing a string depends on the type of SQL statement in
the string, and whether or not it contains placeholders for parameters. The following
decision table explains how to determine the appropriate processing method for a given

string:

Isita query? Does it have placeholders? Processing method to use:
No No Method 1

No Yes Method 2

Yes No Method 3

Yes Yes Method 4

SQL statement strings and recommended processing methods

Method 1: Non-query statements without parameters

There are two ways to process an SQL statement string containing a non-query statement

without placeholder parameters:
® Use isc_dsql_execute_immediate() to prepare and execute the string a single time.

® Use isc_dsql_allocate_statement() to allocate a statement string for the statement to

execute, isc_dsql_prepare() to parse the statement for execution and assign it a name,

then use isc_dsql_execute() to carry out the statement’s actions as many times as required

in an application.

Using isc_dsql_execute_immediate()

. To execute a statement string a single time, use

isc_dsql_execute_immediate():

Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string:

char *str = "UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

Parse and execute the statement string using isc_dsql_execute_immediate():

i sc_dsql _execute_i nmedi at e(status_vector, &dbl, &trans,
0, str, 1, NULL);

INTERBASE 6

DSQL PROGRAMMING METHODS

API GUIDE

Note isc_dsql_execute_immediate() also accepts string literals. For example,
i sc_dsql _execute_i nmedi at e(status_vector, &dbl, &trans, O,
" UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05", 1, NULL);

For the complete syntax of isc_dsq_execute_immediate() and an explanation of its
parameters, see Chapter 13, “API Function Reference.”

» Using isc_dsql_prepare() and isc_dsql_execute()
To execute a statement string several times, use isc_dsql_allocate_statement(),
isc_dsql_prepare(), and isc_dsql_execute():

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string:

char *str = "UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";
2. Declare and initialize an SQL statement handle, then allocate it with
isc_dsql_allocate_statement():

isc_stm _handle stnt; /* Declare a statenent handle. */
stmt = NULL; /* Set handle to NULL before allocation. */

i sc_dsql _all ocate_statement (status_vector, &dbl, &stnt);

3. Parse the statement string with isc_dsql_prepare(). This sets the statement
handle (stmt) to refer to the parsed format. The statement handle is used in
subsequent calls to isc_dsql_execute():

i sc_dsql _prepare(status_vector, &rans, &stnt, 0, str, 1, NULL);

Note isc_dsql_prepare() also accepts string literals. For example,
i sc_dsql _prepare(status_vector, &rans, &stm, O,
" UPDATE DEPARTMENT SET BUDCET = BUDGET * 1.05", 1, NULL);
4. Execute the named statement string using isc_dsql_execute(). For example,
the following statement executes a statement string named st

i sc_dsql _execute(status_vector, &rans, &stnt, 1, NULL);

Once a statement string is prepared, it can be executed as many times as required in

an application.

97

98

CHAPTER 6 WORKING WITH DYNAMIC SQL

Method 2: Non-query statements with parameters

There are two steps to processing an SQL statement string containing a non-query
statement with placeholder parameters:

1. Create an input XSQLDA to process a statement string’s parameters.

2. Prepare and execute the statement string with its parameters.

b Creating the input XSQLDA

Placeholder parameters are replaced with actual data before a prepared SQL statement
string is executed. Because those parameters are unknown when the statement string is
created, an input XSQLDA must be created to supply parameter values at execute time. To
prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called in_sqlda:
XSQLDA *in_sql da;
2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:
XSQLVAR *var ;

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for in_sqlda:
in_sglda = (XSQ.DA *) nal | oc(XSQLDA_LENGTH(10));

In this statement space for 10 XSQLVAR structures is allocated, allowing the XSQLDA to
accommodate up to 10 parameters.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sqin field
to indicate the number of XSQILVAR structures allocated:
i n_sql da- >versi on = SQ.DA_ VERSI ON1;
i n_sqgl da->sqln = 10;

» Preparing and executing a statement string with parameters

After an XSQLDA is created for holding a statement string’s parameters, the statement
string can be created and prepared. Local variables corresponding to the placeholder
parameters in the string must be assigned to their corresponding sqldata fields in the
XSQLVAR structures.

INTERBASE 6

DSQL PROGRAMMING METHODS

To prepare and execute a non-query statement string with parameters, follow these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string with placeholder parameters:

char *str = "UPDATE DEPARTMENT SET BUDGET = ?, LOCATION = ?";

This statement string contains two parameters: a value to be assigned to the BUDGET
column and a value to be assigned to the LOCATION column.

2. Declare and initialize an SQL statement handle, then allocate it with
isc_dsql_allocate():

isc_stm _handle stnt; /* Declare a statenent handle. */
stnt = NULL; /* Set handle to NULL before allocation. */

i sc_dsql __allocate_statenent(status_vector, &dbl, &stnt);

3. Parse the statement string with isc_dsql_prepare(). This sets the statement
handle (stmt) to refer to the parsed format. The statement handle is used in
subsequent calls to isc_dsql_describe_bind() and isc_dsql_execute():

i sc_dsql _prepare(status_vector, &rans, &stnm, 0, str, 1,
i n_sqgl da);

4. Use isc_dsql_describe_bind() to fill the input XSQLDA with information about
the parameters contained in the SQL statement:

i sc_dsql _describe_bind(status_vector, &stnt, 1, in_sqglda);

5. Compare the value of the sq/n field of the XSQLDA to the value of the sqld field
to make sure enough XSQLVARs are allocated to hold information about each
parameter. sg/n should be at least as large as sqld. If not, free the storage
previously allocated to the input descriptor, reallocate storage to reflect the
number of parameters specified by sqld, reset sqin and version, then execute
isc_dsql_describe_bind() again:

if (in_sqglda->sqld > in_sql da->sqln)

{

n = in_sql da->sql d;

free(in_sql da);

in_sglda = (XSQLDA *)nal | oc(XSQLDA _LENGTH(n));

in_sqglda->sgln = n

i n_sqgl da- >version = SQ.DA_VERSI ON1;

i sc_dsql _descri be_bind(status_vector, &stnt, 1, in_sqglda);
}

API GUIDE 929

CHAPTER 6 WORKING WITH DYNAMIC SQL

6. Process each XSQLVAR parameter structure in the XSQLDA. Processing a
parameter structure involves up to four steps:

- Coerce a parameter’s datatype (optional).

- Allocate local storage for the data pointed to by the sgldata field of the XSQLVAR. This
step is only required if space for local variables is not allocated until runtime. The
following example illustrates dynamic allocation of local variable storage space.

- Provide a value for the parameter consistent with its datatype (required).
- Provide a NULL value indicator for the parameter.

The following code example illustrates these steps, looping through each XSQIVAR
structure in the in_sqlda XSQLDA:

for (i=0, var = in_sqglda->sqlvar; i < in_sqlda->sqld; i++, var++)
{

/* Process each XSQLVAR paraneter structure here.

Var points to the paranmeter structure. */

dtype = (var->sqgltype & ~1) /* drop NULL flag for now */
swi t ch(dtype)
{
case SQ._VARYING /* coerce to SQ._TEXT */
var->sqgl type = SQ._TEXT;
/* allocate |ocal variable storage */
var->sqgl data = (char *)nmall oc(sizeof (char)*var->sqllen);
br eak;
case SQ._TEXT:
var->sqgl data = (char *)nmall oc(sizeof (char)*var->sqllen);
/* provide a value for the paraneter */
br eak;
case SQ._LONG
var->sql data = (char *)nmall oc(sizeof(long));
/* provide a value for the paraneter */
*(long *)(var->sqgldata) = 17;
br eak;

} /* end of switch statement */
if (sqgltype & 1)
{

/* allocate variable to hold NULL status */

100 INTERBASE 6

DSQL PROGRAMMING METHODS

var->sqglind = (short *)nmall oc(sizeof(short));

} /* end of for |oop */
For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 94.

7. Execute the named statement string with isc_dsql_execute(). For example,
the following statement executes a statement string named stmt:

i sc_dsql _execute(status_vector, &rans, &tnt, 1, in_sqlda);

» Re-executing the statement string

Once a non-query statement string with parameters is prepared, it can be executed as
often as required in an application. Before each subsequent execution, the input XSQLDA
can be supplied with new parameter and NULL indicator data.

To supply new parameter and NULL indicator data for a prepared statement, repeat step
6 of “Preparing and executing a statement string with parameters” on page 98.

Method 3: Query statements without parameters

There are three steps to processing an SQL query statement string without parameters:

1. Prepare an output XSQLDA to process the select-list items returned when the
query is executed.

2. Prepare the statement string.

3. Use a cursor to execute the statement and retrieve select-list items from the
output XSQLDA.

» Preparing the output XSQLDA

Most queries return one or more rows of data, referred to as a select-list. Because the
number and kind of items returned are unknown when a statement string is created, an
output XSQLDA must be created to store select-list items that are returned at runtime. To
prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XsQLDA needed to store the column data for
each row that will be fetched. For example, the following declaration creates
an XSQLDA called out_sqlda:

XSQ.DA *out _sql da;

API GUIDE 101

CHAPTER 6 WORKING WITH DYNAMIC SQL

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQVAR *var;
Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for out_sqlda:

out _sqlda = (XSQLDA *) mal | oc(XSQLDA_LENGTH(10)) ;
Space for ten XSQLVAR structures is allocated in this statement, enabling the XSQLDA to
accommodate up to ten select-list items.

4. Set the version field of the XSQLDA to SQLDA_VERSIONI, and set the sqin field
of the XSQLDA to indicate the number of XSQLVAR structures allocated:

out _sql da- >versi on = SQLDA VERSI ON1;
out _sql da->sqln = 10;

» Preparing a query statement string without parameters

After an XSQLDA is created for holding the items returned by a query statement string, the
statement string can be created, prepared, and described. When a statement string is
executed, InterBase creates the select-list of selected rows.

To prepare a query statement string, follow these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string that performs a query:

char *str = "SELECT * FROM CUSTOMER';
The statement appears to have only one select-list item (*). The asterisk is a wildcard

symbol that stands for all of the columns in the table, so the actual number of items
returned equals the number of columns in the table.

2. Declare and initialize an SQL statement handle, then allocate it with
isc_dsql_allocate():

isc_stm _handle stnt; /* Declare a statenent handle. */
stmt = NULL; /* Set handle to NULL before allocation. */

i sc_dsql _all ocate_statement (status_vector, &dbl, &stnt);

102 INTERBASE 6

DSQL PROGRAMMING METHODS

3. Parse the statement string with isc_dsql_prepare(). This sets the statement
handle (stm?) to refer to the parsed format. The statement handle is used in
subsequent calls to statements such as isc_dsql_describe() and
isc_dsql_execute():

i sc_dsql _prepare(status_vector, &rans, &tnt, 0, str, 1, NULL);
4. Use isc_dsql_describe() to fill the output XsQLDA with information about the
select-list items returned by the statement:

i sc_dsql _describe(status_vector, &rans, &stnt, out_sqlda);

5. Compare the sg/n field of the XSQLDA to the sqld field to determine if the
output descriptor can accommodate the number of select-list items specified
in the statement. If not, free the storage previously allocated to the output
descriptor, reallocate storage to reflect the number of select-list items
specified by sqid, reset sqin and version, then execute isc_dsql_describe()

again:
i f (out_sqglda->sqgld > out_sqgl da->sql n)
{
n = out _sql da->sql d;
free(out_sql da);
out _sqlda = (XSQLDA *) nmal | oc(XSQLDA_LENGTH(n)) ;
out _sqgl da->sqln = n;
out _sql da->versi on = SQLDA VERSI ON1;
i sc_dsql _describe(status_vector, &rans, 1, out_sqlda);
}

6. Set up an XSQLVAR structure for each item returned. Setting up an item
structure involves the following steps:

- Coercing an item’s datatype (optional).

- Allocating local storage for the data pointed to by the sgldata field of the XSQIVAR.
This step is only required if space for local variables is not allocated until runtime.
The following example illustrates dynamic allocation of local variable storage space.

- Providing a NULL value indicator for the parameter.

The following code example illustrates these steps, looping through each XSQIVAR
structure in the out_sqlda XSQLDA:

for (i=0, var = out_sglda->sqglvar; i < out_sqglda->sqgld; i++, var++)
{

dtype = (var->sqltype & ~1) /* drop flag bit for now */

swi tch(dtype)

{

API GUIDE 103

104

CHAPTER 6 WORKING WITH DYNAMIC SQL

case SQ._VARYI NG
var - >sql t ype SQL_TEXT;
var->sqgl data = (char *)mal | oc(si zeof (char)*var->sqgllen + 2);
br eak;
case SQ._TEXT:
var->sqgl data = (char *)nmall oc(sizeof (char)*var->sqllen);
br eak;
case SQ._LONG
var->sql data = (char *)mall oc(sizeof(long));
br eak;

/* process remaining types */
} /* end of switch statements */
if (sqgltype & 1)

{
/* allocate variable to hold NULL status */
var->sqglind = (short *)malloc(sizeof(short));
}
} /* end of for |oop */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 94.

) Executing a statement string within the context of a cursor

To retrieve select-list items from a prepared statement string, the string can be executed
within the context of a cursor. All cursor declarations in InterBase are fixed statements
inserted into the application before it is compiled. DSQL application developers must
anticipate the need for cursors when writing the application and declare them ahead of
time.

A cursor is only needed to process positioned UPDATE and DELETE statements made
against the rows retrieved by isc_dsql_fetch() for SELECT statements that specify an
optional FOR UPDATE OF clause.

The following descriptions apply to the situations when a cursor is needed. For an
example of executing a statement and fetching rows without using a cursor, see
“isc_dsql_fetch()” on page 330.

A looping construct is used to fetch a single row at a time from the cursor and to process
each select-list item (column) in that row before the next row is fetched.

To execute a statement string within the context of a cursor and retrieve rows of select-list
items, follow these steps:

INTERBASE 6

DSQL PROGRAMMING METHODS

1. Execute the prepared statement with isc_dsql_execute():

i sc_dsql _execute(status_vector, &rans, &stnt, 1, NULL);

2. Declare and open a cursor for the statement string with
isc_dsql_set_cursor_name(). For example, the following statement declares
a cursor, dyn_cursor, for the SQL statement string, stmt:

i sc_dsql _set_cursor_nane(status_vector, &stnt,
"dyn_cursor", NULL);

Opening the cursor causes the statement string to be executed, and an active set of
rows to be retrieved.

3. Fetch one row at a time and process the select-list items (columns) it contains
with isc_dsql_fetch(). For example, the following loops retrieve one row at a
time from dyn_cursor and process each item in the retrieved row with an
application-specific function called process_column():

while ((fetch_stat =
i sc_dsql _fetch(status_vector, &stnt, 1, out_sqglda))

== 0)
{
for (i = 0; i < out_sqglda->sqld; i++)
{
process_col um(sql da->sqgl var[i]);
}
}
if (fetch_stat != 100L)
{
/* isc_dsql _fetch returns 100 if no nore rows remain to be
retrieved */
SQLCODE = isc_sql code(status_vector);
isc_print_sqlerror(SQCODE, status_vector);
return(l);
}
The process_column() function mentioned in this example processes each returned
select-list item. The following skeleton code illustrates how such a function can be set
up:
voi d process_col um(XSQLVAR *var)
{

/* test for NULL val ue */
if ((var->sqgltype & 1) && (*(var->sqglind) = -1))
{

/* process the NULL val ue here */

API GUIDE 105

106

CHAPTER 6 WORKING WITH DYNAMIC SQL

}
el se
{
/* process the data instead */
}

}
4. When all the rows are fetched, close the cursor with
isc_dsql_free_statement():

i sc_dsql _free_statement (status_vector, &stmt, DSQ_cl ose);

» Re-executing a query statement string without parameters

Once a query statement string without parameters is prepared, it can be executed as often
as required in an application by closing and reopening its cursor.

To reopen a cursor and process select-list items, repeat steps 2 through 4 of “Executing
a statement string within the context of a cursor” on page 104.

Method 4: Query statements with parameters

There are four steps to processing an SQL query statement string with placeholder
parameters:

1. Prepare an input XSQLDA to process a statement string’s parameters.

2. Prepare an output XSQLDA to process the select-list items returned when the
query is executed.

3. Prepare the statement string and its parameters.

4. Use a cursor to execute the statement using input parameter values from an
input XSQLDA, and to retrieve select-list items from the output XSQLDA.

» Preparing the input XSQLDA

Placeholder parameters are replaced with actual data before a prepared SQL statement
string is executed. Because those parameters are unknown when the statement string is
created, an input XSQLDA must be created to supply parameter values at runtime. To
prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called in_sqlda:

XSQ.DA *in_sql da;

INTERBASE 6

DSQL PROGRAMMING METHODS

API GUIDE

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQVAR *var;
Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for in_slgda:
in_sqglda = (XSQ.DA *) nal | oc(XSQLDA _LENGTH(10));
In this statement, space for 10 XSQLVAR structures is allocated, allowing the XSQLDA to

accommodate up to 10 input parameters. Once structures are allocated, assign values
to the sgldata fields.

4. Set the version field of the XSQLDA to SQLDA_VERSIONI, and set the sqin field
of the XSQLDA to indicate the number of XSQLVAR structures allocated:

i n_sqgl da- >versi on = SQ.DA VERSI ON1;
i n_sqgl da->sqln = 10;

» Preparing the output XSQLDA

Most queries return one or more rows of data, referred to as a select-list. Because the
number and kind of items returned are unknown when a statement string is executed, an
output XSQLDA must be created to store select-list items that are returned at runtime. To
prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called out_sqlda:

XSQ.DA *out _sql da;
2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:
XSQLVAR *var ;
Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify

referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for out_sqlda:

out _sqlda = (XSQLDA *) mal | oc(XSQLDA_LENGTH(10)) ;

Space for ten XSQLVAR structures is allocated in this statement, enabling the XSQLDA to
accommodate up to ten select-list items.

107

108

CHAPTER 6 WORKING WITH DYNAMIC SQL

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sqin field
of the XSQLDA to indicate the number of XSQIVAR structures allocated:

out _sql da- >versi on = SQLDA VERSI ON\1;
out _sql da->sqln = 10;

» Preparing a query statement string with parameters

After an input and an output XSQLDA are created for holding a statement string’s
parameters, and the select-list items returned when the statement is executed, the
statement string can be created and prepared. When a statement string is prepared,
InterBase replaces the placeholder parameters in the string with information about the
actual parameters used. The information about the parameters must be assigned to the
input XsQLDA (and perhaps adjusted) before the statement can be executed. When the
statement string is executed, InterBase stores select-list items in the output XSQLDA.

To prepare a query statement string with parameters, follow these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string with placeholder parameters:

char *str = "SELECT * FROM DEPARTMENT VWHERE BUDGET = ?,
LOCATI ON = ?";
This statement string contains two parameters: a value to be assigned to the BUDGET
column and a value to be assigned to the LOCATION column.

2. Declare and initialize an SQL statement handle, then allocate it with
isc_dsql_allocate():

isc_stm _handle stnt; /* Declare a statenent handle. */
stmt = NULL; /* Set handle to NULL before allocation. */

i sc_dsql _all ocate_statement (status_vector, &dbl, &stnt);

3. Prepare the statement string with isc_dsql_prepare(). This sets the statement
handle (stm#) to refer to the parsed format. The statement handle is used in
subsequent calls to isc_dsql_describe(), isc_dsql_describe_bind(), and
isc_dsql_execute2():

i sc_dsql _prepare(status_vector, &rans, &stmt, O,
str, 1, out_xsqlda);
4. Use isc_dsql_describe_bind() to fill the input XSQLDA with information about
the parameters contained in the SQL statement:

i sc_dsql _decri be_bi nd(status_vector, &stnt, 1, in_xsqglda);

INTERBASE 6

DSQL PROGRAMMING METHODS

5. Compare the sq/n field of the XSQLDA to the sqld field to determine if the input
descriptor can accommodate the number of parameters contained in the
statement. If not, free the storage previously allocated to the input descriptor,
reallocate storage to reflect the number of parameters specified by sq/d, reset
sqln and version, then execute isc_dsql_describe_bind() again:

if (in_sqglda->sqld > in_sql da->sqln)

{

n = in_sql da->sql d;

free(in_sql da);

in_sglda = (XSQLDA *)nal | oc(XSQLDA _LENGTH(n));

in_sqgl da->sqgln = n;

i n_sqgl da- >versi on = SQ.DA_ VERSI ON1;

i sc_dsql _decri be_bi nd(status_vector, &stnt, 1, in_xsqglda);
}

6. Process each XSQLVAR parameter structure in the input XSQLDA. Processing a
parameter structure involves up to four steps:

- Coercing a parameter’s datatype (optional).

- Allocating local storage for the data pointed to by the sgldata field of the XSQIVAR.
This step is only required if space for local variables is not allocated until runtime.
The following example illustrates dynamic allocation of local variable storage space.

- Providing a value for the parameter consistent with its datatype (required).
- Providing a NULL value indicator for the parameter.

These steps must be followed in the order presented. The following code example
illustrates these steps, looping through each XSQLVAR structure in the in_sqlda XSQLDA:

for (i=0, var = in_sqglda->sqlvar; i < in_sqlda->sqld; i++, var++)
{
/* Process each XSQLVAR paraneter structure here.
The paraneter structure is pointed to by var.*/
dtype = (var->sqltype & ~1) /* drop flag bit for now */
swi t ch(dtype)
{
case SQ._VARYING /* coerce to SQ._TEXT */
var->sqgl type = SQ._TEXT;
/* allocate proper storage */
var->sqgl data = (char *)nmall oc(sizeof (char)*var->sqllen);
/* Provide a value for the paraneter. See case SQL_LONG */

br eak;

API GUIDE 109

CHAPTER 6 WORKING WITH DYNAMIC SQL

case SQ._TEXT:
var->sqgl data = (char *)nmall oc(sizeof (char)*var->sqllen);
/* Provide a value for the paraneter. See case SQL_LONG */
br eak;
case SQ._LONG
var->sql data = (char *)nmall oc(sizeof(long));
/* Provide a value for the paraneter. */
*(long *)(var->sqldata) = 17;
br eak;

} /* end of switch statement */
if (sqgltype & 1)

{
/* allocate variable to hold NULL status */
var->sqglind = (short *)malloc(sizeof(short));
}
} /* end of for |oop */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 94.

7. Use isc_dsql_describe() to fill the output XsQLDA with information about the
select-list items returned by the statement:

i sc_dsql _describe(status_vector, &rans, &stnt, out_xsqlda);

8. Compare the sqin field of the XSQLDA to the sqld field to determine if the
output descriptor can accommodate the number of select-list items specified
in the statement. If not, free the storage previously allocated to the output
descriptor, reallocate storage to reflect the number of select-list items
specified by sqld, reset sqln and version, and execute DESCRIBE OUTPUT again:

i f (out_sqglda->sqgld > out_sqgl da->sql n)

{

n = out _sql da->sql d;

free(out_sql da);

out _sqlda = (XSQLDA *) nmal | oc(XSQLDA_LENGTH(n)) ;

out _sql da->sqln = n;

out _sql da->versi on = SQLDA VERSI ON1;

i sc_dsql _describe(status_vector, &rans, &stnt, out_xsqlda);
}

9. Set up an XSQLVAR structure for each item returned. Setting up an item
structure involves the following steps:

INTERBASE 6

DSQL PROGRAMMING METHODS

- Coercing an item’s datatype (optional).

- Allocating local storage for the data pointed to by the sqldata field of the XSQLVAR.
This step is required only if space for local variables is not allocated until runtime.
The following example illustrates dynamic allocation of local variable storage space.

- Providing a NULL value indicator for the parameter (optional).

The following code example illustrates these steps, looping through each XSQIVAR
structure in the out_sqlda XSQLDA:

for (i=0, var = out_sqglda->sqlvar; i < out_sqlda->sqld; i++ var++)
{
dtype = (var->sqltype & ~1) /* drop flag bit for now */
swi tch(dtype)
{
case SQ._VARYI NG
var - >sql type = SQL_TEXT;
br eak;
case SQ._TEXT:
var->sql data = (char *)nmall oc(sizeof (char)*var->sqllen);
br eak;
case SQ._LONG
var->sql data = (char *)nall oc(sizeof(long));
br eak;
/* process remaining types */
} /* end of switch statenents */
if (sqgltype & 1)

{
/* allocate variable to hold NULL status */
var->sqglind = (short *)nmall oc(sizeof(short));
}
} /* end of for loop */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 94.

» Executing a query statement string within the context of a cursor

To retrieve select-list items from a statement string, the string must be executed within
the context of a cursor. All cursor declarations in InterBase are fixed, embedded
statements inserted into the application before it is compiled. DSQL application
developers must anticipate the need for cursors when writing the application and declare
them ahead of time.

API GUIDE 111

112

CHAPTER 6 WORKING WITH DYNAMIC SQL

A looping construct is used to fetch a single row at a time from the cursor and to process
each select-list item (column) in that row before the next row is fetched.

To execute a statement string within the context of a cursor and retrieve rows of select-list
items, follow these steps:

1. Execute the statement with isc_dlsql_execute2():
i sc_dsql _execute2(status_vector, &rans, &stnt, 1,
i n_xsqgl da, out_xsql da);

2. Declare and open a cursor for the statement string with
isc_dsql_set_cursor_name(). For example, the following statement declares
a cursor, dyn_cursor, for the prepared SQL statement string, stmt:

i sc_dsql _set_cursor_nane(status_vector, &stmt, "dyn_cursor", NULL);

Opening the cursor causes the statement string to be executed, and an active set of
rows to be retrieved.

3. Fetch one row at a time with isc_dsql_fetch() and process the select-list items
(columns) it contains. For example, the following loops retrieve one row at
a time from dyn_cursor and process each item in the retrieved row with an
application-specific function called process_column():

while ((fetch_stat =

i sc_dsql _fetch(status_vector, &stnt, 1, out_sglda)) == 0)
{
for (i =0; i < out_sglda->sqgld; i++)
{
process_col um(sql da->sqlvar[i]);
}
}
if (fetch_stat != 100L)
{
/* isc_dsql _fetch returns 100 if no nore rows remain to be
retrieved */
SQLCCODE = isc_sql code(status_vector);
isc_print_sqlerror(SQCODE, status_vector);
return(l);
}

4. When all the rows are fetched, close the cursor with
isc_dsql_free_statement():

i sc_dsql _free_statement (status_vector, &stm, DSQ_cl ose);

INTERBASE 6

DETERMINING AN UNKNOWN STATEMENT TYPE AT RUNTIME

» Re-executing a query statement string with parameters

Once a query statement string with parameters is prepared, it can be used as often as
required in an application. Before each subsequent use, the input XSQLDA can be supplied
with new parameter and NULL indicator data. The cursor must be closed and reopened
before processing can occur.

® To provide new parameters to the input XSQLDA, follow steps 3 to 5 of “Preparing a
query statement string with parameters” on page 108.

® To provide new information to the output XSQLDA, follow steps 6 to 8 of “Preparing a
query statement string with parameters” on page 108.

® To reopen a cursor and process select-list items, repeat steps 2 to 4 of “Executing a query
statement string within the context of a cursor” on page 111.

Determining an unknown statement type at runtime

An application can use isc_dsql_sql_info() to determine the statement type of an
unknown prepared statement, for example, a statement entered by the user at runtime.

Requested information can include:
® Statement type.
® Number of input parameters required by the statement.
® Number of output values returned by the statement.

® Detailed information regarding each input parameter or output value, including its
datatype, scale, and length.

To use isc_dsql_sql_info(), allocate an item-list buffer that describes the type of
information requested, and allocate a result buffer, where the function can return the
desired information. For example, to determine the statement type of an unknown, but
prepared statement, you would allocate a one-element item-list buffer, and fill it with the
macro constant, isc_info_sql_stmt_type, defined in ibase.h:

char type_iten{];
type_iten{] = {isc_info_sqgl _stnt_type};

Note Additional information item macros for requested items can be found in ibase.h
under the comment, “SQL information items.”

API GUIDE 113

114

TABLE6.6

CHAPTER 6 WORKING WITH DYNAMIC SQL

The result buffer must be large enough to contain any data returned by the call. The
proper size for this buffer depends on the information requested. If not enough space is
allocated, then isc_dsql_sql_info() puts the predefined value, isc_info_truncated, in the
last byte of the result buffer. Generally, when requesting statement type information, 8
bytes is a sufficient buffer size. Declaring a larger than necessary buffer is also safe. A
request to identify a statement type returns the following information in the result buffer:

1. One byte containing isc_info_sql_stmt_type.

2. Two bytes containing a number, 7, telling how many bytes compose the
subsequent value.

3. One or two bytes specifying the statement type. The following table lists the
statement types that can be returned:

Type Numericvalue
isc_info_sql_stmt_select 1
isc_info_sql_stmt_insert 2
isc_info_sql_stmt_update 3
isc_info_sql_stmt_delete 4
isc_info_sql_stmt_dd/ 5
isc_info_sql_stmt_get_segment 6
isc_info_sql_stmt_put_segment 7
isc_info_sql_stmt_exec_procedure 8
isc_info_sql_stmt_start_trans 9
isc_info_sql_stmt_commit 10
isc_info_sql_stmt_rollback 1
isc_info_sql_stmt_select_for_upd 12

Statement types

4. A final byte containing the value isc_info_end (0).

The values placed in the result buffer are not aligned. Furthermore, all numbers are
represented in a generic format, with the least significant byte first, and the most
significant byte last. Signed numbers have the sign in the last byte. Convert the numbers
to a datatype native to your system before interpreting them.

INTERBASE 6

DETERMINING AN UNKNOWN STATEMENT TYPE AT RUNTIME

Note All information about a statement except its type can be more easily determined by
calling functions other than isc_dsql_sql_info(). For example, to determine the
information to fill in an input XSQLDA, call isc_dsql_describe_bind(). To fill in an output
XSQLDA, call isc_dsql_prepare() or isc_dsql_describe().

API GUIDE 115

116

CHAPTER 6 WORKING WITH DYNAMIC SQL

INTERBASE 6

CHAPTER

Working with Blob Data

This chapter describes InterBase’s dynamically sizable datatype, called a Blob, and
describes how to work with it using API functions. Depending on a particular application,
you might need to read all or only part of the chapter.

For example, if you plan to request conversion of Blob data from one datatype to another,
such as from one bitmapped graphic format to another or from the MIDI sound format
to the Wave format, you need to read the entire chapter. To write a conversion routine,
called a filter, see “Filtering Blob data” on page 136. For further information about
working with Blob data and filters, see the Embedded SQL Guide.

Note Blob filters are not available on NetWare servers.

If you do not need to request conversion of Blob data, then you only need to read the
parts of this chapter up to “Filtering Blob data” on page 136.

API GUIDE 117

TABLE7.1

The following table alphabetically lists the API functions for working with Blob data. The

CHAPTER 7 WORKING WITH BLOB DATA

functions will be described and demonstrated in the remainder of this chapter.

Function

Purpose

isc_blob_default_desc()

isc_blob_gen_bpb()

isc_blob_info()

isc_blob_lookup_desc()

isc_blob_set_desc()
isc_cancel_blob()
isc_close_blob()

isc_create_blob2()

isc_get_segment()

isc_open_blob2()

isc_put_segment()

Loads a Blob descriptor with default information about a Blob,
including its subtype, character set, and segment size

Generates a Blob parameter buffer (BPB) from source and target Blob
descriptors to allow dynamic access to Blob subtype and character set
information

Returns information about an open Blob

Determines the subtype, character set, and segment size of a Blob,
given a table name and Blob column name

Initializes a Blob descriptor from parameters passed to it
Discards a Blob
Closes an open Blob

Creates and opens a Blob for write access, and optionally specifies a
filter to be used to translate the Blob from one subtype to another

Retrieves data from a Blob column in a row returned by execution of a
SELECT statement

Opens an existing Blob for retrieval, and optionally specifies a filter to
be used to translate the Blob from one subtype to another

Writes data into a Blob

API Blob functions

What is a Bloh?

A Blob is an object that cannot easily be stored in a database as one of the standard
datatypes. You can use a Blob to store large amounts of data of various types, including:

® Bitmapped images
= Sounds

® Video segments

= Text

118 INTERBASE 6

WHAT IS A BLOB?

API GUIDE

InterBase support of Blob data provides all the advantages of a database management
system, including transaction control, maintenance, and access using standard API
function calls. Blob data is stored in the database itself. Other systems only store pointers
in the database to non-database files. InterBase stores the actual Blob data in the
database, and establishes a unique identification handle in the appropriate table to point
to the database location of the Blob. By maintaining the Blob data within the database,
InterBase greatly improves access to and management of the data.

How are Blob data stored?

Blob is the InterBase datatype that can represent various objects, such as bitmapped
images, sound, video, and text. Before you store these items in the database, you create
or manage them as platform- or product-specific files or data structures, such as:

TIFF, PICT, .BMP, .WMF, .GEM, TARGA or other bitmapped or vector-graphic files
MIDI or .WAV sound files

Audio Video Interleaved Format (.AVI) or QuickTime video files

ASCII, .MIF, .DOC, .WPx or other text files

CAD files

You must programmatically load these files from memory into the database, as you do
any other data items or records you intend to store in InterBase. For more information
about creating a Blob and storing data into it, see “Writing data to a Blob” on page 126.

Blob subtypes

Although you manage Blob data in ways similar to other datatypes, InterBase provides
more flexible data typing rules for Blob data. Because there are many native datatypes
that you can define as Blob data, InterBase treats them generically and allows you to
define your own datatype, known as a subtype. InterBase also provides two predefined
subtypes: 0, an unstructured subtype generally applied to binary data or data of an
indeterminate type, and 1, applied to plain text.

User-defined subtypes must always be represented as negative integers between —1 and
-32,678.

A Blob column’s subtype is specified when the Blob column is defined.

The application is responsible for ensuring that data stored in a Blob column agrees with
its subtype; InterBase does not check the type or format of Blob data.

119

CHAPTER 7 WORKING WITH BLOB DATA

Blob database storage

Rather than storing Blob data directly in the Blob field of a table record, InterBase stores
a Blob ID there. A Blob ID is a unique numeric value that references Blob data. The Blob
data is stored elsewhere in the database, in a series of Blob segments, units of Blob data
read and written in chunks. Blob segments can be of varying length. The length of an
individual segment is specified when it is written.

Segments are handy when working with data that is too large for one application memory
buffer. But it is not necessary to use multiple segments; you can put all your Blob data in
a single segment.

When an application creates a Blob, it must write data to it a segment at a time. When an
application reads a Blob, it reads a segment at a time. For more information about writing
segments, see “Writing data to a Blob” on page 126. For more information about
reading segments, see “Reading data from a Blob” on page 121.

Blob data operations

120

InterBase supports the following operations on Blob data:
® Reading from a Blob
® Writing to a Blob, which involves the following operations:
1. Inserting a new row that includes Blob data.
2. Replacing the data referenced by a Blob column of a row.
3. Updating the data referenced by a Blob column of a row.
® Deleting a Blob

The following sections describe how to perform these operations. These examples do not
include the use of filters to convert data from one subtype to another as it is read or
written. For information about using filters, see “Writing an application that requests
filtering” on page 142.

Dynamic SQL (DSQL) API functions and the XSQLDA data structure are needed to execute
SELECT, INSERT, and UPDATE statements required to select, insert, or update relevant Blob
data. The following sections include descriptions of the DSQL programming methods
required to execute the sample statements provided. For more information about DSQL
programming, see Chapter 6, “Working with Dynamic SQL.”

INTERBASE 6

BLOB DATA OPERATIONS

API GUIDE

Reading data from a Blob

There are six steps required for reading data from an existing Blob:

1. Create a SELECT statement query that specifies selection of the Blob column
(and any other columns desired) in the rows of interest.

2. Prepare an output XSQLDA structure to hold the column data for each row that
is fetched.

Prepare the SELECT statement for execution.
Execute the statement.

Fetch the selected rows one by one.

ST AN

Read and processing the Blob data from each row.

» Creating the SELECT statement

Elicit a statement string from the user or create one that consists of the SQL query that
will select rows containing the Blob data of interest. For example, the following creates
an SQL query statement string that selects three columns from various rows in the
PROJECT table:

char *str =
"SELECT PRQJ_NAME, PRQJ_DESC, PRODUCT FROM PRQIECT WHERE \
PRODUCT IN (' software’, 'hardware’, 'other’) ORDER BY PRQJ_NAME";

» Preparing the output XSQLDA

Most queries return one or more rows of data, referred to as a select-list. An output XSQLDA
must be created to store the column data for each row that is fetched. For a Blob column,
the column data is an internal Blob identifier (Blob ID) that is needed to access the actual
data. To prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA. For example, the following declaration
creates an XSQLDA called out_sqlda:

XSQ.DA *out _sql da;
2. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
XSQLDA must contain one XSQIVAR substructure for each column to be

fetched. The following statement allocates storage for an output XSQLDA
(out_sqlda) with three XSQLVAR substructures:

out _sqlda = (XSQLDA *) nmal | oc(XSQLDA _LENGTH(3)) ;

3. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sqln field
of the XSQLDA to indicate the number of XSQLVAR substructures allocated:

121

122

CHAPTER 7 WORKING WITH BLOB DATA

out _sql da- >versi on = SQLDA VERSI ON1;
out _sql da->sqln = 3;

b Preparing the SELECT statement for execution

After an XSQLDA is created for holding the column data for each selected row, the query
statement string can be prepared for execution. Follow these steps:

1. Declare and initialize an SQL statement handle, then allocate it with
isc_dsql_allocate_statement():

isc_stm _handle stnt; /* Declare a statenent handle. */
stmt = NULL; /* Set handle to NULL before allocation. */
i sc_dsql _allocate_statenent(status_vector, &db_handle, &stnt);

2. Ready the statement string for execution with isc_dsql_prepare(). This
checks the string (str) for syntax errors, parses it into a format that can be
efficiently executed, and sets the statement handle (stm#) to refer to this
parsed format. The statement handle is used in a later call to
isc_dsql_execute().

If isc_dsql_prepare() is passed a pointer to the output XSQLDA, as in the following
example, it will fill in most fields of the XSQLDA and all its XSQILVAR substructures with
information such as the datatype, length, and name of the corresponding columns in
the statement.

A sample call to isc_dsql_prepare() is:

i sc_dsql _prepare(
status_vector,

&t rans, /* Set by previous isc_start_transaction() call. */
&stnt, /* Statenent handle set by this function call. */

0, /* Specifies statement string is null-term nated. */
str, [* Statenent string. */

SQLDA VERSI ON1, /* XSQLDA version nunber. */

out _sql da /* XSQ.DA for storing colum data. */

)
3. Set up an XSQLVAR structure for each column. Setting up an XSQLVAR structure
involves the following steps:

For columns whose types are known at compile time:

- Specify the column’s datatype (if it was not set by isc_dsql_prepare(), as previously
described).

- Point the sqldata field of the XSQIVAR to an appropriate local variable.

For columns whose types are not known until run time:

INTERBASE 6

BLOB DATA OPERATIONS

API GUIDE

- Coerce the item’s datatype (optional), for example, from SQL_VARYING to SQL_TEXT.

- Dynamically allocate local storage for the data pointed to by the sgldata field of the

XSOLVAR.
For both:

- Specify the number of bytes of data to be retrieved into sgldata.

- Provide a NULL value indicator for the parameter.

Data retrieval for Blob (and array) columns is different from other types of columns,
so the XSQIVAR fields must be set differently. For non-Blob (and non-array) columns,
isc_dsql_prepare() sets each XSQLVAR sqitype field to the appropriate field type, and
the data retrieved when a select-list row’s data is fetched is placed into the sqldata
space allocated for the column. For Blob columns, the type must be set to SQL_Blob
(or SQL_BIlob + 1 if a NULL indicator is desired). InterBase stores the internal Blob

identifier (Blob ID), not the Blob data, in the sqldata space when a row’s data is

fetched, so you must point sqldata to an area the size of a Blob ID. To see how to
retrieve the actual Blob data once you have a Blob ID, see “Reading data from a

Blob” on page 121.

The following code example illustrates the assignments for Blob and non-Blob

columns whose types are known at compile time. For examples of handling datatypes

that are unknown until run time, see Chapter 6, “Working with Dynamic SQL.”

#define PROQILEN 20
#define TYPELEN 12
| SC_QUAD bl ob_i d;

char proj_name[PROJLEN + 1];
char prod_type[TYPELEN + 1];

short flag0, flagl,

flag2;
out _sql da- >sql var[0] .
out _sql da- >sql var[0] .
out _sql da- >sql var[0] .
out _sql da- >sql var[0] .
out _sql da->sql var[1].
out _sql da- >sql var[1].
out _sql da- >sql var[1].
out _sql da- >sql var[1].
out _sql da- >sql var[2] .
out _sql da- >sql var[2] .
out _sql da- >sql var[2] .
out _sql da- >sql var[2] .

sgl data = proj _nane;
sqltype = SQL_TEXT + 1,
sql l en = PRQILEN;

sglind = &fl ago;

sql data = (char *) &blob_id;
sqgl type SQL_Blob + 1;
sgl l en = sizeof (1 SC_QUAD) ;
sglind = &l agl;

sqldata = prod_type;
sgltype = SQL_TEXT + 1,
sql l en = TYPELEN;

sglind = & | ag2;

123

124

CHAPTER 7 WORKING WITH BLOB DATA

) Executing the statement
Once the query statement string is prepared, it can be executed:

i sc_dsql _execut e(
status_vector,

&trans, /* set by previous isc_start_transaction() call */
&stnt, /* allocated above by isc_dsql _allocate_statenent() */
1, /* XSQ.DA version nunber */

NULL /* NULL since stnt doesn’'t have input values */

)

This statement creates a select list, the rows returned by execution of the statement.

» Fetching selected rows

A looping construct is used to fetch (into the output XSQZDA) the column data for a single
row at a time from the select-list and to process each row before the next row is fetched.
Each execution of isc_dsql_fetch() fetches the column data into the corresponding
XSQLVAR substructures of out_sqlda. For the Blob column, the Blob ID, not the actual Blob
data, is fetched.

| SC_STATUS fetch_stat;
| ong SQLCODE;

while ((fetch_stat =
i sc_dsql _fetch(status_vector, &stnt, 1, out_sqglda))

== O)
{
proj _nane[PRQJILEN] = '\ 0’;
prod_type[TYPELEN] = '\ 0’;
printf("\nPROJECT: %—20s TYPE: %—15s\n\n",
proj_name, prod_type);
/* Read and process the Blob data (see next section) */
}
if (fetch_stat != 100L)
{
* isc_dsql_fetch returns 100 if no more rows remain to be
retrieved */
SQLCODE = isc_sglcode(status_vector);
isc_print_sqlerror(SQLCODE, status_vector);
return(l);
}

INTERBASE 6

BLOB DATA OPERATIONS

» Reading and processing the Blob data

To read and process the Blob data:

1. Declare and initialize a Blob handle:

i sc_bl ob_handl e bl ob_handle; /* Declare a Blob handle. */
bl ob_handl e = NULL; /* Set handle to NULL before using it */

2. Create a buffer for holding each Blob segment as it is read. Its size should be
the maximum size segment your program expects to be read from the Blob.

char bl ob_segnent[80];

3. Declare an unsigned short variable into which InterBase will store the actual
length of each segment read:

unsi gned short actual _seg_| en;

4. Open the Blob with the fetched blob_id:
i sc_open_bl ob2(

status_vector,

&db_handl e,

&t r ans,

&bl ob_handl e, /* set by this function to refer to the Blob */
&lob_id, /* Blob ID put into out_sqlda by isc_dsql _fetch() */

0, /* BPB length = 0; no filter will be used */
NULL /* NULL BPB, since no filter will be used */
)

5. Read all the Blob data by calling isc_get_segment() repeatedly to get each
Blob segment and its length. Process each segment read. In the following
example, “processing” consists of printing each Blob as it is read:

bl ob_stat = isc_get_segnent (

status_vector,

&bl ob_handl e, /* set by isc_open_blob2()*/

&actual _seg len, /* length of segment read */

si zeof (bl ob_segnent), /* length of segnent buffer */
bl ob_segmnent /* segment buffer */

)

while (blob_stat == 0 || status_vector[1] == isc_segnent)

{

*/

API GUIDE

/* isc_get_segnent returns O if a segnment was successful ly read.

/* status_vector[1l] is set to isc_segnent if only part of a */
/* segnent was read due to the buffer (bl ob_segnent) not being */

125

CHAPTER 7 WORKING WITH BLOB DATA

/* large enough. In that case, the following calls to */
/* isc_get_segnment() read the rest of the buffer. */
printf("9%.*s", actual _seg_len, actual _seg_l en, blob_segment);

bl ob_stat = isc_get_segment (status_vector, &bl ob_handl e,
&actual _seg_l en, sizeof (bl ob_segnment), bl ob_segment);
printf("\n");
b
printf("\n");

6. Close the Blob:

i sc_cl ose_bl ob(status_vector, &blob_handle);

Writing data to a Blob

Before you can create a new Blob and write data to it, you must do at least one of the
following:

® Include Blob data in a row to be inserted into a table.
® Replace the data referenced by a Blob column of a row.
® Update the data referenced by a Blob column of a row.

The entry in a Blob column of a row does not actually contain Blob data. Rather, it has
a Blob ID referring to the data, which is stored elsewhere. So, to set or modify a Blob
column, you need to set (or reset) the Blob ID stored in it. If a Blob column contains a
Blob ID, and you modify the column to refer to a different Blob (or to contain NULL), the
Blob referenced by the previously stored Blob ID will be deleted during the next garbage
collection.

All these operations require the following steps:

1. Prepare an appropriate DSQL statement. This will be an INSERT statement if
you are inserting a new row into a table, or an UPDATE statement for
modifying a row. Each of these statements will need a corresponding input
XSQLDA structure for supplying parameter values to the statement at run time.
The Blob ID of a new Blob will be one of the values passed.

2. Create a new Blob, and write data into it.

3. Associate the Blob ID of the new Blob with the Blob column of the table row
by executing the UPDATE or INSERT statement.

Note that you cannot update Blob data directly. If you want to modify Blob data, you
must:

= Create a new Blob.

126 INTERBASE 6

BLOB DATA OPERATIONS

= Read the old Blob data into a buffer where you can edit or modify it.
® Write the modified data to the new Blob.

® Prepare and execute an UPDATE statement that will modify the Blob column to contain
the Blob ID of the new Blob, replacing the old Blob’s Blob ID.

The sections below describe the steps required to insert, replace, or update Blob data.

» Preparing the UPDATE or INSERT statement
To prepare an UPDATE or INSERT statement for execution, follow these steps:

1. Elicit an UPDATE or INSERT statement string from the user or create one for
inserting a row or updating the row containing the Blob column of interest.
For example, the following statement is for updating the Blob column named
PROJ_DESC in the row of the table, PROJECT, whose PROJ_ID field contains a
value specified at run time:

char *upd_str =
" UPDATE PRQJIECT SET PROJ_DESC = ? WHERE PRQJ_ID = ?";

As an example of an INSERT statement, the following inserts a new row containing
values in four columns:

char *in_str = "I NSERT | NTO PROJECT (PRQJ_NAME, PRQJ_DESC, PRODUCT,
PROJ ID) VALUES (?, 2, 2, 2)";

The remaining steps refer only to UPDATE statements, but the actions apply to INSERT
statements as well.

2. Declare a variable to hold the input XSQLDA needed to supply parameter
values to the UPDATE statement at run time. For example, the following
declaration creates an XSQLDA called in_sqlda:

XSQLDA *in_sql da;
3. Allocate memory for the input XSQLDA using the XSQLDA_LENGTH macro. The
XSQLDA must contain one XSQLVAR substructure for each parameter to be

passed to the UPDATE statement. The following statement allocates storage for
an input XSQLDA (in_sqlda) with two XSQLVAR substructures:

in_sqglda = (XSQLDA *)nal | oc(XSQLDA _LENGTH(2));
4. Set the version field of the XSQLDA to SQLDA_VERSIONI, and set the sqin field
to indicate the number of XSQLVAR structures allocated:

i n_sqgl da- >versi on = SQ.DA_VERSI ON1;
in_sqgl da->sqgln = 2;

API GUIDE 127

128

CHAPTER 7 WORKING WITH BLOB DATA

5. Set up the XSQLVAR structure in the XSQLDA for each parameter to be passed.
Setting up an XSQLVAR structure involves the following steps:

- Specify the item’s datatype

- For parameters whose types are known at compile time: Point the sqldata field of
the XSOLVAR to an appropriate local variable that will contain the data to be passed

- For parameters whose types are not known until run time: Allocate local storage for
the data pointed to by the sqldata field of the XSQIVAR

- Specify the number of bytes of data

Data storage for Blob (and array) columns is different from other types of columns, so
the XSQIVAR fields must be set differently. For non-Blob and non-array columns, input
parameter data comes from the space pointed to by sqldata. For Blob columns, you must
set the type to SQL_Blob (or SQL_Blob + 1 if you want a NULL indicator). Your application
must store space for the internal Blob identifier, not the Blob data, in the sqldata space.
For more information about creating a Blob, storing its ID in the sgldata space, and
associating the Blob with a column, see “Creating a new Blob and storing data” on
page 128.

The following code example illustrates the assignments for one text column and one Blob
column, where the column types are known at compile time. For examples of handling
datatypes that are unknown until run time, see Chapter 6, “Working with Dynamic
SQL.”

#def i ne PRQILEN 5

char proj_id[PRQJLEN + 1];

| SC_QUAD bl ob_i d;

i n_sqgl da->sqlvar[0].sqldata = (char *) &blob_id;

i n_sqgl da->sql var[0] . sql type SQL_Blob + 1;

i n_sqgl da->sqlvar[0].sqllen = sizeof (I SC_QUAD);
i n_sqgl da->sql var[1].sqldata = proj_id;
[
[

i n_sqgl da- >sql var[1].sql type SQL_TEXT;
i n_sqgl da->sqlvar[1].sqllen = 5;

The proj_id variable should be assigned a value at run time (unless the value is
known at compile time). The blob_id variable should be set to refer to the newly
created Blob, as described in the following sections.

» Creating a new Blob and storing data

To create a new Blob containing the data to be written:

INTERBASE 6

BLOB DATA OPERATIONS

1. Declare and initialize a Blob handle:

i sc_bl ob_handl e bl ob_handle; /* Declare a Bl ob handle. */
bl ob_handl e = NULL; /* Set handle to NULL before using it */

2. Declare and initialize a Blob ID:

| SC_QUAD bl ob_i d; /* Declare a Blob ID. */
bl ob_id = NULL; /* Set handle to NULL before using it */

3. Create a new Blob by calling isc_create_blob2():

i sc_create_bl ob2(

status_vector,

&db_handl e,

&t rans,

&bl ob_handl e, /* set by this functionto refer to the newBl ob */

&lob_id, /* Blob ID set by this function */

0, /* Blob Paraneter Buffer length = 0; no filter will be used
*/

NULL /* NULL Bl ob Paraneter Buffer, sincenofilter will be used
*/

)

This function creates a new Blob, opens it for write access, and sets blob_handle to
point to the new Blob.

isc_create_blob2() also assigns the Blob a Blob ID, and sets blob_id to point to the
Blob ID. Note that blob_id is the variable pointed to by the sqgldata field of the UPDATE
statement input parameter that specifies the Blob column to be updated. Thus, when
the UPDATE statement is executed, this new Blob will be used to update the Blob
column.

4. Write all the data to be written to the Blob by making a series of calls to
isc_put_segment(). The following example reads lines of data, and
concatenates each to the Blob referenced by blob_handle. (get_line() reads
the next line of data to be written.)

char *line;
unsi gned short | en;

line = get_line();
while (line)
{
len = strlen(line);
i sc_put _segnent (
stat us_vector,

API GUIDE 129

CHAPTER 7 WORKING WITH BLOB DATA

&bl ob_handl e, /* set by previous isc_create_bl ob2() */
| en, /* length of buffer containing data to wite */
line /* buffer containing data to wite into Blob */

)
if (status_vector[0] == 1 && status_vector[1])
{
isc_print_status(status_vector);
return(l);
H

line = get_line();
b
5. Close the Blob:

i sc_cl ose_bl ob(status_vector, &blob_handle);

b Associating the new Blob with the Blob column

Execute the UPDATE statement to associate the new Blob with the Blob column in the row
selected by the statement:
i sc_dsql _execut e_i nmedi at ¢(

st at us_vector,

&db_handl e,
&t rans,
0, /* indicates string to execute is null-term nated */
upd_str, [/* UPDATE statenent string to be executed */
1, /* XSQ.DA version nunber */
in_sqglda /* XSQ.DA supplying paraneters to UPDATE statenent */
)
Deleting a Blob

There are four ways to delete a Blob:
® Delete the row containing the Blob. You can use DSQL to execute a DELETE statement.

= Replace the Blob with a different one. If a Blob column contains a Blob ID, and you
modify the column to refer to a different Blob, the Blob referenced by the previously
stored Blob ID will be deleted during the next garbage collection.

® Reset to NULL the column referring to the Blob, for example, by using DSQL to execute a
statement like the following:

UPDATE PRQIECT SET PRQJ_DESC = NULL WHERE PRQJ_I D = ' VBASE

130 INTERBASE 6

REQUESTING INFORMATION ABOUT AN OPEN BLOB

The Blob referenced by the previously stored Blob ID will be deleted during the next
garbage collection.

® Discard a Blob after it has been created but before it has been associated with a particular
column of a table row. Use the isc_cancel_blob() function, as in:

i sc_cancel _bl ob(status_vector, &blob_handle);

Requesting information about an open Blob

API GUIDE

After an application opens a Blob, it can obtain information about the Blob. The
isc_blob_info() call enables an application to query for Blob information such as the total
number of segments in the Blob, or the length, in bytes, of the longest segment.

In addition to a pointer to the error status vector and a Blob handle, isc_blob_info()
requires two application-provided buffers, an item-list buffer, where the application
specifies the information it needs, and a result buffer, where InterBase returns the
requested information. An application populates the item-list buffer with information
requests prior to calling isc_blob_info(), and passes it both a pointer to the item-list
buffer, and the size, in bytes, of that buffer.

The application must also create a result buffer large enough to hold the information
returned by InterBase. It passes both a pointer to the result buffer, and the size, in bytes,
of that buffer to isc_blob_info(). If InterBase attempts to pass back more information
than can fit in the result buffer, it puts the value, isc_info_truncated, defined in ibase.h,
in the final byte of the result buffer.

Item-list buffer items and result buffer values

The item-list buffer is a char array that holds a sequence of byte values, one per requested
item of information. Each byte is an item type, specifying the kind of information desired.
Compile-time constants for all item types are defined in ibase.h:

#define isc_info_blob_num segnents 4
#define isc_info_bl ob_nmax_segnent
#define isc_info_blob_total |ength
#define isc_info_blob_type

~N o O

The result buffer returns a series of clusters of information, one per item requested. Each
cluster consists of three parts:

131

132

TABLE7.2

TABLE73

CHAPTER 7 WORKING WITH BLOB DATA

1. A one-byte item type. Each is the same as one of the item types in the item-list
buffer.

2. A 2-byte number specifying the number of bytes that follow in the remainder
of the cluster.

3. Awvalue, stored in a variable number of bytes, whose interpretation depends
on the item type.

A calling program is responsible for interpreting the contents of the result buffer and for
deciphering each cluster as appropriate.

The clusters returned to the result buffer are not aligned. Furthermore, all numbers are
represented in a generic format, with the least significant byte first, and the most
significant byte last. Signed numbers have the sign in the last byte. Convert the numbers
to a datatype native to your system, if necessary, before interpreting them. The API call,
isc_vax_integer(), can be used to perform the conversion.

The following table lists items about which information can be requested and returned,
and the values reported:

Request and return item Return value

isc_info_blob_num_segments Total number of segments

isc_info_blob_max_segment Length of the longest segment
isc_info_blob_total_length Total size, in bytes, of Blob
isc_info_blob_type Type of Blob (0: segmented, or 1: stream)

Blob request and return items

In addition to the information InterBase returns in response to a request, InterBase can
also return one or more of the following status messages to the result buffer. Each status
message is one unsigned byte in length:

Item Description

isc_info_end End of the messages

isc_info_truncated Result buffer is too small to hold any more requested information
isc_info_error Requested information is unavailable. Check the status vector for an

error code and message

Status message return items

INTERBASE 6

REQUESTING INFORMATION ABOUT AN OPEN BLOB

isc_blob_info() call example

The following code requests the number of segments and the maximum segment size for
a Blob after it is opened, then examines the result buffer:

char blob_itens[] = {
i sc_info_bl ob_nmax_segnent, isc_info_blob_num segnents};
char res_buffer[20], *p, item
short | ength;
SLONG nax_si ze = OL, num segnents = OL;
| SC_STATUS st atus_vector[20];
i sc_open_bl ob2(
status_vector,
&db_handl e, /* database handle, set by isc_attach_database() */
& r_handle, /* transaction handle, set by isc_start_transaction()

*

/
&l ob_handle, /* set by this function to refer to the Blob */
&bl ob_id, /* Blob ID of the Blob to open */
0, /* BPB length = 0; no filter will be used */
NULL /* NULL BPB, since no filter will be used */
)

if (status_vector[0] == 1 && status_vector[1])

{
isc_print_status(status_vector);
return(l);

}

i sc_bl ob_info(
status_vector,

&bl ob_handl e, /* Set in isc_open_blob2() call above. */
sizeof (blob_itens),/* Length of itemlist buffer. */
bl ob_i tens, [* Itemlist buffer. */
si zeof (res_buffer),/* Length of result buffer. */
res_buffer /* Result buffer */
)

if (status_vector[0] == 1 && status_vector[1])

{
/* An error occurred. */
isc_print_status(status_vector);
i sc_cl ose_bl ob(status_vector, &blob_handle);
return(l);

s

/* Extract the values returned in the result buffer. */

API GUIDE 133

CHAPTER 7 WORKING WITH BLOB DATA

for (p = res_buffer; *p !'=1isc_info_end ;)
{

item= *p++

I ength = (short)isc_vax_integer(p, 2);

p +=2;
switch (item
{
case isc_info_bl ob_max_segment:
max_size = isc_vax_integer(p, |length);
br eak;
case isc_info_blob_num segments:
num segnents = isc_vax_integer(p, |ength);
br eak;

case isc_info_truncated:
/* handl e error */

br eak;
defaul t:
br eak;
}
p += length;
}s
Blob descriptors

134

A Blob descriptor is used to provide dynamic access to Blob information. For example, it
can be used to store information about Blob data for filtering (conversion) purposes, such
as character set information for text Blob data and subtype information for text and

non-text Blob data. Two Blob descriptors are needed whenever a filter will be used when
writing to or reading from a Blob: one to describe the filter source data, and the other to

describe the target.

A Blob descriptor is a structure defined in the ibase.h header file as follows:

typedef struct {
short bl ob_desc_subtype; /* type of Blob data */
short bl ob_desc_charset; /* character set */
short bl ob_desc_segnent _si ze; /* segnent size */

unsi gned char bl ob_desc_field_nane [32]; /* Blob colum nane */
unsi gned char bl ob_desc_rel ation_nanme [32]; /* table nane */

} 1SC_Bl ob_DESC;

INTERBASE 6

POPULATING A BLOB DESCRIPTOR

For more information about the character sets recognized by InterBase, see the Language
Reference.

The segment size of a Blob is the maximum number of bytes that an application is
expected to write to or read from the Blob. You can use this size to allocate your own
buffers.

The blob_desc_relation_name and blob_desc_field_name fields contain null-
terminated strings.

Populating a Blob descriptor
There are four possible ways to populate a Blob descriptor. You can do so by:

® Calling isc_blob_default_desc(). This stores default values into the descriptor fields. The
default subtype is 1 (TEXT), segment size is 80 bytes, and charset is the default charset for
your process.

® Calling isc_blob_lookup_desc(). This accesses the database system metadata tables to
look up and copy information for the specified Blob column into the descriptor fields.

® Calling isc_blob_set_desc(). This initializes the descriptor from parameters you call it
with, rather than accessing the database metadata.

® Setting the descriptor fields directly.

The following example calls isc_blob_lookup_desc() to look up the current subtype and
character set information for a Blob column named PROJ_DESC in a table named PROJECT.
It stores the information into the source descriptor, from_desc.

i sc_bl ob_| ookup_desc (
status_vector,

&b _handle; [/* Set by previous isc_attach_database() call. */
&r_handle, [/* Set by previous isc_start_transaction() call. */
" PRQJECT", /* Tabl e name. */

"PRQJ_DESC', /* Columm nanme. */
& romdesc, [/* Blob descriptor filledin by this functioncall. */
&gl obal /* dobal colum nane, returned by this function. */

)

For more information about the usage of Blob descriptors in applications that request
data filtering, and for further examples of populating Blob descriptors, see “Writing an
application that requests filtering” on page 142.

API GUIDE 135

CHAPTER 7 WORKING WITH BLOB DATA

Filtering Blob data

136

A Blob filter is a routine that translates Blob data from one subtype to another.

InterBase includes a set of special internal Blob filters that convert from subtype 0
(unstructured data) to subtype 1 (TEXT), and from subtype 1 to subtype 0.

In addition to using these standard filters, you can write your own external filters to
provide special data translation. For example, you might develop a filter to convert one
image format to another, for instance to display the same image on monitors with
different resolutions. Or you might convert a binary Blob to plain text and back again to
be able to move the file more easily from one system to another.

If you define filters, you can assign them subtype identifiers from —32,768 to —1.

The following sections provide an overview of how to write Blob filters, followed by
details of how to write an application that requires filtering. For more information about
writing Blob filters, see the Embedded SQL Guide.

Note Blob filters are available for databases residing on all InterBase server platforms
except NetWare, where Blob filters cannot be created or used.

Using your own filters

Unlike the standard InterBase filters that convert between subtype 0 and subtype 1, an
external Blob filter is generally part of a library of routines you create and link to an
application.

You can write Blob filters in C or Pascal (or any language that can be called from C). To
use your own filters, follow these steps:

1. Decide which filters you need to write.

2. Write the filters in a host language.

3. Build a shared filter library.

4. Make the filter library available.

5. Define the filters to the database.

6. Write an application that requests filtering.

Steps numbered 2, 5, and 6 are described in greater detail in the following sections.

INTERBASE 6

FILTERING BLOB DATA

API GUIDE

Declaring an external Blob filter to the database

To declare an external filter to a database, use the DECLARE FILTER statement. For example,
the following statement declares the filter, SAMPLE:

DECLARE FI LTER SAMPLE
INPUT TYPE -1 OUTPUT_TYPE -2
ENTRY POINT 'FilterFunction’
MODULE_NAME filter.dll';

In the example, the filter’s input subtype is defined as —1 and its output subtype as

—2. If subtype -1 specifies lowercase text, and subtype —2 uppercase text, then the
purpose of filter SAMPLE would be to translate Blob data from lowercase text to uppercase
text.

The ENTRY_POINT and MODULE_NAME parameters specify the external routine that
InterBase calls when the filter is invoked. The MODULE_NAME parameter specifies filter.dll,
the dynamic link library containing the filter’s executable code. The ENTRY_POINT
parameter specifies the entry point into the DLL. Although the example shows only a
simple file name, it is good practice to specify a fully-qualified path name, since users of
your application need to load the file.

Writing an external Blob filter

If you choose to write your own filters, you must have a detailed understanding of the
datatypes you plan to translate. InterBase does not do strict datatype checking on Blob
data; it is your responsibility.

» Defining the filter function

When writing a filter, you must include an entry point, known as a filter function, in the
declaration section of the program. InterBase calls the filter function when an application
performs a Blob access operation on a Blob specified to use the filter. All communication
between InterBase and the filter is through the filter function. The filter function itself
may call other functions that comprise the filter executable.

You declare the name of the filter function and the name of the filter executable with the
ENTRY_POINT and MODULE_NAME parameters of the DECLARE FILTER statement.

A filter function must have the following declaration calling sequence:

filter_function_nanme(short action, isc_blob_ctl control);

137

138

CHAPTER 7 WORKING WITH BLOB DATA

The parameter, action, is one of eight possible action macro definitions, and the
parameter, control, is an instance of the isc_blob_ctl Blob control structure, defined in
the InterBase header file, ibase.h. These parameters are discussed later in this chapter.

The following listing of a skeleton filter declares the filter function, jpeg_filter:

#i ncl ude <i base. h>

#define SUCCESS 0

#define FAILURE 1

| SC_STATUS jpeg_filter(short action, isc_blob_ctl control)

{
| SC_STATUS status = SUCCESS;

switch (action)

{
case isc_blob_filter_open:
br eak;
case isc_blob_filter_get_segnent:
br eak;
case isc_blob_filter_create:
br eak;
case isc_blob_filter_put_segnent:
br eak;
case isc_blob_filter_cl ose:
br eak;
case isc_blob_filter_alloc:
br eak;
case isc_blob_filter_free:
br eak;
case isc_blob_filter_seek:
br eak;
defaul t:

br eak;

INTERBASE 6

FILTERING BLOB DATA

API GUIDE

return status;

}

InterBase passes one of eight possible actions to the filter function, jpeg_filter, by way of
the action parameter, and also passes an instance of the Blob control structure,
isc_blob_ctl, by way of the parameter, control.

The ellipses (...) in the previous listing represent code that performs some operations
based on each action, or event, that is listed in the case statement. Most of the actions
correspond to API functions called by an application. For more information regarding the
types of code to write for each action, see the Embedded SQL Guide.

» Defining the Blob control structure

The isc_blob_ctl Blob control structure provides the fundamental method of data
exchange between InterBase and a filter.

The Blob control structure is defined as a typedef, isc_blob_ctl, in ibase.h, as follows:

typedef struct isc_blob_ctl {
| SC_STATUS (*ctl _source)();
/* Internal |nterBase Blob access routine. */
struct isc_blob_ctl *ctl_source_handl e;
/* Instance of isc_blob_ctl to pass to
internal |nterBase Blob access routine. */
short ctl_to_sub_type;/* Target subtype. */
short ctl_fromsub_type;/* Source subtype. */
unsi gned short ctl _buffer_length; /* Length of ctl_buffer. */
unsi gned short ctl_segnent _|ength; /* Length of current segnent. */
unsi gned short ctl _bpb_length; /* Bl ob paraneter buffer |ength. */
char *ctl _bpb; /* Pointer to Blob paraneter buffer. */
unsi gned char *ctl _buffer; /* Pointer to segnent buffer. */
| SC LONG ctl _nmax_segnent; /* Length of |ongest Blob segnent. */
| SC_ LONG ctl| _nunber _segnents; /* Total nunber of segnents. */
| SC LONG ctl _total _Iength; /* Total |length of Blob. */
| SC_STATUS *ctl _status;/* Pointer to status vector. */
long ctl _data[8];/* Application-specific data. */
} *1SC Bl ob_CTL;

The purpose of certain isc_blob_ctl fields depend on the action being performed.

For example, when an application calls the isc_put_segment() API function, InterBase
passes an isc_blob_filter_put_segment action to the filter function. The buffer pointed to
by the ctl_buffer field of the control structure passed to the filter function contains the
segment data to be written, as specified by the application in its call to isc_put_segment().
Because the buffer contains information passed into the filter function, it is called an IN

139

140

TABLE7.4

CHAPTER 7 WORKING WITH BLOB DATA

field. The filter function should include instructions in the case statement under the
isc_blob_filter_put_segment case for performing the filtering and then passing the data
on for writing to the database. This can be done by calling the *ct/_source internal
InterBase Blob access routine. For more information about ctl_source, see the Embedded
SOL Guide.

On the other hand, when an application calls the isc_get_segment() API function, the
buffer pointed to by ct/_buffer in the control structure passed to a filter function is empty.
In this situation, InterBase passes an isc_blob_filter_get_segment action to the filter
function. The filter function isc_blob_filter_get_segment action handling should include
instructions for filling c#l_buffer with segment data from the database to return to the
application. This can be done by calling the *ctl_source internal InterBase Blob access
routine. In this case, because the buffer is used for filter function output, it is called an
OuT field.

The following table describes each of the fields in the isc_blob_ctl Blob control structure,
and whether they are used for filter function input (IN), or output (OUT).

Field name Description

(*ctl_source)() Pointer to the internal InterBase Blob access routine (IN)

*ctl_source_handle Pointer to an instance of isc_blob_ ct/to be passed to the internal InterBase Blob
access routine (IN)

ctl_to_sub_type Target subtype: information field provided to support multi-purpose filters that
can perform more than one kind of translation; this field and the next one
enable such a filter to decide which translation to perform (IN)

ctl_from_sub_type Source subtype: information field provided to support multi-purpose filters that
can perform more than one kind of translation; this field and the previous one
enable such a filter to decide which translation to perform (IN)

ctl_buffer_length For isc_blob_filter_put_segment, field is an IN field that contains the length of
the segment data contained in ct/_buffer

For isc_blob_filter_get_segment, field is an IN field set to the size of the buffer
pointed at by ctl_buffer, which is used to store the retrieved Blob data

ctl_segment_length Length of current segment. For isc_blob_filter_put_segment, field is not used

For isc_blob_filter_get_segment, field is an OUT field set to the size of the
retrieved segment (or partial segment, in the case when the buffer length
ctl_buffer_length is less than the actual segment length)

ctl_bpb_length Length of the Blob parameter buffer

isc_blob_ctl structure field descriptions

INTERBASE 6

FILTERING BLOB DATA

Field name Description
*ctl_bpb Pointer to the Blob parameter buffer
*ctl_buffer Pointer to segment buffer. For isc_blob_filter_put_segment, field is an IN field

that contains the segment data

Forisc_blob_filter_get_segment, field is an OUT field the filter function fills with
segment data for return to the application

ctl_max_segment Length, in bytes, of the longest segment in the Blob. Initial value is 0. The filter
function sets this field. This field is information only.

ctl_number_segments Total number of segments in the Blob. Initial value is 0. The filter function sets
this field. This field is information only.

ctl_total_length Total length, in bytes, of the Blob. Initial value is 0. The filter function sets this
field. This field is information only.

*ct|_status Pointer to InterBase status vector. (OUT)

ctl_data [8] 8-element array of application-specific data. Use this field to store resource

pointers, such as memory pointers and file handles created by the
isc_blob_filter_open handler, for example. Then, the next time the filter
function is called, the resource pointers will be available for use.
(IN/OUT)

TABLE7.4 isc_blob_ctl structure field descriptions (continued)

» Programming filter function actions

When an application invokes a Blob API function on a Blob to be filtered, InterBase
passes a corresponding action message to the filter function by way of the action
parameter. There are eight possible actions. The following action macro definitions are
declared in the ibase.h file:

#define isc_blob filter_open O
#define isc_blob filter_get_segment 1
#define isc_blob filter_close 2
#define isc_blob filter create 3
#define isc_blob filter_put_segnment 4
#define isc_blob filter_alloc 5
#define isc_blob filter free 6
#define isc_blob filter_seek 7

API GUIDE 141

142

TABLE7.S

CHAPTER 7 WORKING WITH BLOB DATA

The following table lists the actions, and specifies when the filter function is invoked with
each particular action. Most of the actions are the result of events that occur when an
application invokes a Blob API function.

Action

When filter is invoked with corresponding action

isc_blob_filter_open
isc_blob_filter_get_segment
isc_blob_filter_close
isc_blob_filter_create
isc_blob_filter_put_segment

isc_blob_filter_alloc

isc_blob_filter_free

isc_blob_filter_seek

Invoked when an application calls isc_open_blob2()
Invoked when an application calls isc_get_segment()
Invoked when an application calls isc_close_blob()
Invoked when an application calls isc_create_blob2()
Invoked when an application calls isc_put_segment()

Invoked when InterBase initializes filter processing; not a result of a
particular application action

Invoked when InterBase ends filter processing; not a result of a
particular application action

Reserved for internal filter use; not used by external filters

Action constants

This concludes the overview of writing Blob filters. For detailed information about filters
and how to program filter function actions, as well as a reference to a filter application
example, see the Embedded SQL Guide.

Writing an application that requests filtering

To request filtering of Blob data as it is read from or written to a Blob, follow these steps

in your application:

1. Create a Blob parameter buffer (BPB) specifying the source and target
subtypes, and optionally character sets (for TEXT subtypes).

2. Call either isc_open_blob2() or isc_create_blob2() to open a Blob for read or
write access, respectively. In the call, pass the BPB, whose information
InterBase will use to determine which filter should be called.

» Understanding the Blob parameter buffer

A Blob parameter buffer (BPB) is needed whenever a filter will be used when writing to

or reading from a Blob.

INTERBASE 6

FILTERING BLOB DATA

API GUIDE

The BPB is a char array variable, specifically declared in an application, that contains the
source and target subtypes. When data is read from or written to the Blob associated with
the BPB, InterBase will automatically invoke an appropriate filter, based on the source
and target subtypes specified in the BPB.

If the source and target subtypes are both 1 (TEXT), and the BPB also specifies different
source and target character sets, then when data is read from or written to the Blob
associated with the BPB, InterBase will automatically convert each character from the
source to the target character set.

A Blob parameter buffer can be generated in one of two ways:

1. Indirectly, through API calls to create source and target descriptors and then
generate the BPB from the information in the descriptors.

2. Directly by populating the BPB array with appropriate values.

If you generate a BPB via API calls, you do not need to know the format of the BPB. But
if you wish to directly generate a BPB, then you must know the format.

Both approaches are described in the following sections. The format of the BPB is
documented in the section about directly populating the BPB.

GENERATING A BLOB PARAMETER BUFFER USING API CALLS

To generate a BPB indirectly, use API calls to create source and target Blob descriptors,
and then call isc_blob_gen_bpb() to generate the BPB from the information in the
descriptors. Follow these steps:

1. Declare two Blob descriptors, one for the source, and the other for the target.
For example,

#i ncl ude <i base. h>
| SC Bl ob_DESC from desc, to_desc;

2. Store appropriate information in the Blob descriptors, by calling one of the
functions isc_blob_default_desc(), isc_blob_lookup_desc(), or
isc_blob_set_desc(), or by setting the descriptor fields directly. The following
example looks up the current subtype and character set information for a
Blob column named GUIDEBOOK in a table named TOURISM, and stores it into
the source descriptor, from_desc. It then sets the target descriptor, fo_desc to
the default subtype (TEXT) and character set, so that the source data will be
converted to plain text.

i sc_bl ob_| ookup_desc (
status_vector,
&db_handl e; /* set in previous isc_attach_database() call */
& r_handle, [/* set in previous isc_start_transaction() call */
"TOURI SM', /* table name */

143

CHAPTER 7 WORKING WITH BLOB DATA

"@GUJl DEBOOK", /* colum nane */
& romdesc, [/* Blob descriptor filled in by this function call */

&gl obal) ;
if (status_vector[0] == 1 && status_vector[1])
{
/* process error */
isc_print_status(status_vector);
return(l);
b
i sc_bl ob_default_desc (
&t o_desc, /* Blob descriptor filled in by this function call */
/* NULL table nane; it’'s not needed in this case */
""); /* NULL columm nane; it’s not needed in this case */

For more information about Blob descriptors, see “Blob descriptors” on page 134.

3. Declare a character array which will be used as the BPB. Make sure it is at
least as large as all the information that will be stored in the buffer.

char bpb[20];

4. Declare an unsigned short variable into which InterBase will store the actual
length of the BPB data:

unsi gned short actual _bpb_I ength;

5. Call isc_blob_gen_bpb() to populate the BPB based on the source and target
Blob descriptors passed to isc_blob_gen_bpb(). For example,

i sc_bl ob_gen_bpb(

status_vector,

&t o_desc, /* target Blob descriptor */

& romdesc, [/* source Blob descriptor */

si zeof (bpb), /* length of BPB buffer */

bpb, /* buffer into which the generated BPB will| be stored
*/

&actual _bpb_length /* actual |ength of generated BPB */

)

144 INTERBASE 6

FILTERING BLOB DATA

TABLE7.6

API GUIDE

GENERATING A BLOB PARAMETER BUFFER DIRECTLY
It is possible to generate a BPB directly.
A BPB consists of the following parts:

1. A byte specifying the version of the parameter buffer, always the
compile-time constant, isc_bpb_version1.

2. A contiguous series of one or more clusters of bytes, each describing a single
parameter.

Each cluster consists of the following parts:

1. A one-byte parameter type. There are compile-time constants defined for all
the parameter types (for example, isc_bpb_target_type).

2. A one-byte number specifying the number of bytes that follow in the
remainder of the cluster.

3. A variable number of bytes, whose interpretation depends on the parameter

type.

Note All numbers in the Blob parameter buffer must be represented in a generic format,
with the least significant byte first, and the most significant byte last. Signed numbers
should have the sign in the last byte. The API function isc_vax_integer() can be used to
reverse the byte order of a number. For more information about isc_vax_integer(), see
“isc_vax_integer()” on page 391.

The following table lists the parameter types and their meaning:

Parameter type Description
isc_bpb_target_type Target subtype
isc_bpb_source_type Source subtype
isc_bpb_target_interp Target character set
isc_bpb_source_interp Source character set

Blob parameter buffer parameter types

The BPB must contain isc_bpb_versionl at the beginning, and must contain clusters
specifying the source and target subtypes. Character set clusters are optional. If the source
and target subtypes are both 1 (TEXT), and the BPB also specifies different source and
target character sets, then when data is read from or written to the Blob associated with
the BPB, InterBase will automatically convert each character from the source to the target
character set.

145

146

CHAPTER 7 WORKING WITH BLOB DATA

The following is an example of directly creating a BPB for a filter whose source subtype
is —4 and target subtype is 1 (TEXT):
char bpb[] = {

i sc_bpb_versionl,

i sc_bpb_target_type,

1, [* # bytes that follow which specify target subtype */
1, /* target subtype (TEXT) */

i sc_bpb_source_type,

1, /* # bytes that follow which specify source subtype */
-4, /* source subtype*/

h

Of course, if you do not know the source and target subtypes until run time, you can
assign those values in the appropriate BPB locations at run time.

» Requesting filter usage

You request usage of a filter when opening or creating a Blob for read or write access. In
the call to isc_open_blob2() or isc_create_blob2(), pass the BPB, whose information
InterBase will use to determine which filter should be called.

The following example illustrates creating and opening a Blob for write access. For
further information about writing data to a Blob and updating a Blob column of a table
row to refer to the new Blob, see “Writing data to a Blob” on page 126.

Opening a Blob for read access requires additional steps to select the appropriate Blob
to be opened. For more information, see “Reading data from a Blob” on page 121.

i sc_bl ob_handl e bl ob_handl e; /* declare at begi nning */
| SC_QUAD blob_id; /* declare at beginning */

i sc_create_bl ob2(
st atus_vector,

&db_handl e,
& r _handl e,
&bl ob_handl e, /* to be filled in by this function */
&bl ob i d, /* to be filled in by this function */
actual _bpb_length, /* length of BPB data */
&bpb /* Blob paraneter buffer */
)
if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector);
return(l);

INTERBASE 6

FILTERING BLOB DATA

API GUIDE 147

CHAPTER 7 WORKING WITH BLOB DATA

148 INTERBASE 6

CHAPTER

Working with Array Data

This chapter describes arrays of datatypes and how to work with them using API
functions. It shows how to set up an array descriptor specifying the array or array subset

to be retrieved or written to, and how to use the two API functions that control access to
arrays.

API GUIDE 149

CHAPTER 8 WORKING WITH ARRAY DATA

The following table summarizes the API functions for working with arrays. First the
functions that can be used to populate an array descriptor are listed, followed by the
functions for accessing array data.

Function Purpose

isc_array_lookup_desc() Looks up and stores into an array descriptor the datatype, length,
scale, and dimensions for all elements in the specified array column
of the specified table

isc_array_lookup_bounds() Performs the same actions as the function,

isc_array_lookup_desc(), but also looks up and stores the upper
and lower bounds of each dimension

isc_array_set_desc() Initializes an array descriptor from parameters passed to it
isc_array_get_slice() Retrieves data from an array
isc_array_put_slice() Writes data to an array

TABLES.1 APl array access functions

Introduction to arrays

InterBase supports arrays of most datatypes. Using an array enables multiple data items
to be stored in a single column. InterBase can treat an array as a single unit, or as a series
of separate units, called slices. Using an array is appropriate when:

® The data items naturally form a set of the same datatype.

® The entire set of data items in a single database column must be represented and
controlled as a unit, as opposed to storing each item in a separate column.

® Each item must also be identified and accessed individually.

The data items in an array are called array elements. An array can contain elements of
any InterBase datatype except Blob, and cannot be an array of arrays. All of the elements
of a particular array are of the same datatype.

InterBase supports multi-dimensional arrays, arrays with 1 to 16 dimensions.
Multi-dimensional arrays are stored in row-major order.

Array dimensions have a specific range of upper and lower boundaries, called subscripts.
The array subscripts are defined when an array column is created. For information about
creating an array, see the Language Reference.

150 INTERBASE 6

INTRODUCTION TO ARRAYS

API GUIDE

Array database storage

InterBase does not store array data directly in the array field of a table record. Instead, it
stores an array ID there. The array ID is a unique numeric value that references the array
data, which is stored elsewhere in the database.

Array descriptors

An array descriptor describes an array or array subset to be retrieved or written to the
ISC_ARRAY_DESC structure. ISC_ARRAY_DESC is defined in the InterBase ibase.h header file as
follows:

typedef struct {
unsi gned char array_desc_dtype; /* Datatype */
char array_desc_scale; /* Scale for nuneric datatypes */
unsi gned short array_desc_| engt h;
/* Length in bytes of each array el ement */
char array_desc_field_nane [32]; /* Colum nanme */
char array_desc_relation_nane [32]; /* Table name */
short array_desc_di mensions; /* Nunber of array di nensions */
short array_desc_fI ags;
/* Specifies whether array is to be accessed in row najor or
col um-maj or order */
| SC_ARRAY_BOUND array_desc_bounds [16];
/* Lower and upper bounds for each di nension */
} | SC_ARRAY_DESC;

ISC_ARRAY_BOUND is defined as:

typedef struct {
short array_bound_l ower; /* |ower bound */
short array_bound_upper; /* upper bound */
} | SC_ARRAY_BOUND;

An array descriptor contains 16 ISC_ARRAY_BOUND structures, one for each possible
dimension. An array with 7z dimensions has upper and lower bounds set for the first z
ISC_ARRAY_BOUND structures. The number of actual array dimensions is specified in the
array_desc_dimensions field of the array descriptor.

When you retrieve data from an array, you supply an array descriptor defining the array
slice (entire array or subset of contiguous array elements) to be retrieved. Similarly, when
you write data to an array, you supply an array descriptor defining the array slice to be
written to.

151

CHAPTER 8 WORKING WITH ARRAY DATA

Populating an array descriptor

There are four ways to populate an array descriptor:

® Call isc_array_lookup_desc(), which looks up (in the system metadata tables) and stores
in an array descriptor the datatype, length, scale, and dimensions for a specified array
column in a specified table. This function also stores the table and column name in the
descriptor, and initializes its array_desc_flags field to indicate that the array is to be
accessed in row-major order. For example,

i sc_array_| ookup_desc(
stat us_vector,
&db_handl e, /* Set by isc_attach_database() */
&t r _handl e, /* Set by isc_start_transaction() */
"PRQJ_DEPT_BUDGET",/* table nane */
"QUART_HEAD CNT",/* array colum nane */
&desc /* descriptor to be filled in */

)

® Call isc_array_lookup_bounds(), which looks and functions the same as a call to
isc_array_lookup_desc(), except that the function isc_array_lookup_bounds() also
looks up and stores into the array descriptor the upper and lower bounds of each
dimension.

® Call isc_array_set_desc(), which initializes the descriptor from parameters, rather than
by accessing the database metadata. For example,

short dtype = SQ._TEXT;
short len = §;
short nundins = 2;
i sc_array_set_desc(
st atus_vector,

"TABLE1", /* table name */

" CHAR_ARRAY", [* array colum nanme */

&dt ype, [* datatype of elenments */

&l en, /* length of each el ement */
&nundi ns, /* nunber of array dinmensions */
&desc /* descriptor to be filled in */
)

® Setting the descriptor fields directly. An example of setting the array_desc_dimensions
field of the descriptor, desc, is:

desc. array_desc_di nensi ons = 2;

152 INTERBASE 6

ACCESSING ARRAY DATA

For complete syntax and information about isc_array_lookup_bounds(),
isc_array_lookup_desc(), and isc_array_set_desc(), see Chapter 13, “API Function
Reference.”

Accessing array data

InterBase supports the following operations on array data:
® Reading from an array or array slice.
® Writing to an array:
- Including a new array in a row to be inserted into a table.
- Replacing the array referenced by an array column of a row with a new array.

- Updating the array referenced by an array column of a row by modifying the array data
or a slice of the data.

® Deleting an array.

Dynamic SQL (DSQL) API functions and the XSQLDA data structure are needed to execute
SELECT, INSERT, and UPDATE statements required to select, insert, or update relevant array
data. The following sections include descriptions of the DSQL programming methods
required to execute the sample statements provided.

For more information about DSQL and the XsQLDA, see Chapter 6, “Working with
Dynamic SQL.”

Note The following array operations are not supported:
® Referencing array dimensions dynamically in DSQL.
® Setting individual array elements to NULL.
® Using aggregate functions, such as MINQ and MAX(), with arrays.
® Referencing arrays in the GROUP BY clause of a SELECT.

® Creating views that select from array slices.

API GUIDE 153

CHAPTER 8 WORKING WITH ARRAY DATA

Reading data from an array

There are seven steps required for reading data from an array or slice of an array:

1. Create a SELECT statement that specifies selection of the array column (and
any other columns desired) in the rows of interest.

2. Prepare an output XSQLDA structure to hold the column data for each row that
is fetched.

3. Prepare the SELECT statement for execution.
4. Execute the statement.

Populate an array descriptor with information describing the array or array
slice to be retrieved.

6. Fetch the selected rows one by one.

7. Read and process the array data from each row.

b Creating the SELECT statement

Elicit a statement string from the user or create one that consists of the SQL query that
will select rows containing the array data of interest. In your query, specify the array
column name and the names of any other columns containing data you are interested in.
For example, the following creates an SQL query statement string that selects an array
column named QUART_HEAD_CNT and another column named DEPT_NO from the table,
PROJ_DEPT_BUDGET:

char *sel str =
"SELECT DEPT_NO, QUART_HEAD CNT FROM PRQJ_DEPT_BUDCGET \
VWHERE year = 1994 AND PRQJ_ID = 'VBASE ";

» Preparing the output XSQLDA

Most queries return one or more rows of data, referred to as a select-list. An output
XSQLDA must be created to store the column data for each row that is fetched. For an array
column, the column data is an internal array identifier (array ID) that is needed to access
the actual data. To prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA. For example, the following declaration
creates an XSQLDA called out_sqlda:

XSQ.DA *out _sql da;

154 INTERBASE 6

ACCESSING ARRAY DATA

API GUIDE

2. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
XSQLDA must contain one XSQIVAR substructure for each column to be
fetched. The following statement allocates storage for an output XSQLDA
(out_sqlda) with two XSQLVAR substructures:

out _sqlda = (XSQLDA *) mal | oc(XSQLDA_LENGTH(2)) ;

3. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sgin field
of the XSQLDA to indicate the number of XSQILVAR substructures allocated:

out _sql da->versi on = SQLDA VERSI ON1;
out _sql da->sqln = 2;

» Preparing the SELECT statement for execution

After an XSQLDA is created for holding the column data for each selected row, the query
statement string can be prepared for execution. Follow these steps:

1. Declare and initialize an SQL statement handle, then allocate it with
isc_dsql_allocate_statement():

isc_stm _handle stnt; /* Declare a statenent handle. */
stmt = NULL; /* Set handle to NULL before all ocation. */
i sc_dsql _all ocate_statenment (status_vector, &db_handle, &stnt);

2. Ready the statement string for execution with isc_dsql_prepare(). This
checks the string (sel_str) for syntax errors, parses it into a format that can
be efficiently executed, and sets the statement handle (stmt#) to refer to this
parsed format. The statement handle is used in a later call to
isc_dsql_execute().

If isc_dsql_prepare() is passed a pointer to the output XSQLDA, as in the following
example, it will fill in most fields of the XSQLDA and all its XSQLVAR substructures with
information such as the datatype, length, and name of the corresponding columns in
the statement.

A sample call to isc_dsql_prepare() is:

i sc_dsql _prepare(
status_vector,

&trans, /* Set by previous isc_start_transaction() call. */
&stnt, /* Statenent handle set by this function call. */
0, /* Specifies statenent string is null-term nated. */
sel _str, [/* Statement string. */
1, /* XSQ.DA version nunber. */
out _sql da /* XSQ.DA for storing colum data. */
)
155

156

CHAPTER 8 WORKING WITH ARRAY DATA

. Set up an XSQLVAR structure for each column. Setting up an XSQLVAR structure

involves the following steps:
For columns whose types are known at compile time:

- Specify the column’s datatype (if it was not set by isc_dsql_prepare(), as previously
described).

- Point the sqldata field of the XSQIVAR to an appropriate local variable.
For columns whose types are not known until run time:
- Coerce the item’s datatype (optional); for example, from SQL_VARYING to SQL_TEXT.

- Dynamically allocate local storage for the data pointed to by the sgldata field of the
XSOLVAR.

For both:

Provide a NULL value indicator for the parameter.

- Data retrieval for array (and Blob) columns is different from other types of columns, so

the XSQIVAR fields must be set differently. For non-array (and non-Blob) columns,
isc_dsql_prepare() sets each XSQLVAR sqltype field to the appropriate field type, and the
data retrieved when a select list row’s data is fetched is placed into the sqldata space
allocated for the column. For array columns, the type is set to SQL_ARRAY (or
SQL_ARRAY + 1 if the array column is allowed to be NULL). InterBase stores the internal
array identifier (array ID), not the array data, in the sqldata space when a row’s data is
fetched, so you must point sqldata to an area the size of an array ID. To see how to
retrieve the actual array or array slice data once you have an array ID, see “Reading
and processing the array data” on page 158.

- The following code example illustrates the assignments for array and non-array

columns whose types are known at compile time. For more information about DSQL
and the xSQLDA, and working with columns whose types are unknown until run time,
see Chapter 6, “Working with Dynamic SQL.”

| SC_ QUAD array_id = OL;

char dept_no[6] ;

short flag0, flagl;

out _sql da- >sqgl var[0] . sql dat a (char *) dept_no;
out _sql da- >sql var[0] . sql type SQL_TEXT + 1;

out _sql da->sqgl var[0] .sqglind = &fl agO0;

out _sql da->sql var[1].sqgldata = (char *) &array_id;
out _sql da->sql var[1] .sqgl type = SQ_ARRAY + 1;

out _sql da->sqgl var[1] .sqglind = &fl agl;

INTERBASE 6

ACCESSING ARRAY DATA

API GUIDE

) Executing the statement
Once the query statement string is prepared, it can be executed:

i sc_dsql _execut e(
status_vector,

&trans, /* set by previous isc_start_transaction() call */
&stnt, /* set above by isc_dsql _prepare() */

1, /* XSQ.DA version nunber */

NULL /* NULL since stnt doesn’'t have input values */

)

This statement creates a select-list, the rows returned by execution of the
statement.

» Populating the array descriptor

To prepare an array descriptor that describes the array or array slice to be read, follow
these steps:

1. Create the array descriptor:
| SC_ARRAY_DESC desc;

2. Fill in the descriptor with information regarding the array column from
which data will be read. Do this either by calling one of the functions
isc_array_lookup_bounds(), isc_array_lookup_desc(), or
isc_array_set_desc(), or by directly filling in the descriptor. For information
on the contents of array descriptors, and the usage of these functions, see
“Array descriptors” on page 151.

Ensure the descriptor boundaries are set to those of the slice to be read.

If you want to retrieve all the array data (that is, not just a smaller slice), set the
boundaries to the full boundaries as initially declared for the array column. This is
guaranteed to be the case if you fill in the descriptor by calling
isc_array_lookup_bounds(), as in:

| SC_ARRAY_DESC desc;

i sc_array_| ookup_bounds(
status_vector,
&db_handl e,
&t rans,
"PRQJ_DEPT_BUDGET",/* table name */
"QUART_HEAD CNT",/* array colum nane */
&desc) ;

157

158

CHAPTER 8 WORKING WITH ARRAY DATA

Suppose the array column, QUART_HEAD_CNT, is a one-dimensional array consisting of
four elements, and it was declared to have a lower subscript bound of 1 and an upper
bound of 4 when it was created. Then after the above call to
isc_array_lookup_bounds(), the array descriptor fields for the boundaries contain the
following information:

desc. array_desc_bounds[0] . array_bound_| ower ==
desc. array_desc_bounds[0] . array_bound_upper ==

If you want to read just a slice of the array, then modify the upper and/or lower
bounds appropriately. For example, if you just want to read the first two elements of
the array, then modify the upper bound to the value 2, as in:

desc. array_desc_bounds[0] . array_bound_upper = 2

» Fetching selected rows

A looping construct is used to fetch (into the output XSQZDA) the column data for a single
row at a time from the select-list and to process each row before the next row is fetched.
Each execution of isc_dsql_fetch() fetches the column data for the next row into the
corresponding XSQLVAR structures of out_sqlda. For the array column, the array ID, not
the actual array data, is fetched.

| SC_STATUS fetch_stat;
| ong SQLCODE;

while ((fetch_stat = j
i sc_dsql _fetch(status_vector, &stnt, 1, out_sqglda))

== 0)
{
/* Read and process the array data */
}
if (fetch_stat != 100L)
{
/* isc_dsql _fetch returns 100 if no nore rows remain to be
retrieved */
SQLCODE = isc_sql code(status_vector);
isc_print_sqlerror(SQCODE, status_vector);
return(l);
}

» Reading and processing the array data

To read and process the array or array slice data:

INTERBASE 6

ACCESSING ARRAY DATA

1. Create a buffer for holding the array data to be read. Make it large enough to
hold all the elements in the slice to be read (which could be the entire array).
For example, the following declares an array buffer large enough to hold 4
long elements:

I ong hent[4];

2. Declare a short variable for specifying the size of the array buffer:

short |en;

3. Set the variable to the buffer length:

I en = sizeof (hent);

4. Read the array or array slice data into the buffer by calling
isc_array_get_slice(). Process the data read. In the following example, the
array is read into the hcnt array buffer, and “processing” consists of printing
the data:

isc_array_get_slice(
status_vector,
&db_handl e,/* set by isc_attach_database()*/

&t rans, /* set by isc_start_transaction() */
&array_id, /* array ID put into out_sqglda by isc_dsql _fetch()*/
&desc, /* array descriptor specifying slice to be read */

(void *) hent,/* buffer into which data will be read */
(long *) & en/* length of buffer */
)
if (status_vector[0] == 1 && status_vector[1])
{
isc_print_status(status_vector);
return(l);
}
/* Make dept_no a null-term nated string */
dept _no[out _sql da->sqlvar[0].sqgllen] ="'\0";
printf("Departnent #: %\n\n", dept_no);
printf("\tCurrent head counts: %d %d %d %d\n",
hcnt[0], hent[1], hent[2], hent[3]);

API GUIDE 159

CHAPTER 8 WORKING WITH ARRAY DATA

Writing data to an array

isc_array_put_slice() is called to write data to an array or array slice. Use it to:
® Include a new array in a row to be inserted into a table.
® Replace the current contents of an array column of a row with a new array.

® Update the array referenced by an array column of a row by modifying the array data or
a slice of the data.

The entry in an array column of a row does not actually contain array data. Rather, it has
an array ID referring to the data, which is stored elsewhere. So, to set or modify an array
column, you need to set or change the array ID stored in it. If an array column contains
an array ID, and you modify the column to refer to a different array (or to contain NULL),
the array referenced by the previously stored array ID will be deleted during the next
garbage collection.

The following steps are required to insert, replace, or update array data:

1. Prepare an array descriptor with information describing the array (or slice)
to be written to.

2. Prepare an array buffer with the data to be written.

3. Prepare an appropriate DSQL statement. This will be an INSERT statement if
you are inserting a new row into a table, or an UPDATE statement for
modifying an existing row.

4. Callisc_array_put_slice() to create a new array (possibly copying an existing
one), and to write the data from the array buffer into the array or array slice.

5. Associate the new array with an array column of the table row being modified
or inserted by executing the UPDATE or INSERT statement. This sets the array
column to contain the array ID of the new array.

» Preparing the array descriptor

To prepare an array descriptor that specifies the array or array slice to be written to,
follow these steps:

1. Create the array descriptor:
| SC_ARRAY_DESC desc;

160 INTERBASE 6

ACCESSING ARRAY DATA

API GUIDE

2. Fill in the descriptor with information regarding the array column to which
data will be written. Do this either by calling one of the functions
isc_array_lookup_bounds(), isc_array_lookup_desc(), or
isc_array_set_desc(Q), or by directly filling in the descriptor. For information
on the contents of array descriptors, and the usage of these functions, see
“Array descriptors” on page 151.

Ensure the descriptor boundaries are set to those of the slice to be written to.

If you want to write to the entire array rather than to just a slice, set the boundaries
to the full boundaries as initially declared for the array column. This is guaranteed to
be the case if you fill in the descriptor by calling isc_array_lookup_bounds(), as in:

i sc_array_| ookup_bounds(

status_vect or,

db_handl e,

&t rans,

"PRQJ_DEPT_BUDGET",/* table name */

"QUART_HEAD CNT",/* array colum nane */

&desc) ;
Suppose the array column, QUART_HEAD_CNT, is a one-dimensional array consisting of
four elements, and it was declared to have a lower subscript bound of 1 and an upper
bound of 4 when it was created. Then after a call to isc_array_lookup_bounds(), the
array descriptor fields for the boundaries contain the following information:

desc. array_desc_bounds[0] . array_bound_| ower ==

desc. array_desc_bounds[0] . array_bound_upper ==
If you just want to write to (or modify) a slice of the array, then change the upper and
lower bound appropriately. For example, if you just want to write to the first two
elements of the array, then modify the upper bound to the value 2, as in:

desc. array_desc_bounds[0] . array_bound_upper ==

b Preparing the array buffer with data

Create an array buffer to hold the data to be written to the array. Make it large enough to
hold all the elements in the slice to be written (which could be the entire array). For
example, the following declares an array buffer large enough to hold 4 long elements:

| ong hent[4];

1. Create a variable specifying the length of the array buffer:

short |en;
| en = sizeof (hent);

2. Fill the array buffer with the data to be written.

161

CHAPTER 8 WORKING WITH ARRAY DATA

If you are creating a new array, then fill the buffer with data. For
example,

hcnt [0]
hcnt [1]
hcnt [2]
hcnt [3]

I
oo 9k

To modify existing array data instead of creating a new one, then perform all the steps
listed in “Reading data from an array” on page 154 to read the existing array data
into the array buffer. Modify the data in the buffer.

» Preparing the UPDATE or INSERT statement
To prepare an UPDATE or INSERT statement for execution, follow these steps:

1. Elicit an UPDATE or INSERT statement string from the user or create one for
inserting a new row or updating the row(s) containing the array column(s)
of interest. For example, the following statement is for updating the array
column named QUART_HEAD_CNT in the specified row of the table,
PROJ_DEPT_BUDGET. The department number and quarterly headcounts are
assumed to be supplied at run time:

char *upd_str =
" UPDATE PRQJ_DEPT_BUDGET SET QUART_HEAD CNT = ? WHERE \
YEAR = 1994 AND PRQJ_I D = "MKTPR' AND DEPT_NO = ?";

As an example of an INSERT statement, the following is for inserting a new row into
the PROJ_DEPT_BUDGET table, with column data supplied at run time:

char *upd_str =
"1 NSERT | NTO PROJ_DEPT_BUDGET (YEAR, PRQOJ_ID, DEPT_NO, \
QUART_HEAD CNT) VALUES (?, ?, ?, ?2)";

The remaining steps refer only to UPDATE statements, but the actions apply to INSERT
statements as well.

2. Declare a variable to hold the input XSQLDA needed to supply parameter
values to the UPDATE statement at run time. For example, the following
declaration creates an XSQLDA called in_sqlda:

XSQ.DA *in_sql da;

162 INTERBASE 6

ACCESSING ARRAY DATA

API GUIDE

3. Allocate memory for the input XSQLDA using the XSQLDA_LENGTH macro. The

XSQLDA must contain one XSQLVAR substructure for each parameter to be
passed to the UPDATE statement. The following statement allocates storage for
an input XSQLDA (in_sqlda) with two XSQLVAR substructures:

in_sglda = (XSQLDA *)nal | oc(XSQLDA _LENGTH(2));

. Set the Version field of the XSQLDA to SQLDA_VERSION1, and set the Sqln field

to indicate the number of XSQLVAR structures allocated:

i n_sql da->version = SQ.DA_VERSI| ON1;
i n_sqgl da->sqln = 2;

. Set up the XSQLVAR structure in the XSQLDA for each parameter to be passed.

Setting up an XSQLVAR structure involves the following steps:
- Specify the item’s datatype.

- For parameters whose types are known at compile time, point the Ssqldata field of
the XSQLVAR to an appropriate local variable that will contain the data to be passed.

- For parameters whose types are not known until run time, allocate local storage for
the data pointed to by the Sqldata field of the XSQLVAR.

- Specify the number of bytes of data.

Data storage for array (and Blob) columns is different from other types of columns,
so the XSQLVAR fields must be set differently. For non-array (and non-Blob) columns,
input parameter data comes from the space pointed to by Sqldata. For array columns,
set the type to SQL_ARRAY (or SQL_ARRAY + 1 if the array column is allowed to be NULL).
The application must store space for the internal array identifier, not the array data,
in the Sqldata space. See the following sections to create or modify an array, store its
array ID in the Sqldata space, and then associate the actual array data with the
column.

The following code example illustrates the assignments for one TEXT column and one
array column, where the column types are known at compile time.

#defi ne NUMLEN 4

char dept _no[NUMLEN + 1];

| SC_QUAD array_id;

i n_sqgl da->sql var[0]. sql data &array_id;

i n_sqgl da->sql var[0]. sql type SQL_ARRAY + 1;

i n_sqgl da->sqlvar[0].sqllen = sizeof (I SC_QUAD);
i n_sqgl da->sql var[1].sqgl data dept _no;

i n_sqgl da->sql var[1].sql type SQL_TEXT;

i n_sqgl da->sqlvar[1].sqllen = 4;

163

164

CHAPTER 8 WORKING WITH ARRAY DATA

The dept_no variable should be assigned a value at run time (unless the value is
known at compile time). The array_id variable should be set to refer to the newly
created array, as described in the following sections.

For examples of handling data whose types are not known until run time, see Chapter
6, “Working with Dynamic SQL.”

» Calling isc_array_put_slice()
The following steps are required to store the data into an array or array slice:
1. Declare an array ID:

| SC QUAD array_id; /* Declare an array ID. */

2. Initialize the array ID. If you are creating a new array to be inserted into a
new row, or to replace an existing array, then simply initialize the array ID to
NULL:

array_id = NULL;/* Set handle to NULL before using it */

If you are modifying an existing array, then follow the steps listed under “Reading
Data from an Array” to read the existing array ID into array_id.

3. Callisc_array_put_slice(). In your call you pass the array ID (either the array
ID of an existing array, or NULL for a new array) in the array_id variable. You
also pass the buffer of data to be written and a descriptor specifying the array
slice to which the data belongs.

When isc_array_put_slice() is called with an array ID of an existing array, it creates
a new array with the same characteristics as the specified array, and copies the
existing array data to the new array. Then isc_array_put_slice() writes the data from
the array buffer to the new array (or slice of the array), per the bounds specified in
the array descriptor, and returns in the same array_id variable the array ID of the new
array.

When isc_array_put_slice() is called with a NULL array ID, it creates a new empty
array with characteristics as declared for the array column whose name and table
name are specified in the array descriptor passed to isc_array_put_slice(). It then
writes the data from the array buffer to the new array (or slice of the array), and
returns in the array_id variable the array ID of the new array.

Note that in both cases, a new array is created, and its array ID is returned in the
array_id variable. The array is temporary until an UPDATE or INSERT statement is
executed to associate the array with a particular column of a particular row.

INTERBASE 6

ACCESSING ARRAY DATA

You can make a single call to isc_array_put_slice() to write all the data to the array.
Or, you may call isc_array_put_sliceQ) multiple times to store data into various slices
of the array. In this case, each call to isc_array_put_slice() after the first call should
pass the array ID of the temporary array. When isc_array_put_sliceQ) is called with
the array ID of a temporary array, it copies the specified data to the specified slice of
the temporary array, but does not create a new array.

The following is a sample call to isc_array_put_slice():

isc_array_put_slice(
status_vector,

&db_handl e,

&t rans,

&array_id,/* array ID (NULL, or existing array’'s array |ID) */
&desc, /* array descriptor describing where to wite data */
hent, /* array buffer containing data to wite to array */
&l en /* length of array buffer */

)

This call creates a new array, copies the data in hcnt to the new array (or slice of the
array), assigns the array an array ID, and sets array_id to point to the array ID.

IMPORTANT array_id should be the variable pointed to by the Sqldata field of the UPDATE (or INSERT)
statement input parameter that specifies the array column to be updated. Thus, when
the INSERT or UPDATE statement is executed, this new array’s array ID will be used to set
or update the array column to refer to the new array.

b Associating the new array with the array column

Execute the UPDATE statement to associate the new array with the array column in the
row selected by the statement:
i sc_dsql _execut e_i nredi at e(

st at us_vect or,

&db_handl e,

&t r ans,

0, /* indicates string to execute is null-terminated */
upd_str, /* UPDATE statenent string to be executed */

1, [* XSQ.DA version nunber */

in_sqglda /* XSQ.DA supplying paraneters to UPDATE statenent */
)

This sets the array column in the row specified in the UPDATE statement to contain the
array ID of the new array. The array ID comes from the array_id variable pointed to by
the in_sqlda parameter corresponding to the array column.

API GUIDE 165

CHAPTER 8 WORKING WITH ARRAY DATA

If the array column in the specified row contains the array ID of a different array before
the UPDATE statement is executed, then the column is modified to contain the new array
ID, and the array referenced by the previously stored array ID will be deleted during the
next garbage collection.

Deleting an array

There are three ways to delete an array:

1. Delete the row containing the array. You can use DSQL to execute a DELETE
statement.

2. Replace the array with a different one, as described above. If an array column
contains an array ID, and you modify the column to refer to a different array,
the array referenced by the previously stored array ID will be deleted during
the next garbage collection.

3. Reset to NULL the column referring to the array. For example, use DSQL to
execute a statement like the following, where LANGUAGE_REQ is an array
column:

"UPDATE JOB SET LANGUAGE_REQ = NULL \
VWHERE JOB_CCODE = "SA12" AND JOB_GRADE = 10"

The array referenced by the previously stored array ID will be deleted during the next
garbage collection.

166 INTERBASE 6

CHAPTER

Working with Conversions

InterBase uses a proprietary format for internal storage of TIMESTAMP, TIME, and DATE
data, but provides the following API calls for translating to and from this format:

® jsc_decode_sql_date() converts the InterBase internal date format to the C date structure
® jsc_encode_sql_date() converts the C date structure to the internal InterBase date format
® jsc_decode_sql_time() converts the InterBase internal time format to the C time structure
® jsc_encode_sql_time() converts the C time structure to the internal InterBase time format

® jsc_decode_timestamp() converts the InterBase internal timestamp format to the C
timestamp structure; this call was formerly isc_decode_date()

® jsc_encode_timestamp() converts the C timestamp structure to the internal InterBase
timestamp format; this call was formerly isc_encode_date()

These calls merely translate datetime (DATE, TIME, and TIMESTAMP) data between formats;
they do not read or write datetime data directly. Datetime data is read from and written
to the database using standard DSQL syntax processed with the isc_dsql family of API
calls.

API GUIDE 167

CHAPTER 9 WORKING WITH CONVERSIONS

Note In InterBase 6, the DATE datatype holds only date information in dialect 3 and is
not permitted in dialect 1 to avoid ambiguity. When an older database is migrated to
version 6 dialect 1, all columns that previously had a DATE datatype are automatically
converted to TIMESTAMP. To store migrated data in a DATE column in dialect 3, you must
create a new column in dialect 3 that has the DATE datatype, and then move the data into
it. InterBase does not allow you to use ALTER COLUMN to change a TIMESTAMP datatype to
a DATE datatype because of potential data loss.

InterBase also requires that numbers entered in database and transaction parameter
buffers be in a generic format, with the least significant byte last. Signed numbers require
the sign to be in the last byte. Systems that represent numbers with the most significant
byte last must use the isc_vax_integer() API function to reverse the byte order of numbers
entered in database parameter buffers (DPBs) and transaction parameter buffers (TPBs).
When numeric information is returned by information calls on these systems,
isc_vax_integer() must be used once again to reverse the byte ordering.

For more information about using DSQL to read and write data, see Chapter 6, “Working
with Dynamic SQL.”

Converting date and times from InterBase to C format

168

The following steps show how to convert the TIMESTAMP datatype from InterBase to C
format; the same steps could be used to convert the TIME and DATE datatypes by
substituting the appropriate API call above. Starting with InterBase 6, the TIMESTAMP
datatype replaces the older DATE datatype used in earlier versions.

To select a timestamp from a table, and convert it to a form usable in a C language
program, follow these steps:

1. Create a host variable for a C time structure. Most C and C++ development
systems provide a type, struct tm, for the C time structure in the time.h header
file. The following C code includes that header file, and declares a variable
of type struct tm:

#i ncl ude <tine. h>
#i ncl ude <i base. h>

struct tmentry_timne;

Note To create host-language time structures in languages other than C and C++, see the
host-language reference manual.

INTERBASE 6

CONVERTING DATES FROM C TO INTERBASE FORMAT

2. Create a host variable of type ISC_TIMESTAMP. For example, the host-variable

declaration might look like this:
| SC_TI MESTAMP entry_dat e;

The I1SC_TIMESTAMP structure is declared in ibase.h, but the programmer must declare
actual host-language variables of type ISC_TIMESTAMP.

Retrieve a date from a table into the ISC_TIMESTAMP variable.

Convert the ISC_TIMESTAMP variable into a numeric C format with the
InterBase function, isc_sql_decode_timestamp(). This function is also
declared in ibase.h. isc_sql_decode_timestamp() requires two parameters, the
address of the ISC_TIMESTAMP host-language variable, and the address of the
struct tm host-language variable. For example, the following code fragment
coverts entry_date to entry_time:

i sc_decode_tinmestanp(&entry_date, &entry_tine);

Converting dates from C to InterBase format

The following steps show how to convert the TIMESTAMP datatype from C to InterBase
format; the same steps could be used to convert the TIME and DATE datatypes by
substituting the appropriate API call listed on page 167. To insert a timestamp in a table,
it must be converted from the host-language format into InterBase format, and then
stored. To perform the conversion and insertion in a C program, follow these steps:

API GUIDE

1.

Create a host variable for a C time structure. Most C and C++ development

systems provide a type, struct tm, for the C time structure in the time.h header
file. The following C code includes that header file, and declares a variable

of type struct tm:

#i ncl ude <tine. h>;

struct tmentry_tine;

To create host-language time structures in languages other than C and C++, see the
host-language reference manual.

Create a host variable of type ISC_TIMESTAMP, for use by InterBase. For
example, the host-variable declaration might look like this:

| SC_TI MESTAMP nyti ne;

The ISC_TIMESTAMP structure is declared in ibase.h, but the programmer must declare
actual host-language variables of type ISC_TIMESTAMP.

169

CHAPTER 9 WORKING WITH CONVERSIONS

3. Put date information into entry_time.

4. Use the InterBase isc_encode_sql_date() function to convert the information
in entry_time into InterBase internal format and store that formatted
information in the ISC_TIMESTAMP host variable (entry_date in the example).
This function is also declared in ibase.h.

isc_encode_sql_timestamp() requires two parameters, the address of the C time
structure, and the address of the ISC_TIMESTAMP host-language variable. For example,
the following code converts entry_time to entry_date:

i sc_encode_tinmestanp(&entry_tinme, &entry_date);

5. Insert the date into a table.

Reversing byte order of numbers with isc_vax_integer()

170

InterBase expects that numbers entered in database and transaction parameter buffers be
in a generic format, with the least significant byte last. Signed numbers require the sign
to be in the last byte. Systems that represent numbers with the most significant byte last
must use the isc_vax_integer() API function to reverse the byte order of numbers entered
in DPBs and TPBs. When numeric information is returned by information calls on these
systems, isc_vax_integer() must be used once again to reverse the byte ordering. The
syntax for isc_vax_integer() is:

| SC_ LONG i sc_vax_integer(char *buffer, short |ength);
buffer is a char pointer to the integer to convert, and length is the size, in bytes, of the

integer. Valid lengths are 1 (short), 2 (int), and 4(long). The following code reverses the
4-byte value in a result buffer.

#i ncl ude <i base. h>

for(p = res_buffer; *p !'= isc_info_end;)

{

p++;

length = isc_vax_integer(p, 2);
}

INTERBASE 6

CHAPTER

10

Handling Error Conditions

This chapter describes how to set up an error status vector where InterBase can store
run-time error information, and how to use API functions to handle and report errors.

The following table summarizes the API functions for handling errors:

Function

Purpose

isc_interprete()
isc_print_sgqlerror()
isc_print_status()
isc_sqlcode()

isc_sql_interprete()

Capture InterBase error messages to a buffer
Display an SQL error message

Display InterBase error messages

Set the value of SQLCODE

Capture an SQL error message to a buffer

TABLE10.1 Error-handling functions

API GUIDE

171

CHAPTER 10 HANDLING ERROR CONDITIONS

Setting up an error status vector

Most API functions return status information that indicates success or failure. The
information returned is derived from the second array element of the error status vector,
where InterBase reports error conditions. The error status vector is declared in
applications as an array of 20 long integers, using the following syntax:

#i ncl ude <i base. h>
| SC_STATUS st atus_vector[20];

ISC_STATUS is a #define in ibase.h provided for programing convenience and platform
independence.

Using information in the status vector

Whether or not an error occurs during the execution of an API call, InterBase loads the
error status vector with status information. Information consists of one or more InterBase
error codes, and error information that can be used to build an error message honed to
a specific error.

An application can check the status vector after the execution of most API calls to
determine their success or failure. If an error condition is reported, applications can:

® Display InterBase error messages using isc_print_status().

® Set an SQLCODE value corresponding to an InterBase error using isc_sglcode(), and
display the SQZCODE and an SQL error message using isc_print_sqlerror().

® Build individual InterBase error messages in a buffer with isc_interprete(). The buffer
must be provided by the application. Using a buffer enables an application to perform
additional message processing (for example, storing messages in an error log file). This
ability is especially useful on windowing systems that do not permit direct screen writes.

® Capture an SQL error message in a buffer with isc_sql_interprete(). The buffer must be
provided by the application.

® Parse for and react to specific InterBase error codes in the status vector.

172 INTERBASE 6

USING INFORMATION IN THE STATUS VECTOR

API GUIDE

Checking the status vector for errors

API functions that return information in the status vector are declared in ibase.h as
returning an ISC_STATUS pointer. For example, the function prototype for
isc_prepare_transaction() is declared as:

| SC_STATUS | SC_EXPORT i sc_prepare_transacti on(
| SC_STATUS | SC FAR *,
isc_tr_handle | SC_ FAR *);

To check the status vector for error conditions after the execution of a function, examine
the first element of the status vector to see if it is set to 1, and if so, examine the second
element to see if it is not 0. A nonzero value in the second element indicates an error
condition. The following C code fragment illustrates how to check the status vector for
an error condition:

#i ncl ude <i base. h>
| SC_STATUS st at us_vector[20];

[* Assume an APl call returning status information is called here. */
if (status_vector[0] == 1 && status_vector[1] > 0)

{

/* Handl e error condition here. */

}

If an error condition is detected, you can use API functions in an error-handling routine
to display error messages, capture the error messages in a buffer, or parse the status
vector for particular error codes.

Display or capture of error messages is only one part of an error-handling routine.
Usually, these routines also roll back transactions, and sometimes they can retry failed
operations.

Displaying InterBase error messages

Use isc_print_status() to display InterBase error messages on the screen. This function
parses the status vector to build all available error messages, then uses the C printf()
function to write the messages to the display. isc_print_status() requires one parameter,
a pointer to a status vector containing error information. For example, the following code
fragment calls isc_print_status() and rolls back a transaction on error:

#i ncl ude <i base. h>

173

CHAPTER 10 HANDLING ERROR CONDITIONS

| SC_STATUS st atus_vector[20];
isc_tr_handl e trans;

trans = OL;

/* Assune a transaction, trans, is started here. */
/* Assume an APl call returning status information is called here. */

if (status_vector[0] == 1 && status_vector[1l] > 0)
{

isc_print_status(status_vector);

i sc_roll back_transaction(status_vector, &trans);
}

IMPORTANT ~ On windowing systems that do not permit direct screen writes with printf0), use
isc_interprete() to capture error messages to a buffer.

Tip For applications that use the dynamic SQL (DSQL) API functions, errors should be
displayed using SQL conventions. Use isc_sglcode() and isc_print_sqlerror() instead of
isc_print_status().

Capturing InterBase error messages

Use isc_interprete() to build an error message from information in the status vector and
store it in an application-defined buffer where it can be further manipulated. Capturing
messages in a buffer is useful when applications:

® Run under windowing systems that do not permit direct screen writes.

Require more control over message display than is possible with isc_print_status().

Store a record of all error messages in a log file.

® Manipulate or format error messages for display or pass them to a windowing system’s
display routines.

isc_interprete() retrieves and formats a single error message each time it is called. When
an error occurs, the status vector usually contains more than one error message. To
retrieve all relevant error messages, you must make repeated calls to isc_interprete().

174 INTERBASE 6

USING INFORMATION IN THE STATUS VECTOR

IMPORTANT

API GUIDE

Given both the location of a buffer, and the address of the status vector, isc_interprete()
builds an error message from the information in the status vector, puts the formatted
string in the buffer where an application can manipulate it, and advances the status
vector pointer to the start of the next cluster of error information. isc_interprete()
requires two parameters, the address of an application buffer to hold formatted message
output, and a pointer to the status vector array.

Never pass the status vector array directly to isc_interprete(). Each time it is called,
isc_interprete() advances the pointer to the status vector to the next element containing
new message information. Before calling isc_interprete(), be sure to set the pointer to
the starting address of the status vector.

The following code demonstrates an error-handling routine that makes repeated calls to
isc_interprete() to retrieve error messages from the status vector in a buffer, one at a time,
so they can be written to a log file:

#i ncl ude <i base. h>

| SC_STATUS st atus_vector[20];

isc_tr_handl e trans;

| ong *pvector;

char msg[512];

FILE *efile; /* Code fragnent assumes pointer to an open file. */
trans = OL;

[* Error-handling routine starts here. */

/* Always set pvector to point to start of status_vector. */

pvector = status_vector;

/* Retrieve first message. */

isc_interprete(mnmsg, &pvector);

/* Wite first nessage frombuffer to log file. */

fprintf(efile, "%\n", nsgQ);

msg[0] = "'-'; /* Append | eadi ng hyphen to secondary messages. */

/* Look for nore messages and handle in a | oop. */

while(isc_interprete(nmsg + 1, &pvector)) /* Mre? */
fprintf(efile, "%\n", meg); /* If so, wite it to the log. */

fclose(efile); /* Al done, so close the log file. */

isc_rol |l back(status_vector, &rans);

return(l);

Note This code fragment assumes that the log file is properly declared and opened
elsewhere in the application before control is passed to this error handler.

175

176

Tip

CHAPTER 10 HANDLING ERROR CONDITIONS

For applications that use the dynamic SQL (DSQL) API functions, errors should be
buffered using SQL conventions. Use isc_sqlcode() and isc_sql_interprete() instead of
isc_interprete().

Setting an SQLCODE value on error

For DSQL applications, error conditions should be cast in terms of SQL conventions. SQL
applications typically report errors through a variable, SQLCODE, declared by an
application. To translate an InterBase error code into SQLCODE format, use isc_sqicode().
This function searches the error status vector for an InterBase error code that can be
translated into an SQL error code, and performs the translation. Once SQLCODE is set, the
other API functions for handling SQL errors, isc_print_sqlerror(), and
isc_sql_interprete(), can be called.

isc_sqlcode() requires one parameter, a pointer to the status vector. It returns a long
value, containing an SQL error code. The following code illustrates the use of this
function:

#i ncl ude <i base. h>;

|l ong SQLCODE; /* Declare the SQ. error code variable. */
| SC_STATUS st atus_vector[20];

if (status_vector[0] == 1 && status_vector[1l] > 0)
{
SQLCODE = isc_sql code(status_vector);
isc_print_sqlerror(SQCODE, status_vector)

}

If successful, isc_sqlcode() returns the first valid SQL error code decoded from the status
vector. If no valid SQL error code is found, isc_sqlcode() returns —999.

Displaying SQL error messages

API applications that provide a DSQL interface to end users should use
isc_print_sqlerror() to display SQL error codes and corresponding error messages on the
screen. When passed a variable, conventionally named SQZCODE, containing an SQL error
code, and a pointer to the status vector, isc_print_sqlerror() parses the status vector to
build an SQL error message, then uses the C printf0) function to write the SQLCODE value
and message to the display. For example, the following code fragment calls
isc_print_sqlerror() and rolls back a transaction on error:

INTERBASE 6

USING INFORMATION IN THE STATUS VECTOR

#i ncl ude <i base. h>

| SC_STATUS st atus_vector[20];
isc_tr_handl e trans;

| ong SQLCODE;

trans = OL;

/* Assune a transaction, trans, is started here. */
/* Assume an APl call returning status information is called here. */

if (status_vector[0] == 1 && status_vector[1l] > 0)
{

SQLCCDE = isc_sql code(status_vector);

isc_print_sqlerror(SQCODE, status_vector);

i sc_roll back_transaction(status_vector, &trans);
}

IMPORTANT ~ On windowing systems that do not permit direct screen writes with printf(), use
isc_sql_interprete() to capture error messages to a buffer.

Capturing SQL error messages

Use isc_sql_interprete() to build an SQL error message based on a specific SQL error code
and store it in a buffer defined by an application. Capturing messages in a buffer is useful
when applications:

® Run under windowing systems that do not permit direct screen writes.
® Store a record of all error messages in a log file.

® Manipulate or format error messages for display or pass them to a windowing system’s
display routines.

isc_sql_interprete() requires three parameters: a valid SQL error code, usually passed as
a variable named SQLCODE, a buffer where the SQL message should be stored, and the
size of the buffer. The following code illustrates how this function might be called to build
a message string and store it in a log file:

#i ncl ude <i base. h>

| SC_STATUS st atus_vector[20];
isc_tr_handl e trans;

| ong SQLCODE;

char msg[512];

API GUIDE 177

178

CHAPTER 10 HANDLING ERROR CONDITIONS

FILE *efile; /* Code fragnent assumes pointer to an open file. */
trans = OL;

/* Assune a transaction, trans, is started here. */
[* Assume an APl call returning status information is called here. */

[* Error-handling routine starts here. */
if (status_vector[0] == 1 && status_vector[1l] > 0)
{
SQLCCODE = isc_sql code(status_vector);
i sc_sqgl _interprete(SQCODE, nsg, 512);
fprintf(efile, "%\n", nsgQ);
i sc_roll back_transaction(status_vector, &trans);
return(l);

}

Note This code fragment assumes that the log file is properly declared and opened
elsewhere in the application before control is passed to this error handler.

Parsing the status vector

InterBase stores error information in the status vector in clusters of two or three longs.
The first cluster in the status vector always indicates the primary cause of the error.
Subsequent clusters may contain supporting information about the error, for example,
strings or numbers for display in an associated error message. The actual number of
clusters used to report supporting information varies from error to error.

In many cases, additional errors may be reported in the status vector. Additional errors

are reported immediately following the first error and its supporting information, if any.
The first cluster for each additional error message identifies the error. Subsequent clusters
may contain supporting information about the error.

» How the status vector is parsed

The InterBase error-handling routines, isc_print_statusQ) and isc_interprete(), use
routines which automatically parse error message information in the status vector
without requiring you to know about its structure. If you plan to write your own routines
to read and react to the contents of the status vector, you need to know how to interpret it.

The key to parsing the status vector is to decipher the meaning of the first long in each
cluster, beginning with the first cluster in the vector.

INTERBASE 6

USING INFORMATION IN THE STATUS VECTOR

» Meaning of the first long in a cluster

The first long in any cluster is a numeric descriptor. By examining the numeric descriptor
for any cluster, you can always determine the:

® Total number of longs in the cluster.
® Kind of information reported in the remainder of the cluster.

® Starting location of the next cluster in the status vector.

Interpretation of 1st long in a cluster

Longs in
Value cluster Meaning

0 — End of error information in the status vector

1 2 Second long is an InterBase error code

2 2 Second long is the address of string used as a replaceable parameter in a generic
InterBase error message

3 3 Second long is the length, in bytes, of a variable-length string provided by the
operating system (most often this string is a file name); third long is the address
of the string

4 2 Second long is a number used as a replaceable parameter in a generic InterBase
error message

5 2 Second long is the address of an error message string requiring no further

processing before display

6 2 Second long is a VAX/VMS error code
7 2 Second long is a UNIX error code
8 2 Second long is an Apollo Domain error code

TABLE10.2 Interpretation of status vector clusters

API GUIDE 179

CHAPTER 10 HANDLING ERROR CONDITIONS

Interpretation of 1st long in a cluster

Longsin
Value cluster Meaning
9 2 Second long is an MS-DOS or 0S/2 error code.
10 2 Second long is an HP MPE/XL error code.
1 2 Second long is an HP MPE/XL IPC error code.
12 2 Second long is a NeXT/Mach error code.

Note: As InterBase is adapted to run on other hardware and software platforms, additional numeric
descriptors for specific platform and operating system error codes will be added to the end of this list.

TABLE10.2 Interpretation of status vector clusters (continued)

By including ibase.h at the start of your source code, you can use a series of #defines to
substitute for hard-coded numeric descriptors in the status vector parsing routines you
write. The advantages of using these #defines over hard-coding the descriptors are:

® Your code will be easier to read.

® Code maintenance will be easier should the numbering scheme for numeric descriptors
change in a future release of InterBase.

The following table lists the #define equivalents of each numeric descriptor:

Value #define Value #define

0 isc_arg_end 8 isc_arg_domain

1 isc_arg_gds 9 isc_arg_dos

2 isc_arg_string 10 isc_arg_mpex!

3 isc_arg_cstring 1 isc_arg_mpexl_ipc
4 isc_arg_number 15 isc_arg_next_mach
5 isc_arg_interpreted 16 isc_arg_netware

6 isc_arg_vms 17 isc_arg_win32

7 isc_arg_unix

TABLE10.3 #defines for status vector numeric descriptors

180 INTERBASE 6

USING INFORMATION IN THE STATUS VECTOR

API GUIDE

For an example of code that uses these defines, see “Status vector parsing example”
on page 183.

» Meaning of the second long in a cluster

The second long in a cluster is always one of five items:
An InterBase error code (1st long = 1).

A string address (1st long = 2 or 5).

A string length (1st long = 3).

A numeric value (1st long = 4).

An operating system error code (1st long > 5).

INTERBASE ERROR CODES

InterBase error codes have two uses. First, they are used internally by InterBase functions
to build and display descriptive error message strings. For example, isc_interprete() calls
another function which uses the InterBase error code to retrieve a base error message
from which it builds an error message string you can display or store in a log file.

Secondly, when you write your own error-handling routine, you can examine the status
vector directly, trapping for and reacting to specific InterBase error codes.

When the second long of a cluster is an InterBase error code, then subsequent clusters
may contain additional parameters for the error message string associated with the error
code. For example, a generic InterBase error message may contain a replaceable string
parameter for the name of the table where an error occurs, or it may contain a
replaceable numeric parameter for the code of the trigger which trapped the error
condition.

If you write your own parsing routines, you may need to examine and use these
additional clusters of error information.

STRING ADDRESSES

String addresses point to error message text. When the first long in the cluster is 2
(isc_arg_string), the address pointed to often contains the name of the database, table,
or column affected by the error. In these cases, InterBase functions which build error
message strings replace a parameter in a generic InterBase error message with the string
pointed to by this address. Other times the address points to an error message hard-coded
in a database trigger.

181

182

CHAPTER 10 HANDLING ERROR CONDITIONS

When the first long in the cluster is 5 (isc_arg_interpreted), the address points to a text
message which requires no further processing before retrieval. Sometimes this message
may be hard-coded in InterBase itself, and other times it may be a system-level error
message.

In either of these cases, InterBase functions such as isc_print_status() and
isc_interprete() can format and display the resulting error message for you.

STRING LENGTH INDICATORS

When the first long in a cluster is 3 (isc_arg_cstring), the numeric value in the second
long indicates the length, in bytes, of a message string whose address is stored in the third
long in the cluster. This string requires translation into a standard, null-terminated C
string before display.

NUMERIC VALUES

A numeric value has different meaning depending upon the value of the numeric
descriptor in the first long of a cluster. If the first long is 4 (isc_arg_number), a numeric
value is used by InterBase functions to replace numeric parameters in generic InterBase
error messages during message building. For instance, when an integrity error occurs,
InterBase stores the code of the trigger which detects the problem as a numeric value in
the status vector. When an InterBase function like isc_interprete() builds the error
message string for this error, it inserts the numeric value from the status vector into the
generic InterBase integrity error message string to make it more specific.

OPERATING SYSTEM ERROR CODES

If the first long in a cluster is greater than 5, the numeric value in the second long is an
error code specific to a particular platform or operating system. InterBase functions
should not be used to retrieve and display the specific platform or operating system error
message. Consult your operating system manual for information on how to handle such
errors.

» Meaning of the third long in a cluster

If the first long in a cluster is 3 (isc_arg_cstring), the cluster’s total length is three longs.
The third long always contains the address of a message string requiring translation into
a standard, null-terminated C string before display. Such a string is often a file or path
name. InterBase functions like isc_interprete() automatically handle this translation for
you.

INTERBASE 6

USING INFORMATION IN THE STATUS VECTOR

b Status vector parsing example

The following C example illustrates a simple, brute force parsing of the status vector. The
code forces an error condition. The error-handling block parses the status vector array
cluster by cluster, printing the contents of each cluster and interpreting it for you.

#i ncl ude <i base. h>

| SC_STATUS st atus_vector[20];

mai n()

{
int done, v; /* end of args?, index into vector */
int ¢, extra; /* cluster count, 3 long cluster flag */
static char *neaning[] = {"End of error infornation",

"n InterBase error code"," string address"," string |ength",
" nureric value"," system code"};
/* Assume database is connected and transaction started here. */
if (status_vector[0] == 1 && status_vector[1l] > 0)

error_exit();

}

void error_exit(void)
{
done = v = 0;
c = 1;
while (!done)
{
extra = 0;
printf("duster %:\n", c);
printf("Status vector %d: %d: ", v, status_vector[vVv]);
if (status_vector[v] != gds_arg_end)

printf("Next long is a");
switch (status_vector[v++])
{
case gds_arg_end:
printf("%\n", meaning[0]);
done = 1;
br eak;
case gds_arg_gds:
printf("%\n", neaning[1]);
br eak;
case gds_arg_string:
case gds_arg_interpreted:

API GUIDE 183

184

CHAPTER 10 HANDLING ERROR CONDITIONS

printf("%\n", meaning[2]);
br eak;

case gds_arg_nunber:
printf("%\n", meaning[4]);
br eak;

case gds_arg_cstring:
printf("%\n", meaning[3]);

status_vector[v]);

, meaning[2]);

extra = 1;
br eak;
defaul t:
printf("%\n", meaning[5]);
br eak;
}
if (!done)
{
printf("Status vector %d: %d", v,
v++; /* advance vector pointer */
c++;/* advance cluster count */
if (extra)
{
printf(": Next long is a %\n"
printf("Status vector: %l: %d\n\n", v,
status_vector[V]);
V++;
}
el se
printf("\n\n");
}

}

i sc_rol |l back_transaction(status_vector,
i sc_det ach_dat abase(&db1);
return(l);

}
Here is a sample of the output from this program:
Cluster 1:

& rans);

Status vector 0: 1: Next long is an InterBase error code

=

St at us vect or 335544342

Cluster 2:

Status vector 2: 4: Next long is a numeric val ue

Status vector 3: 1
Cluster 3:

INTERBASE 6

USING INFORMATION IN THE STATUS VECTOR

API GUIDE

Status vector 4: 1: Next long is an InterBase error code
Status vector 5: 335544382

Cl uster 4:

Status vector 6: 2: Next long is a string address

Status vector 156740

Cl uster 5:

Status vector 8: 0: End of error information

N

This output indicates that two InterBase errors occurred. The first error code is
335544342. The error printing routines, isc_print_status() and isc_interprete(), use the
InterBase error code to retrieve a corresponding base error message. The base error
message contains placeholders for replaceable parameters. For error code 335544342, the
base error message string is:

"action cancelled by trigger (%d) to preserve data integrity"”

This error message uses a replaceable numeric parameter, %/d.

In this case, the numeric value to use for replacement, 1, is stored in the second long of
the second cluster. When the error printing routine inserts the parameter into the
message, it displays the message:

action cancelled by trigger (1) to preserve data integrity

The second error code is 335544382. The base message retrieved for this error code is:

" g
In this case, the entire message to be displayed consists of a replaceable string. The
second long of the fourth cluster contains the address of the replacement string, 156740.
This is an error message defined in the trigger that caused the error. When the error
printing routine inserts the message from the trigger into the base message, it displays
the resulting message:

- Department name is m ssing.

Note This sample program is only meant to illustrate the structure of the status vector
and its contents. While the error-handling routine in this program might serve as a limited
debugging tool for a program under development, it does not provide useful information
for end users. Ordinarily, error-handling blocks in applications should interpret errors,
display explanatory error messages, and take corrective action, if appropriate.

For example, if the error-handling routine in the sample program had called
isc_print_status() to display the error messages associated with these codes, the
following messages would have been displayed:

action cancelled by trigger (1) to preserve data integrity
- Department name is m ssing.

185

CHAPTER 10 HANDLING ERROR CONDITIONS

186 INTERBASE 6

TABLET1.1

API GUIDE

CHAPTER

11

Working with Events

This chapter describes how to work with events, a message passed from a trigger or stored
procedure to an application to announce the occurrence of a specified condition or
action, usually a database change such as an insertion, modification, or deletion of a
record. It explains how to set up event buffers, and use the following API functions to
make synchronous and asynchronous event calls. In the following table, functions are
listed in the order they typically appear in an application:

Function Purpose

isc_event_block() Allocate event parameter buffers

isc_wait_for_event() ~ Wait for a synchronous event to be posted

isc_que_events() Set up an asynchronous event and return to application processing
isc_event_counts() Determine the change in values of event counters in the event parameter
buffer

isc_cancel_events() Cancel interest in an event

APl event functions

For asynchronous events, this chapter also describes how to create an asynchronous trap
(AST), a function that responds to posted events.

187

CHAPTER 11 WORKING WITH EVENTS

Understanding the event mechanism

The InterBase event mechanism consists of four parts:

® The InterBase engine that maintains an event queue and notifies applications when an
event occurs.

® Event parameter buffers set up by an application where it can receive notification of
events.

® An application that registers interest in one or more specified, named events and either
waits for notification to occur (synchronous event), or passes a pointer to an AST function
that handles notifications so that application processing can continue in the meantime
(asynchronous event).

® A trigger or stored procedure that notifies the engine that a specific, named event has
occurred. Notification is called posting.

The InterBase event mechanism enables applications to respond to actions and database
changes made by other, concurrently running applications without the need for those
applications to communicate directly with one another, and without incurring the
expense of CPU time required for periodic polling to determine if an event has occurred.

For information about creating triggers and stored procedures that post events, see the
Data Definition Guide.

Event parameter buffers

If an application is to receive notification about events, it must set up two identically-sized
event parameter buffers (EPBs) using isc_event_block(). The first buffer, event_buffer, is
used to hold the count of event occurrences before the application registers an interest
in the event. The second buffer, result_buffer, is subsequently filled in with an updated
count of event occurrences when an event of interest to the application occurs. A second
API function, isc_event_counts(), determines the differences between item counts in
these buffers to determine which event or events occurred.

For more information about setting up and using EPBs, see “Creating EPBs with
isc_event_block()” on page 190.

188 INTERBASE 6

UNDERSTANDING THE EVENT MECHANISM

API GUIDE

Synchronous event notification

When an application depends on the occurrence of a specific event for processing, it
should use synchronous event notification to suspend its own execution until the event
occurs. For example, an automated stock trading application that buys or sells stock
when specific price changes occur might start execution, set up EPBs, register interest in
a set of stocks, then suspend its own execution until those price changes occur.

The isc_wait_for_event() function provides synchronous event handling for an
application. For more information about synchronous event handling, see “Waiting on
events with isc_wait_for_event()” on page 191.

Asynchronous event notification

When an application needs to react to possible database events, but also needs

to continue processing whether or not those events occur, it should set up an
asynchronous trap (AST) function, and use asynchronous event notification to register
interest in events while continuing its own processing. For example, a stock brokering
application requires constant access to a database of stocks to allow a broker to buy and
sell stock, but, at the same time, may want to use events to alert the broker to particularly
significant or volatile stock price changes.

The isc_que_events() function and the AST function provide asynchronous event
handling for an application. For more information about asynchronous event handling,
see “Continuous processing with isc_que_events()” on page 192.

Transaction control of events

Events occur under transaction control, and can therefore be committed or rolled back.
Interested applications do not receive notification of an event until the transaction from
which the event is posted is committed. If a posted event is rolled back, notification does
not occur.

A transaction can post the same event more than once before committing, but regardless
of how many times an event is posted, it is regarded as a single event occurrence for
purposes of event notification.

189

CHAPTER 11 WORKING WITH EVENTS

Creating EPBs with isc_event_block()

190

Tip

Before an application can register interest in an event, it must establish and populate two
event parameter buffers (EPBs), one for holding the initial occurrence count values for
each event of interest, and another for holding the changed occurrence count values.
These buffers are passed as parameters to several API event functions.

In C, each EPB is declared as a char pointer, as follows:

char *event _buffer, *result_buffer;
Once the buffers are declared, isc_event_block() is called to allocate space for them, and
to populate them with starting values.

isc_event_block() also requires at least two additional parameters: the number of events
in which an application is registering interest, and, for each event, a string naming the
event. A single call to isc_event_block() can pass up to 15 event name strings. Event
names must match the names of events posted by stored procedures or triggers.

isc_event_block() allocates the same amount of space for each EPB, enough to handle
each named event. It returns a single value, indicating the size, in bytes, of each buffer.
The syntax for isc_event_block() is:

| SC_LONG i sc_event _bl ock(

char **event _buffer,

char **result_buffer,

unsi gned short id_count,
)

For example, the following code sets up EPBs for three events:

#i ncl ude <i base. h>;

char *event _buffer, *result_buffer;
| ong bl engt h;

bl ength = isc_event bl ock(&event _buffer, & esult_buffer, 3, "BORL",
"I NTEL", "SUN');

This code assumes that there are triggers or stored procedures defined for the database
that post events named “BORL”, “INTEL”, and “SUN”.

Applications that need to respond to more than 15 events can make multiple calls to
isc_event_block(), specifying different EPBs and event lists for each call.

For the complete syntax of isc_event_block(), see “isc_event_block()” on page 347.

INTERBASE 6

WAITING ON EVENTS WITH isc_wait_for_event()

Waiting on events with jsc_wait_for_event()

IMPORTANT

API GUIDE

After setting up EPBs and specifying events of interest with isc_event_block(), an
application can use isc_wait_for_event() to register interest in those events and pause its
execution until one of the events occurs.

isc_wait_for_event() cannot be used in Microsoft Windows applications or under any
other operating system that does not permit processes to pause. Applications on these
platforms must use asynchronous event handling.

The syntax for isc_wait_for_event() is:

| SC_STATUS isc_wait_for_event(
| SC_STATUS *status_vector,
i sc_db_handl e *db_handl e,
short | ength,
char *event buffer,
char *result_buffer);

For example, the following code sets up EPBs for three events, then calls
isc_wait_for_event() to suspend its execution until one of the events occurs:

#i ncl ude <i base. h>;

char *event _buffer, *result_buffer;
| ong bl engt h;

| SC_STATUS st atus_vector[20];

i sc_db_handl e dbi;

/* Assune database dbl is attached here and a transaction started. */
bl ength = isc_event bl ock(&event_buffer, & esult_buffer, 3, "BORL",
"I NTEL", "SUN');
isc_wait_for_event(status_vector, &dbl, (short)bl ength,

event _buffer, result_buffer);
/* Application processing i s suspended here until an event occurs. */

Once isc_wait_for_event() is called, application processing stops until one of the
requested events is posted. When the event occurs, application processing resumes at the
next executable statement following the call to isc_wait_for_event(). If an application is
waiting on more than one event, it must use isc_event_counts(to determine which event
was posted.

191

CHAPTER 11 WORKING WITH EVENTS

Note A single call to isc_wait_for_event() can wait on a maximum of 15 events.
Applications that need to wait on more than 15 events must wait on one set of 15, then
make another call to isc_wait_for_event() to wait on additional events.

For the complete syntax of isc_wait_for_event(), see “isc_wait_for_event()” on
page 394.

Continuous processing with isc_gue_events()

192

isc_que_events() is called to request asynchronous notification of events listed in an
event buffer passed as an argument. Upon completion of the call, but before any events
are posted, control is returned to the calling application so that it can continue
processing.

When a requested event is posted, InterBase calls an asynchronous trap (AST) function,
also passed as a parameter to isc_qgue_events(), to handle the posting. The AST is a
function or subroutine in the calling application, the sole purpose of which is to process
the event posting for the application.

The syntax for isc_que_eventsQ) is:

| SC_STATUS i sc_que_event s(
| SC_STATUS *status_vector,
i sc_db_handl e *db_handl e,
| SC_ LONG *event i d,
short | ength,
char *event buffer,
i sc_cal |l back event function,
voi d *event _function_arg);

event_id is a long pointer that is used as a handle in subsequent calls to
isc_cancel_events() to terminate event notification. It need not be initialized when
passed. The length parameter is the size of event_buffer, which contains the current
count of events to be waited upon. event_function is a pointer to the AST function that
InterBase should call when an event of interest is posted. It is up to the AST function to
notify the application that it has been called, perhaps by setting a global flag of some
kind. event_function_arg is a pointer to the first parameter to pass to the AST.

For a complete example of a call to isc_que_events() and a call to an AST, see “A
complete isc_que_events() example” on page 193.

INTERBASE 6

CONTINUOUS PROCESSING WITH isc_que_events()

API GUIDE

Creating an AST
The event function, event_function, should be written to take three arguments:

1. The event_function_arg specified in the call to isc_que_events(). This is
usually a pointer to the event parameter buffer that should be filled in with
updated event counts.

2. The length of the following events_list buffer.

3. A pointer to the events_list buffer, a temporary event parameter buffer just
like that passed to isc_qgue_events(), except for having updated event counts.

A result buffer is not automatically updated by the event occurrence; it is up to the
event_function to copy the temporary events_list buffer to the more permanent buffer
that the application utilizes.

event_function also needs to let the application know that it has been called, for
example, by setting a global flag.

A sample event_function appears in the following example:

i sc_cal | back event _function
(char *result, short length, char *updated)

{
/* Set the global event flag. */
event _flag++
/* Copy the tenporary updated buffer to the result buffer. */
while (length--)
*resul t ++ = *updat ed++;
return(0);
s

A complete jsc_que_events() example

The following program fragment illustrates calling isc_que_events() to wait
asynchronously for event occurrences. Within a loop, it performs other processing, and
checks the event flag (presumably set by the specified event function) to determine when
an event has been posted. If one has, the program resets the event flag, calls
isc_event_counts() to determine which events have been posted since the last call to
isc_que_events(), and calls isc_que_events() to initiate another asynchronous wait.

#i ncl ude <i base. h>

#define nunber of stocks 3;

#define MAX LOOP 10

char *event _names[] = {"DEC', "HP", "SUN'};

193

194

char *event buffer, *result_buffer;
| SC_STATUS st atus_vector[20];
short | ength;
| SC_ LONG event _i d;
int i, counter;
int event_flag = O;
ength = (short)isc_event _bl ock(
&event buffer,
& esult _buffer,
nunber _of stocks,
"DEC', "HP", "SUN');
i sc_que_event s(
status_vector,

CHAPTER 11 WORKING WITH EVENTS

&dat abase_handl e, /* Set in previous isc_attach_database(). */

&event i d,

I ength, /* Returned fromisc_event_bl ock().

event buffer,
(i sc_call back)event _functi on,
result_buffer);

if (status_vector[0] == 1 && status_vector[1])
{

isc_print_status(status_vector);

return(l);
H

counter = O;
whil e (counter < MAX_LOOP)

*/

/* Display error message. */

{
count er ++;
if ('event_flag)
{
/* Do whatever other processing you want. */
}
el se

{ event_flag = 0;
i sc_event _count s(
status_vector,
| engt h,
event buffer,
result_buffer);

if (status_vector[0] == 1 && status_vector[1])

{

INTERBASE 6

CONTINUOUS PROCESSING WITH isc_que_events()

API GUIDE

isc_print_status(status_vector); /*Display error nmessage. */
return(l);

b

for (i=0; i<number_of_stocks; i++)
if (status_vector[i])

{
/* The event has been posted. Do whatever is appropriate,
such as initiating a buy or sell order.
Note: event_nanes[i] tells the nane of the event
corresponding to status_vector[i]. */
}

i sc_que_event s(
status_vector,
&dat abase_ handl e,
&event i d,
| engt h,
event buffer,
(i sc_cal |l back)event _function,
result_buffer);
if (status_vector[0] == 1 && status_vector[1])

isc_print_status(status_vector); /*Display error nessage. */
return(l);
}
} /* End of else. */
} /* End of while. */
/* Let I|nterBase know you no |onger want to wait asynchronously. */
i sc_cancel _event s(
st atus_vector,
&dat abase_handl e,

&event _id);

if (status_vector[0] == 1 && status_vector[1])

{
isc_print_status(status_vector); /* Display error nmessage. */
return(l);

}

195

CHAPTER 11 WORKING WITH EVENTS

Determining which events occurred with isc_event_counts()

196

When an application registers interest in multiple events and receives notification that an
event occurred, the application must use isc_event_counts() to determine which event or
events occurred. isc_event_counts() subtracts values in the event_buffer array from the
values in the result_buffer array to determine the number of times each event has
occurred since an application registered interest in a set of events. event_buffer and
result_buffer are variables declared within an application, and allocated and initialized
by isc_event_block().

The difference of each element is returned in the error status array that is passed to
isc_event_counts(). To determine which events occurred, an application must examine
each element of the array for nonzero values. A nonzero count indicates the number of
times an event is posted between the time isc_event_block() is called and the first time
an event is posted after isc_wait_for_event() or isc_que_events() are called. Where
multiple applications are accessing the same database, therefore, a particular event count
may be 1 or more, and more than one event count element may be nonzero.

Note When first setting up an AST to trap events with isc_que_events(), InterBase
initializes all count values in the status vector to 1, rather than 0. To clear the values, call
isc_event_counis() to reset the values.

In addition to determining which event occurred, isc_event_counts() reinitializes the
event_buffer array in anticipation of another call to isc_wait_for_event() or
isc_que_events(). Values in event_buffer are set to the same values as corresponding
values in result_buffer.

The complete syntax for isc_event_counts() is:

voi d isc_event _count s(
| SC_STATUS st atus_vector,
short buffer_| ength,
char *event buffer,
char *result_buffer);

For example, the following code declares interest in three events, waits on them, then
uses isc_event_counts() to determine which events occurred:

#i ncl ude <i base. h>;

char *event buffer, *result_buffer;
| ong bl engt h;

| SC_STATUS st atus_vector[20];

i sc_db_handl e dbl;

| ong count _array[3];

int i;

INTERBASE 6

CANCELING INTEREST IN ASYNCHRONOUS EVENTS WITH isc_cancel_events()

/* Assume database dbl is attached here and a transaction started. */
bl ength = isc_event bl ock(&event _buffer, & esult_buffer, 3, "BORL",
"1 NTEL", "SUN');
isc_wait_for_event(status_vector, &dbl, (short)bl ength,
event _buffer, result_buffer);
/* Application processing is suspended here until an event occurs. */
i sc_event_counts(status_vector, (short)blength, event_buffer,
result_buffer);
for (i =0; i <3; i++)
{

if (status_vector[i])

{

/* Process the event here. */

}

For more information about isc_event_counts(), see “isc_event_counts()” on page 349
of Chapter 13, “API Function Reference.”

Canceling interest in asynchronous events with isc_cancel_events()

An application that requested asynchronous event notification with isc_gue_events() can
subsequently cancel the notification request at any time with isc_cancel_events() using
the following syntax:

| SC_STATUS i sc_cancel _event s(
| SC_STATUS *st at us_vect or,
i sc_db_handl e *db_handl e,
| SC_LONG *event _id);

event_id is an event handle set in a previous call to isc_que_events(). For example, the
following code cancels interest in the event or events identified by event_id:

i ncl ude <i base. h>;

/* For exanple code leading up to this call, see the code exanple
in "Continuous Processing with isc_event_que(), earlier in this
chapter. */

i sc_cancel _events(status_vector, &lb_handl e, &event _id);

API GUIDE 197

‘- -
'y W e
w w
W

CHAPTER

12

Working with Services

This chapter covers the InterBase Services API functions. This facility allows you to write
applications that monitor and control InterBase servers and databases. Tasks that you can
perform with this API include:

® Performing database maintenance tasks such as database backup and restore, shutdown
and restart, garbage collection, and scanning for invalid data structures

® Creating, modifying, and removing user entries in the security database
® Administering software activation certificates

® Requesting information about the configuration of databases and the server

API GUIDE 199

CHAPTER 12 WORKING WITH SERVICES

Overview of the Services API

This section describes general concepts of the Services API, usage of the services
parameter buffer, and methods for attaching and detaching from a Services Manager.

General information

The Services API is a group of functions in the InterBase client library (gds32.dll on
Windows, libgds.a on UNIX/Linux). The features that you can exercise with the
Services API include those of the command-line tools ghak, gfix, gsec, gstat, and iblicense
(see the Operations Guide for information on these tools). The Services API can also
perform other functions that are not provided by these tools.

All InterBase servers include a facility called the Services Manager. The Services API
enables client applications to submit requests to the Services Manager of an InterBase
server, and the Services Manager performs the tasks. The server can be local (on the same
host as your application), or remote (on another host on the network). The Services API
offers the same features when connected to either local or remote InterBase servers.

The Services API family consists of the following four functions:
® jsc_service_attach() initiates a connection to a specified Services Manager
® jsc_service_start() invokes a service task
® jsc_service_query() requests information or task results from the Services Manager
® jsc_service_detach() disconnects from the Services Manager

For full details on the syntax and options of the Services API functions, see the reference
entries for “isc_service_attach()” on page 376, “isc_service_detach()” on page 377,
“isc_service_query()” on page 378, and “isc_service_start()” on page 380.

Using services parameter buffers

You can specify options to tailor your attachment to a Services Manager by creating a
services parameter buffer (SPB), populating it with desired properties, and passing the
address of the SPB to isc_service_attach() or other functions in the Services API group.
For example, the SPB can contain a user name and password for attaching to a remote
server.

200 INTERBASE 6

OVERVIEW OF THE SERVICES API

EXAMPLE 12.1

API GUIDE

An SPB is a char array variable that you declare in your application. It contains the
following elements:

1. A byte that introduces the version of the SPB format, always the compile-time
constant, isc_spb_version.

2. A byte that specifies the version number. InterBase supplies a macro
isc_spb_current_version, that is defined as the recommended SPB version
for each given release of the InterBase product.

3. A contiguous series of one or more clusters of bytes follow, each describing
a single argument.

Each cluster consists of the following parts:

1. A byte that introduces the parameter type for each cluster. There are
compile-time constants defined for all the parameter types (for example,
isc_spb_user_name).

2. A byte that specifies the number of bytes that follow in the remainder of the
cluster argument; this is not needed for certain parameter types that have
fixed-length arguments.

3. A variable number of bytes that contain data, depending on the parameter
type.

Subsequent clusters follow immediately in the SPB array.

For example, the following C/C++ code fills an SPB buffer with the SPB version and a
cluster for the user name.

Filling a services parameter buffer in C/C++

char spb_buffer[128], *spb = spb_buffer;
*spb++ = isc_spb_version;

*spb++ = isc_spb_current _version;

*spb++ = isc_spb_user_nane;

*spb++ strlen("SYSDBA");
strcpy(spb, "SYSDBA');
spb += strlen("SYSDBA");

~NOoO b~ WNPRE

Line 1 declares an array of 128 bytes, and a pointer initialized to the first entry in the
array.

Line 2 assigns the item specifier for the SPB version to the first element of the array. Every
SPB must have this item at the start of the array. Since this SPB item is always one byte
long, it doesn’t take a length specifier.

Line 3 assigns the value for the SPB version item.

201

IMPORTANT

202

TABLE12.1

CHAPTER 12 WORKING WITH SERVICES

Line 4 assigns the cluster identifier for the user name string to the next element of the
array.

Line 5 provides the length of the following string. In this example, the string is “SYSDBA”,
and the length is 6.

Line 6 copies the string “SYSDBA” into the array starting at the current element.

Line 7 increments the SPB pointer past the string “SYSDBA”, positioning it for additional
clusters.

All numbers in the database parameter buffer must be represented in a generic format,
with the least significant byte first. Signed numbers should have the sign in the last byte.
The API function isc_vax_integer() can be used to reverse the byte order of a number.

For more information, see “isc_vax_integer()” on page 391.

Attaching to the Services Manager with jsc_service_attach()

Use the Services API function isc_service_attach() to initiate a connection from your
application to a remote InterBase Services Manager.

You must supply a local or remote service name to specify which host to attach. This
string resembles InterBase database connection strings, in that the syntax determines the
network protocol used to connect the client application to the Services Manager on the
server host.

Protocol Syntax Supported server platform
TCP/IP serverhost:service_mgr any

NetBEUI \\serverhost\service_mgr Windows NT

IPX/SPX serverhost@service_mgr NetWare

Local service_mgr any

Syntax of Services Manager connect string, by protocol
Replace serverhost with the hostname of your InterBase database server. In all cases, the
string service_mgr is a literal string.

The user ID you use to attach to the Services Manager is the user ID the Services Manager
uses to perform tasks by your request. Note that some service tasks can be performed
only by the SYSDBA user ID.

INTERBASE 6

OVERVIEW OF THE SERVICES API

EXAMPLE 12.2

EXAMPLE 12.3

API GUIDE

Attaching to a Services Manager in C/C++

char *user = "SYSDBA",
password = "masterkey", / see security tip below */
*service_name = "jupiter:service_ngr";

| SC_STATUS st at us[20] ;

i sc_svc_handl e *servi ce_handl e = NULL;

spb_buffer[128], *spb = spb_buffer;

unsi gned short spb_I ength;

*spb++ = isc_spb_version;
*spb++ = isc_spb_current _version;
*spb++ = i sc_spb_user_nane;

*spb++ strlen(user);
strcpy(spb, user);
spb += strlen(user);

*spb++ = isc_spb_password;
*spb++ strl en(password)
strcpy(spb, password);
spb += strl en(password);

spb_length = spb - spb_buffer;

if (isc_service_attach(status, 0, service_nane,
&servi ce_handl e, spb_length, spb_buffer))

{
isc_print_status(status);
exit(1);

Detaching from a Services Manager with isc_service_detach()

Use isc_service_detach() after you finish your tasks with the Services API, to end the
connection with the Services Manager. Following is a C/C++ code example of terminating
the connection, assuming you have acquired a valid service handle from
isc_service_attach().

Detaching from a Services Manager in C/C++

i sc_service_detach(status, &service_handle);

203

CHAPTER 12 WORKING WITH SERVICES

Invoking service tasks with isc_service_start()

204

TABLE12.2

You can use the function isc_service_start() to request that the Services Manager perform
specified tasks. These tasks execute on the server host as a thread in the ibserver process.
This section describes the types of tasks you can request.

You can execute only one task at a time in a given attachment to a Services Manager.
While the task is running, you can retrieve any output of the task using
isc_service_query(). You can maintain multiple attachments to a Services Manager and
execute a task in each attachment.

Using request buffers

The Services API uses a buffer structured similarly to the SPB for isc_service_start() to
specify tasks and options for the Services Manager. This is called the request buffer. You
supply clusters of parameters and arguments in the request buffer. The Services Manager
performs tasks you specify.

Overview of task identifiers

The following table lists by request buffer cluster identifier the tasks that you can request
with isc_service_start().

Task item Purpose

isc_action_svc_backup Back up a database to afile or tape device; equivalent to gbak -b

isc_action_svc_restore Restore a database backup file and recreate a database; equivalent
to ghak -c

isc_action_svc_properties Set database properties; equivalent to gfix with various options

isc_action_svc_repair Initiate database consistency check and correction; equivalent to
gfix with -validate, -full, and -mend options

isc_action_svc_db_stats Report database statistics; equivalent to the output of gstat

isc_action_svc_get_ib_log Report contents of the interbase.log file on the server

isc_action_svc_display_users Display a user entry to the security database on the server;
equivalent to gsec -display

Services API tasks

INTERBASE 6

INVOKING SERVICE TASKS WITH isc_service_start()

TABLE12.2

API GUIDE

Task item Purpose

isc_action_svc_add_user Add a user entry to the security database on the server; equivalent
to gsec -add

isc_action_svc_delete_user Delete a user entry to the security database on the server;

equivalent to gsec -delete

isc_action_svc_modify_user Modify a user entry to the security database on the server;
equivalent to gsec -modify

isc_action_svc_add_license Add a software activation certificate to ib_license.dat;
only SYSDBA can invoke this task

isc_action_svc_remove_license Remove a software activation certificate from ib_license.dat;
only SYSDBA can invoke this task

Services APl tasks

See the following sections for descriptions of tasks and examples of starting them.

Backing up and restoring databases

Use the cluster identifier isc_action_svc_backup to request that the Services Manager
perform a backup operation. This is a programmatic method to invoke the gbak tool as a
thread in the ibserver process. You must specify the path of the database primary file, and
the path of the backup output file or files.

Note Paths of backup files are relative to the server. Since the Services Manager executes
backup and restore tasks on the server host, the Services Manager reads and writes
backup files on the server host.

You can specify additional options as needed. Some options require arguments, while
other options are bits in an option bitmask.

The following table lists arguments to isc_action_svc_backup:

205

CHAPTER 12 WORKING WITH SERVICES

Argument Argument
Argument Purpose length value
isc_spb_dbname Path of the primary file of the database, from the 2-byte length String
server’s point of view + string
isc_spb_verbose If specified, the Services Manager prepares — —
output to return via isc_service_query();
corresponds to gbak -verbose
isc_spb_bkp_file Path of a backup output file; you can specify 2-bytelength String
multiple output files; corresponds to gsplit + string
functionality
isc_spb_bkp_length Length in bytes of the backup output file; you 2-bytelength String

must specify one length value for each outputfile + string
except the last; corresponds to gsplit
functionality
isc_spb_bkp_factor Tape device blocking factor; corresponds to ghak 4 bytes Unsigned long
-factor
isc_spb_options The following value is a bitmask of 4 bytes Bitmask
isc_spb_bkp_xoux options below
isc_spb_bkp_ignore_checksums Ignore checksums during backup; correspondsto — Bit
gbak -ignore
isc_spb_bkp_ignore_limbo Ignore limbo transactions during backup; — Bit
corresponds to gbak -limbo
isc_spb_bkp_metadata_only Outputbackup file for metadata only withempty — Bit
tables; corresponds to gbak -metadata
isc_spb_bkp_no_garbage_collect Suppress normal garbage collection during — Bit
backup; improves performance on some
databases; corresponds to gbak -garbage_collect
TABLE123 Services APl database backup arguments
206 INTERBASE 6

INVOKING SERVICE TASKS WITH isc_service_start()

Argument Argument

Argument Purpose length value
isc_spb_bkp_old_descriptions Output metadata in pre-4.0 format; corresponds — Bit

to gbak -old_descriptions
isc_spb_bkp_non_transportable ~ Output backup file format with non-XDRdata ~ — Bit

format; improves space and performance by a

negligible amount; corresponds to gbak -nt
isc_spb_bkp_convert Convert external table data to internal tables; — — Bit

corresponds to gbak -convert

TABLE123 Services API database backup arguments

EXAMPLE 12.4

API GUIDE

Starting a database backup service in C/C++

char request[100],*x, *p = request;

/* Identify cluster */
*p++ = isc_action_svc_backup;

/* Argunent for database fil enane */
*p++ = isc_spb_dbnane;

ADD_SPB _LENGTH(p, strlen(argv[1]));
for (x = argv[1l]; *X;) *p++t = *XxX++;

[* Argument for backup output filename */
*p++ = isc_spb_bkp_file;

ADD_SPB _LENGTH(p, strlen(argv[2]));

for (x = argv[2]; *X;) *p++t = *XxX++;

/* Argument to request verbose output */
*p++ = isc_spb_verbose;

207

CHAPTER 12 WORKING WITH SERVICES

if (isc_service_start(status,
&servi ce_handl e,

NULL,
p - request,
request))
{
i sc_print_status(status);
i sc_service_detach(status, service_handle);
exit(1);
}

You can also restore database backup files to create a new .gdb file. The following table
lists arguments to the cluster identifier isc_action_svc_restore:

Argument Argument
Argument Purpose length value
isc_spb_bkp_file The path of the backup file name 2-bytelength String

+ string
isc_spb_dbname Path of the primary file of the database, from the 2-byte length ~ String

server’s point of view; you can specify multiple ~ + string
database files

isc_spb_res_length The length in pages of the restored database file; 4 bytes Unsigned long;
must not exceed 2 gigabytes; you must supply a pagesin
length for each database file except the last database file

isc_spb_verbose If specified, the Services Manager prepares — —

output to return via isc_service_query();
corresponds to gbak -verbose

isc_spb_res_buffers The number of default cache buffers to configure 4 bytes Unsigned long;
for attachments to the restored database; number of
corresponds to gbak -buffers buffers
isc_spb_res_page_size The page size for the restored database;

corresponds to gbhak -page_size

TABLE12.4 Services API database restore arguments

208 INTERBASE 6

INVOKING SERVICE TASKS WITH isc_service_start()

Argument Argument

Argument Purpose length value

isc_spb_res_access_mode Set the access mode of the database; the next 1 byte Byte
byte must be one of:
*isc_spb_prp_am_readonly
*isc_spb_prp_am_readwrite
Corresponds to gbak -mode

isc_spb_options The following value is a bitmask of 4 bytes Bitmask
isc_spb_res_xxxx options below

isc_spb_res_deactivate_idx Do not build user indexes during restore; — Bit
corresponds to gbak -inactive

isc_spb_res_no_shadow Do not recreate shadow files during restore; — Bit
corresponds to gbak -kill

isc_spb_res_no_validity Do not enforce validity conditions (for example, — Bit
NOT NULL) during restore; corresponds to ghak
-no_validity

isc_spb_res_one_at_a_time Commit after completing restore of each table; — Bit
corresponds to gbak -one_at_a_time

isc_spb_res_replace Replace database, if one exists; correspondsto — Bit
gbak -replace

isc_spb_res_create Restore but do not overwrite an existing — Bit
database; corresponds to gbak -create

isc_spb_res_use_all_space Do not reserve 20% of each data page for future — Bit

record versions; useful for read-only databases;
corresponds to gbak -use_all_space

TABLE12.4 Services API database restore arguments

EXAMPLE125 Starting a database restore service in C/C++

char request[100], *x, *p = request;
unsi gned | ong options;

/* lIdentify cluster */
*p++ = isc_action_svc_restore;

API GUIDE

209

210

/[* Argurments for backup fil enanes */

for (i =1; argc > 1; --argc; ++i)

{
*p++ = isc_spb_bkp_file;
ADD_SPB_LENGTH(p, strlen(argv[i]));
for (x = argv[i]; *X;) *p++t = *XxX++;

}

/* Argurment for database filenane */
*p++ = isc_spb_db_nane;

ADD_SPB _LENGTH(p, strlen(argv[i]));
for (x = argv[i]; *X;) *p++t = *XxX++;

/* Argument to request verbose output */
*p++ = isc_spb_verbose;

/* Argument to specify restore options */
*p++ = isc_spb_options;

options = isc_spb_res_create;
ADD_SPB_NUMERI C(p, options);

if (isc_service_start(status,
&servi ce_handl e,

NULL,
p - request,
request))
{
isc_print_status(status);
i sc_service_detach(status, service_handle);
exit(1);
}

CHAPTER 12 WORKING WITH SERVICES

INTERBASE 6

INVOKING SERVICE TASKS WITH isc_service_start()

Setting database properties

You can configure the properties of local or remote databases using the cluster identifier
isc_action_svc_properties. This functionality corresponds to several of the options of the
dfix command-line utility.

The following table lists arguments to isc_action_svc_properties:

Argument Argument
Argument Purpose length value
isc_spb_dbname Path of the primary file of the database, from 2-byte length String
the server’s point of view + string
isc_spb_prp_page_buffers Set the default number of cache buffers to the 4 bytes Unsigned long
specified number; corresponds to gfix -buffers
isc_spb_prp_sweep_interval Set the sweep interval to the specified 4 bytes Unsigned long
number; specify zero to disable sweeping;
corresponds to gfix -housekeeping
isc_spb_prp_shutdown_db Shuts down the database when: 4 bytes Unsigned long
« There are no connections to the database, or
+ At the end of the timeout period you specify
Corresponds to gfix -shut -force n
isc_spb_prp_deny_new_transactions Shuts down the database if there are no active 4 bytes Unsigned long
transactions at the end of the timeout period
you specify; deny new transactions during this
timeout period; fail if there are active
transactions at the end of the timeout period;
corresponds to gfix -shut -trann
isc_spb_prp_deny_new_attachments Shuts down the database if there are no active 4 bytes Unsigned long

transactions at the end of the timeout period
you specify; deny new database attachments
during this timeout period; fail if there are
active database attachments at the end of the
timeout period; corresponds to

gfix -shut -attach n

TABLE125 Services APl database properties arguments

API GUIDE

211

CHAPTER 12 WORKING WITH SERVICES

Argument
Argument Purpose length

Argument
value

isc_spb_prp_reserve_space Configure the database to fill data pages when 1 byte
inserting new records, or reserve 20% of each
page for later record deltas; the next byte must
be one of:
«isc_spb_prp_res_use_full
*isc_spb_prp_res
Corresponds to gfix -use

isc_spb_prp_write_mode Set the write mode for the database; the next 1 byte
byte must be one of:
*isc_spb_prp_wm_async
*isc_spb_prp_wm_sync
Corresponds to gfix -write

| isc_spb_prp_access_mode Set the access mode of the database; the next 1 byte
byte must be one of:
* isc_spb_prp_am_readonly
* isc_spb_prp_am_readwrite
Corresponds to gfix -mode

isc_spb_prp_set_sql_dialect Set the SQL dialect for the database; value 4 bytes
must be either 1 or 3

isc_spb_options The following value is a bitmask of 4 bytes
| isc_spb_prp_xxxx options below

isc_spb_prp_activate Activate shadow file for use as a database; —
corresponds to gfix -activate

isc_spb_prp_db_online Bring a shutdown database back online; —
corresponds to gfix -online

Byte

Byte

Byte

Unsigned long

Bitmask

Bit

Bit

TABLE12.5 Services APl database properties arguments

212

INTERBASE 6

INVOKING SERVICE TASKS WITH isc_service_start()

Invoking database maintenance

This section describes how to use isc_service_start() to perform database validation,
sweep garbage collection, and resolve limbo transactions. These tasks correspond to
several of the options of the gfix command-line utility.

» Invoking a database validation

You can request a database validation with the cluster identifier isc_action_svc_repair.
Database validation scans internal data structures for specific types of corruption. In
some cases, the validation operation can repair corruption.

IMPORTANT The validation operation cannot guarantee to repair all cases of corruption. Do not rely
on database validation as a disaster recovery policy in lieu of making regular backups of
your database.

The following table lists arguments to isc_action_svc_repair to validate a database:
Argument Argument

Argument Purpose length value

isc_spb_dbname Path of the primary file of the database, from the 2-byte length String
server’s point of view + string

isc_spb_options The following value is a bitmask of 4 bytes Bitmask
isc_spb_rpr_xxxx options below

isc_spb_rpr_check_db Request read-only validation of the database, =~ — Bit
without correcting any problems; corresponds to
gfix -no_update

isc_spb_rpr_ignore_checksum Ignore all checksum errors; corresponds to gfix —— Bit
-ignore

isc_spb_rpr_kill_shadows Remove references to unavailable shadow files; — Bit
corresponds to gfix -kill

isc_spb_rpr_mend_db Mark corrupted records as unavailable, so — Bit

subsequent operations skip them; corresponds
to gfix -mend

TABLE12.6 Services APl database validation arguments

API GUIDE

213

CHAPTER 12 WORKING WITH SERVICES

Argument Argument
Argument Purpose length value
isc_spb_rpr_validate_db Locate and release pages that are allocated but — Bit
unassigned to any data structures; corresponds
to dfix -validate
isc_spb_rpr_full Check record and page structures, releasing — Bit

unassigned record fragments; use with
isc_spb_rpr_validate_db; corresponds to gfix
-full

TABLE12.6 Services APl database validation arguments

» Invoking a database sweep

You can invoke a database sweep with the cluster identifier isc_action_svc_repair.
Sweeping attempts to scan the database for outdated record versions and mark them as
free space. The following table lists arguments to isc_action_svc_repair to sweep a
database:

Argument Argument
Argument Purpose length value
isc_spb_dbname Path of the primary file of the database, from the 2-byte length String
server's point of view + string
isc_spb_options The following value is a bitmask of 4 bytes Bitmask
isc_spb_rpr_xxxx options below
isc_spb_rpr_sweep_db Request database sweep to mark outdated — Bit

records as free space; corresponds to gfix -sweep

TABLE12.7 Services APl database sweep arguments

214

b Resolving limbo transactions

You can list and correct transactions in a limbo state using the cluster identifier
isc_action_svc_repair.

Note Limbo transactions are the result of interruptions in the two-phase commit process
of InterBase. Most client interfaces, including BDE and ODBC, do not exercise the
two-phase commit or distributed transaction capabilities of InterBase, therefore
applications using such client interfaces never create limbo transactions.

INTERBASE 6

INVOKING SERVICE TASKS WITH isc_service_start()

The following table lists arguments to isc_action_svc_repair to resolve limbo
transactions in a database:

Argument Argument
Argument Purpose length value
isc_spb_dbname Path of the primary file of the database, from the 2-byte length String
server’s point of view + string
isc_spb_rpr_commit_trans Request that the Services Manager committhe — —
transactions that follow
isc_spb_rpr_rollback_trans Request that the Services Manager roll back the — —
transactions that follow
isc_spb_rpr_recover_two_phase Request that the Services Manager use — —
automatic two-phase commit recovery on the
specified transactions
isc_spb_tra_id Precedes a transaction ID number 4 bytes Unsigned long

TABLE12.8 Services APl limbo transaction arguments

API GUIDE 215

CHAPTER 12 WORKING WITH SERVICES

Requesting database and server status reports

This section describes how to request database statistics and the server error log.

» Requesting database statistics

You can use the cluster identifier isc_action_svc_db_stats to request the Service Manager
prepare database statistics. This corresponds to the functionality of the gstat
command-line utility. You can subsequently receive this information using
isc_service_query() (see “Querying service tasks” on page 237). The following table
lists arguments to isc_action_svc_db_stats:

Argument Argument

Argument Purpose length value

isc_spb_dbname Path of the primary file of the database, from the 2-byte length ~ String
server's point of view + string

isc_spb_options The following value is a bitmask of 4 bytes Bitmask
isc_spb_sts_xxxx options below

isc_spb_sts_data_pages Request statistics for user data pages; — Bit
corresponds to gstat -data

isc_spb_sts_db_log Requestonly the information in the databaselog — Bit
pages; corresponds to gstat -log

isc_spb_sts_hdr_pages Request only the information in the database =~ — Bit
header page; corresponds to gstat -header

isc_spb_sts_idx_pages Request statistics for user index pages; — Bit
corresponds to gstat -index

isc_spb_sts_sys_relations Request statistics for system tables and indexes — Bit

in addition to user tables and indexes;
corresponds to gstat -system

TABLE129 Services API status report arguments

216

» Requesting the server log

You can use the cluster identifier isc_action_svc_get_ib_log to request the Services
Manager to return the contents of the interbase.log file from the server. There are no
arguments for this cluster.

You can retrieve the text that the server manager returns by using isc_service_query().
See “Querying service tasks” on page 237.

INTERBASE 6

INVOKING SERVICE TASKS WITH isc_service_start()

Configuring users

You can use the Services API to display, add, delete, and modify users. This corresponds

to the functionality of the command-line tool gsec.

» Listing valid users in the security database

The following table lists arguments to isc_action_svc_display_users:

Argument Argument
Argument Purpose length value
isc_spb_sec_username Specify a single user by name for which the 2 bytelength String
Services Manager should return information + string

TABLE12.10 Services API display users arguments

To request the Services Manager to return information for all users in isc4.gdb, omit the

isc_spb_sec_username argument.

You can retrieve the information that the server manager returns by using
isc_service_query() with the cluster identifier isc_info_svc_get_users. See “Querying

using Services API: server configuration information” on page 229.

» Adding a user to the security database

You can create a new user in isc4.gdb using the cluster identifier isc_action_svc_add_user.

The following table lists arguments to this cluster:

Argument Argument
Argument Purpose length value
isc_spb_sec_username User name to create in isc4.gdb; maximum 31 2 bytelength String
characters; mandatory argument + string
isc_spb_sec_password Password for the user; maximum 31 characters, 2 bytelength String
only first 8 characters are significant; mandatory + string
argument
isc_spb_sec_firstname Optional first name of the person using this user 2 byte length String
name + string
isc_spb_sec_middlename Optional middle name of the person using this 2 byte length ~ String
user name + string
TABLE12.11 Services APl add user arguments

API GUIDE

217

CHAPTER 12 WORKING WITH SERVICES

Argument Argument
Argument Purpose length value
isc_spb_sec_lastname Optional last name of the person using this user 2 byte length String
name + string
isc_spb_sec_userid Optional user ID number, defined in /etc/passwd, 4 bytes Unsigned long
to assign to the user in isc4.gdb; reserved for
future implementation
isc_spb_sec_groupid Optional group ID number, defined in /etc/group, 4 bytes Unsigned long
to assign to the user in isc4.gdb; reserved for
future implementation
isc_spb_sec_groupname Optional group name, as defined in /etc/group, to 2 byte length String
assign to the user in isc4.gdb; reserved for future + string
implementation
isc_spb_sql_role_name Optional SQL role to adopt when administering 2 byte length String
users (reserved for future use) + string

TABLE12.11 Services APl add user arguments

» Removing a user from the security database

You can create a new user in isc4.gdb using the cluster identifier

isc_action_svc_delete_user. The following table lists arguments to this cluster:

Argument Argument
Argument Purpose length value
isc_spb_sec_username Name of user to delete from isc4.gdb; mandatory 2 byte length ~ String
argument + string
| isc_spb_sql_role_name Optional SQL role to adopt when administering 2 byte length ~ String
users (reserved for future use) + string

TABLE12.12 Services APl remove user arguments

If you remove a user entry from isc4.gdb, no one can log in to any database on that server

using that name. You must create a new entry for that name using
isc_action_svc_add_user.

218

INTERBASE 6

INVOKING SERVICE TASKS WITH isc_service_start()

Argument

» Modifying a user in the security database

You can create a new user in isc.gdb using the cluster identifier
isc_action_svc_modify_user.

The arguments you can use in this cluster are the same as those you can use with
isc_action_svc_add_user. You cannot change a user name, only associated properties of
that user entry. Only properties you specify change. To remove a property, specify zero
for the length and data of the property.

» Deprecated use of InterBase 5 user functions

The API functions isc_add_user(), isc_delete_user(), and isc_modify_user() are made
obsolete by the introduction of the InterBase Services API. The new Services API
functions are preferred over the version 5 user configuration functions in order to provide
a consistent services mechanism, interface, and set of messages.

It is recommended that you use the Services API functions instead of the obsolete user
configuration functions. The isc_xxxx_user() functions are still present in InterBase
version 6 for backward compatibility, but they are likely to be removed from the product
in a future release.

Administering software activation certificates

You can use the Services API to install or remove software activation certificates. Use the
cluster identifiers isc_action_svc_add_license and isc_action_svc_remove_license,
respectively.

The following table lists arguments to isc_action_svc_add_license and
isc_action_svc_remove_license:

Argument Argument
Purpose length value

isc_spb_lic_key

isc_spb_lic_id

The key string identifying a software activation 2 byte length String
certificate + string

The ID string for a software activation certificate 2 byte length String
(isc_action_svc_add_license only) + string

TABLE 1213 Services API software activation certificate arguments

API GUIDE

» Listing software activation certificates

You can use isc_service_query() with the isc_info_get_license cluster identifier to

219

CHAPTER 12 WORKING WITH SERVICES

See “Querying using Services APIL: software activation certificates” on page 227 for
an example of retrieving the certificate information with isc_service_query().

» Adding a software activation certificate

To add a software activation certificate, you must specify both the certificate ID and
certificate key in the respective arguments to isc_action_svc_add_license.

» Removing a software activation certificate

To remove a software activation certificate, you need specify only the certificate key in
the respective arguments to isc_action_svc_add_license.

» Enabling changes to certificates
Changes to the number of simultaneous users take effect immediately.

In order for other changes to the certificates to take effect, you must stop and restart the
InterBase service. There is no Services API method in the current implementation to
restart the InterBase service.

You can stop and start a service on the local Windows NT host programmatically using
the Win32 API. You must be Administrator or a member of the Power Users NT group to
start or stop a service.

On Superserver implementations of InterBase on UNIX, you must use ibmgr to shut down
and restart ibserver. Classic InterBase servers read the iblicense.dat file each time an instance
of the server starts.

Querying the Services Manager

220

You can use the Services API function isc_service_guery(Q) to request information from
the Services Manager about the InterBase server environment. This section describes how
to request and interpret data from isc_service_queryQ).

Blocking and specifying timeout

You can request output of a service task in progress using isc_service_query(). Your call
to isc_service_query() does not return until either the request has completed, or the
result buffer is full. If there are no data to return because a service task is in progress, the
query waits for the task to complete. isc_service_query() blocks indefinitely, until output
is available. This eliminates the need for polling.

INTERBASE 6

QUERYING THE SERVICES MANAGER

EXAMPLE 12.6

API GUIDE

You can supply to isc_service_query() an SPB item specifying a finite duration after
which the call to isc_service_query() must return, even if output from the task is not yet
available. Populate the SPB with the SPB version information, followed by the
isc_info_svc_timeout cluster identifier, and a four-byte value specifying the number of
seconds for the timeout.

This is the only useful SPB cluster for isc_service_query() in the current implementation.

Services APl query example

In this chapter, a complete C/C++ code sample shows use of the isc_service_query()
function. The sample is split into several parts, to illustrate query items described in later
sections. The code sample assumes that you have successfully attached to a Services
Manager (see “Attaching to the Services Manager with isc_service_attach()” on
page 202) and that you have a valid service handle.

The first part of the example shows how to set up the request buffer and invoke
isc_service_query().

Querying using Services API: setup and invoke query

char spb_buffer[6], *spb = spb_buffer;
char request_buffer[] = {
sc_info_svc_server_version,
sc_info_svc_inpl ement ati on,
sc_info_svc_get_l|icensed_users,
sc_info_svc_user_dbpat h,
sc_info_svc_get_env,
sc_info_svc_get_env_I ock,
sc_info_svc_get_env_nsg,
sc_info_svc_get_license,
sc_info_svc_svr_db_info,
sc_info_svc_version,
sc_info_svc_get_config};

char result_buffer[1024], *p = result_buffer;

*spb++ = isc_info_svc_timeout;
ADD_SPB_NUMERI C(spb, 60); /* 1 minute timeout */

221

222

CHAPTER 12 WORKING WITH SERVICES

if (isc_service_query (
st at us,
&servi ce_handl e,
NULL,
spb - spb_buffer, spb_buffer,
si zeof (request _buffer), request_buffer,
sizeof (result_buffer), result_buffer))

{ isc_print_status(status);
i sc_service_detach(status, &svc_handl e);
return;

}

do

{

switch (*p++)

{

The code sample is continued in later examples.

Using result buffers

The Services API uses a buffer structured similarly to the SPB for isc_service_query(Q to
specify tasks and options for the Services Manager. This is called the request buffer. You
supply clusters of parameters and arguments in the request buffer. The Services Manager
supplies the data you requested by specifying these arguments.

isc_service_query() uses another structured buffer to return requested data. This is called
the result buffer. The Services Manager stores data in this buffer. You write code in your
application to scan the buffer after isc_service_query() returns, and interpret the data
based on the single-byte cluster identifiers at the start of each cluster.

The cluster identifiers are used both for requesting data in the request buffer, and for
identifying clusters of returned data in the result buffer. When you add these identifiers
to the request buffer, you specify only the identifier name in the request buffer, not the
identifiers for any arguments. The Services Manager returns argument identifiers and
data in the result buffer.

INTERBASE 6

QUERYING THE SERVICES MANAGER

EXAMPLE 12.7

API GUIDE

When you interpret the identifiers in the result buffer, clusters include associated data.
The data that follow the cluster identifier are specific to the cluster type. Some clusters
have a fixed length value following the identifier, for example numeric values are always
returned as 4-byte long integers. Other clusters identifiers are followed by a 2-byte short
integer, which specifies the length of the subsequent string. Still other cluster identifiers
are followed by a series of argument identifiers with fixed or variable length data.

If the data that the Server Manager returns exceed the size of the result buffer you supply,
isc_service_query() fills the buffer as much as possible, and includes isc_info_truncated
as the last cluster identifier. This indicates that the result buffer was too small to contain
all the resulting output of the service query. To receive the entire buffer, you must call
isc_service_query() again with a larger buffer. The Services Manager starts over from the
beginning of the output; you must provide a buffer that is large enough to hold the entire
output.

Querying using Services API: handling a truncated result

case isc_info_truncated:
printf ("Buffer Truncated\n");
/* you should i ncrease the buffer size and retry the query */
br eak;

For output that is typically very lengthy, such as the output of a database backup task,
the Services Manager needs to return a volume of text data. You can use the request item
isc_info_svc_line to request successive lines of the text result, or you can use
isc_info_svc_to_eof to request the entire text output in one query. See “Querying service
tasks” on page 237.

223

CHAPTER 12 WORKING WITH SERVICES

Querying server configuration

You can use the following items with isc_service_query() to request information about
the InterBase server configuration.

Server configuration items

Purpose

Return length

Return value

isc_info_svc_version

isc_info_svc_server_version

isc_info_svc_implementation

isc_info_svc_get_license

isc_info_svc_get_license_mask

isc_info_svc_capabilities

isc_info_svc_get_config

isc_info_svc_get_env

isc_info_svc_get_env_lock

isc_info_svc_get_env_msg

The version of the Services Manager

The version of the InterBase server

The implementation string, or platform, of the
server; for example, InterBase/Sun4

All software activation certificate IDs and keys
currently enabled on the server

A bitmask representing the software activation
certificate options currently enabled on the
server; reserved for future implementation

A bitmask representing the capabilities currently
enabled on the server; reserved for future
implementation

The parameters and values in the ibconfig file on
the server (isc_config on UNIX and Linux)

The location of the InterBase root directory on
the server; this is the value of the SINTERBASE
system environment variable, or the contents of
the registry key

The location of the InterBase lock manager file on
the server; this is the value of the
SINTERBASE_LCK system environment variable,
or by default SINTERBASE/serverhostname.lck

The location of the InterBase message file on the
server; this is the value of the SINTERBASE_MSG
system environment variable, or by default
SINTERBASE/interbase.msg

4 bytes

2-byte length
+ string

2-byte length
+ string
See below

4 bytes

4 bytes

See below

2-byte length

+ string

2-byte length
+ string

2-byte length
+ string

Unsigned long
String

String

See below

Bitmask

Bitmask

See below

String

String

String

TABLE12.14

224

Services APl server configuration query items

INTERBASE 6

QUERYING THE SERVICES MANAGER

| EXAMPLET28 Querying using Services API: Services Manager version

case isc_info_svc_version:
{
unsi gned | ong svcversion;
p += sizeof (unsigned short);
svcversi on = (unsi gned | ong)
i sc_vax_integer (p, sizeof(unsigned |ong));
printf ("Service Manager Version: %\n", svcversion);
p += sizeof (unsigned |ong);
br eak;

| EXAMPLET29 Querying using Services API: server version

case isc_info_svc_server_version:
{
path_l ength = (unsigned short)
i sc_vax_integer (p, sizeof(unsigned short));
p += sizeof (unsigned short);
buffer = (char*) malloc (path_l ength);
strncpy (buffer, p, path_length);
buffer [path_length] = "\0";
printf ("Server version: %\n", buffer);
p += path_l ength;
br eak;

| EXAMPLE1270 Querying using Services API: server implementation

case isc_info_svc_inplementation:
{
path_l ength = (unsigned short)
i sc_vax_integer (p, sizeof(unsigned short));
p += sizeof (unsigned short);
buffer = (char*) malloc (path_| ength);
strncpy (buffer, p, path_length);

API GUIDE 225

| EXAMPLE12.11

| EXAMPLE12.12

226

CHAPTER 12 WORKING WITH SERVICES

buffer [path_length] = "'\0";

printf ("Server inplenentation: %\n", buffer);
p += path_l ength;

br eak;

Querying using Services API: location of the server root directory

case isc_info_svc_get_env:

{

path_l ength = (unsigned short)

i sc_vax_i nteger (p, sizeof(unsigned short));

p += sizeof (unsigned short);

buffer = (char*) malloc (path_length);
strncpy (buffer, p, path_length);

buffer [path_length] = "\0";

printf ("Value of $INTERBASE: %s\n", buffer);
free(buffer);

p += path_l ength;

br eak;

Querying using Services API: location of the server lock file

case isc_info_svc_get_env_| ock:

{

path_l ength = (unsigned short)

i sc_vax_i nteger (p, sizeof(unsigned short));

p += sizeof (unsigned short);

buffer = (char*) malloc (path_l ength);
strncpy (buffer, p, path_length);
buffer [path_length] = "\0";

printf ("Path to <hostnanme>.|ck: %\n", buffer);

free(buffer);
p += path_l ength;
br eak;

INTERBASE 6

QUERYING THE SERVICES MANAGER

EXAMPLE12.13 Querying the location of the message file using the Services API

case isc_info_svc_get_env_nsg:
{
path_l ength = (unsigned short)
i sc_vax_integer (p, sizeof(unsigned short));
p += sizeof (unsigned short);
buffer = (char*) nmalloc (path_l ength);
strncpy (buffer, p, path_length);
buffer [path_length] = "\0";
printf ("Path to | NTERBASE. MSG. %\ n", buffer);
p += path_l ength;
br eak;

» Additional data for server configuration

SOFTWARE ACTIVATION CERTIFICATES

The isc_info_svc_get_license result buffer item returns multiple sets of data as arguments.
For each software activation certificate in the file ib_license.dat on the server, this cluster
returns the ID and key strings. If there are multiple certificates installed on the server, the
return buffer contains multiple pairs of ID and key strings. The contents of the buffer end
when a cluster is identified with the isc_info_flag_end value. The following table
describes the cluster identifiers for the certificate information.

Argument Purpose Return length Return value
isc_spb_lic_id The ID string for a software activation certificate 2-byte length String
+ string
isc_spb_lic_key The corresponding Key string for a software 2-byte length String
activation certificate + string
isc_info_flag_end Signals the end of arguments to — —

isc_info_svc_get_license

TABLE12.15 Services API software activation certificate arguments

EXAMPLE12.14 Querying using Services API: software activation certificates

API GUIDE 227

CHAPTER 12 WORKING WITH SERVICES

case isc_info_svc_get_license:
{
printf ("Software activation certificates:\n");
do {
switch (*p++)
{
case isc_spb_lic_key:
{
path_l ength = (unsigned short)
i sc_vax_integer (p, sizeof(unsigned short));
p += sizeof (unsigned short);
buffer = (char*) malloc (path_| ength);
strncpy (buffer, p, path_length);
buffer [path_length] = "'\0";
printf ("\tLicense Key: %\n", buffer);
| free(buffer);
p += path_l ength;
br eak;
}
case isc_spb_lic_id:
{
path_l ength = (unsigned short)
i sc_vax_integer (p, sizeof(unsigned short));
p += sizeof (unsigned short);
buffer = (char*) malloc (path_|ength);
strncpy (buffer, p, path_length);
buffer [path_length] = "'\0";
printf ("\tLicense ID %\n", buffer);
free(buffer);
p += path_l ength;
br eak;
}
}
} while (*p !'=isc_info_flag_end);
br eak;

228 INTERBASE 6

QUERYING THE SERVICES MANAGER

SERVER CONFIGURATION PROPERTIES

You can request the Services Manager to report the contents of the InterBase
configuration file on the server. This file is in the installation directory of InterBase, and
is named ibconfig on Windows 95/98/NT and NetWare, and isc_config on UNIX and Linux.

The result buffer cluster consists of the isc_info_svc_get_config identifier, followed by a
two-byte number of data. The data follow as pairs of single-byte configuration entry
identifiers and four-byte values. Configuration entries with string values, such as
TMP_DIRECTORY, are not currently supported by this cluster.

Some of the configuration items are relevant only on specific platforms. The Services
Manager returns only configuration data that are relevant to the respective server
platform that runs the Services Manager.

The Services Manager does not return values for configuration items that are set to their
default value.

EXAMPLE12.15 Querying using Services API: server configuration information

case isc_info_svc_get_config:

{
unsi gned short chTnp = 0, key;
unsigned long len = 0, ul Configlnfo;

printf ("Configuration Settings:\n");
| en = (unsigned short)
i sc_vax_integer(p, sizeof(unsigned short));
p += sizeof (unsi gned short);
for (chTnp = 0; chTnp < len; chTnp++)
{
key = p[chTnp];
ul Configlnfo = (unsigned | ong)
i sc_vax_integer(p+ chTnp + 2, p[chTnp+1]);
switch (key)
{
case | SCCFG_LOCKNMEM KEY:
printf ("\tLock mem %\ n", ul Configlnfo);
br eak;
case | SCCFG_LOCKSEM KEY:
printf ("\tLock Semaphores: %\n", ul Configlnfo);
br eak;
case | SCCFG _LOCKSI G _KEY:
printf ("\tLock sig: %\ n", ul Configlnfo);

API GUIDE 229

230

CHAPTER 12 WORKING WITH SERVICES

br eak;

case | SCCFG_EVNTMVEM KEY:
printf ("\tEvent mem % d\n", ul Configlnfo);
br eak;

case | SCCFG_PRI ORI TY_KEY:
printf ("\tPriority: %\ n", ul Configlnfo);
br eak;

case | SCCFG_MEMM N_KEY:
printf ("\tMn menory: %l\n", ul Configlnfo);
br eak;

case | SCCFG_MEMVAX KEY:
printf ("\tMax Menory: %\ n", ul Configlnfo);
br eak;

case | SCCFG _LOCKORDER KEY:
printf ("\tLock order: %\ n", ul Configlnfo);
br eak;

case | SCCFG_ANYLOCKMEM KEY:
printf ("\tAny lock mem %\ n", ul Configlnfo);
br eak;

case | SCCFG_ANYLOCKSEM KEY:
printf ("\tAny | ock semaphore: %\ n",

ul Confi gl nfo);

br eak;

case | SCCFG_ANYLOCKSI G_KEY:
printf ("\tany lock sig: %\ n", ul Configlnfo);
br eak;

case | SCCFG_ANYEVNTMEM KEY:
printf ("\tany event nem %\ n", ul Configlnfo);
br eak;

case | SCCFG _LOCKHASH KEY:
printf ("\tLock hash: %d\n", ul Configlnfo);
br eak;

case | SCCFG DEADLOCK_ KEY:
printf ("\tDeadl ock: %\ n", ul Configlnfo);
br eak;

case | SCCFG LOCKSPI N_KEY:
printf ("\tLock spin: %\ n", ul Configlnfo);
br eak;

case | SCCFG_CONN_TI MEQUT_KEY:
printf ("\tConn tineout: %\ n", ul Configlnfo);
br eak;

case | SCCFG_DUMWY_I NTRVL_KEY:

INTERBASE 6

QUERYING THE SERVICES MANAGER

printf ("\tDummy interval: %\ n", ul Configlnfo);

br eak;

case | SCCFG | PCVAP_KEY:
printf ("\tMap size: %\ n", ul Configlnfo);
br eak;

case | SCCFG _DBCACHE KEY:
printf ("\tCache size: %\ n", ul Configlnfo);
br eak;

}

chTrmp += p[chTmp+1] + 1;
}

br eak;

Querying security configuration

You can use the following items with isc_service_query(to request information related

to InterBase server security and user access.

Security configuration items Purpose Return length Return value
isc_info_svc_get_licensed_users The number of users permitted by the governor 4 bytes Unsigned long
on the server
isc_info_svc_user_dbpath The path to the security database on the server; 2-byte length String
for example, /usr/interbase/isc4.gdb + string
isc_info_svc_get_users User information from the security database See below See below
isc_info_svc_svr_db_info The number of database attachments and See below See below

databases currently active on the server

TABLE12.16 Services API security configuration query items

EXAMPLE12.16 Querying using Services API: number of licensed users

case isc_info_svc_get_|icensed_users:

{

unsi gned | ong nUsers;
p+= si zeof (unsigned short);

API GUIDE

231

CHAPTER 12 WORKING WITH SERVICES

nUsers = (unsigned | ong)

i sc_vax_integer(p, sizeof (unsigned |ong));
printf ("Nunmber of |icensed users: %l\n", nUsers);
p += sizeof (unsi gned |ong);
br eak;

| EXAMPLE12.17 Querying using Services API: location of the security database

case isc_info_svc_user_dbpath:
{
path_l ength = (unsigned short)
i sc_vax_integer (p, sizeof(unsigned short));
p += sizeof (unsigned short);
buffer = (char*) malloc (path_l ength);
strncpy (buffer, p, path_length);
buffer [path_length] = "\0";
printf ("Path to | SC4. GDB: %\ n", buffer);
p += path_l ength;
br eak;

» Additional data for security information

| The isc_info_svc_get_users result item returns multiple sets of data. There might be
multiple users to report, so the result buffer might contain multiple clusters. The contents
of the buffer end when a cluster is identified with the isc_info_flag_end value. The
following table describes the cluster identifiers for the user information.

Argument Purpose Return length Return value
| isc_spb_username The user ID from isc4.gdb 2-byte length String
+ string
| isc_spb_firstname The first name associated with the user ID 2-byte length String
+ string
| isc_spb_middlename The middle name associated with the user ID 2-bytelength String
+ string

TABLE12.17 Services APl user information arguments

232 INTERBASE 6

QUERYING THE SERVICES MANAGER

Argument Purpose Return length Return value
| isc_spb_lastname The last name associated with the user ID 2-byte length String
+ string
isc_spb_userid The user ID number, defined in /etc/passwd, to 4 bytes Unsigned long

assign to the user in isc4.gdb;
relevant only on UNIX or Linux servers

isc_spb_groupid The group ID number, defined in /etc/group, to 4 bytes Unsigned long
assign to the user in isc4.gdb;
relevant only on UNIX or Linux servers

isc_info_flag_end Signals the end of arguments to — —
isc_info_svc_get_users

TABLE12.17 Services APl user information arguments

| EXAMPLE1218 Querying using Services API: users configured on the server

case isc_info_svc_get_users:

{

| SC_USHORT | en, | oop;

| SC ULONG i d;

char buffer[50], *buf = buffer;

| oop = (I SC_USHORT)
i sc_vax_integer (p, sizeof (1SC_USHORT));
p += sizeof (ISC_USHORT);

while (*p !'= isc_info_end)
{
switch (*p++)
{
case isc_spb_sec_usernane:
len = (I SC_USHORT)
i sc_vax_integer(p, sizeof(lSC_USHORT));
p += sizeof (ISC_USHORT);
strncpy (buf, p, len);
p += len;
buffer[len] = O;
printf ("Username: 9%\n", buffer);
loop -= (len + sizeof (I SC_USHORT) +1) ;

API GUIDE 233

CHAPTER 12 WORKING WITH SERVICES

br eak;

case isc_spb_sec_firstnane:
I en = (1 SC_USHORT)
i sc_vax_integer(p, sizeof(lSC_USHORT));
p += sizeof (ISC_USHORT);
strncpy (buf, p, len);
p += len;
buffer[len] = O;
printf ("Firstname: %\n", buffer);
loop -= (len + sizeof (I SC_USHORT) +1) ;
br eak;

case isc_spb_sec_m ddl enane:
len = (1 SC_USHORT)
i sc_vax_integer(p, sizeof(lSC_USHORT));
p += sizeof (ISC_USHORT);
strncpy (buf, p, len);
p += len;
buffer[len] = O;
printf ("M ddl enane: %\n", buffer);
loop -= (len + sizeof (I SC_USHORT) +1) ;
br eak;

case isc_spb_sec_| ast nane:
len = (I SC_USHORT)
i sc_vax_integer(p, sizeof(lSC_USHORT));
p += sizeof (ISC_USHORT);
strncpy (buf, p, len);
p += len;
buffer[len] = O;
printf ("Lastname: 9%\n", buffer);
loop -= (len + sizeof (I SC_USHORT) +1) ;
br eak;

case isc_spb_sec_groupid:
id = isc_vax_integer (p, sizeof (ISC_ULONG);
p += sizeof (ISC _ULONG;
printf ("Goup ID %l\n", id);
loop -= (len + sizeof (1 SC_ULONG) +1);
br eak;

234 INTERBASE 6

QUERYING THE SERVICES MANAGER

case isc_spb_sec_userid:
id = isc_vax_integer (p,
p += sizeof (ISC _ULONG;
printf ("User ID %\ n",

si zeof (I SC ULONG);

id);

loop -= (len + sizeof (I SC_ULONG +1);

br eak;

defaul t:
*X = *p;
br eak;
} /* end switch */
} /* end while */
br eak;

The isc_info_svc_svr_db_info result item returns multiple sets of data. There might be
multiple active databases to report, so the result buffer might contain multiple clusters.
The contents of the buffer end when a cluster is identified with the isc_info_flag_end
value. The following table describes the cluster identifiers for the database connection

information.

Argument Purpose Return length Return value

isc_spb_num_att The number of attachments currently inuse on 4 bytes Unsigned long
the server

isc_spb_num_db The number of databases currently in use on the 4 bytes Unsigned long
server

isc_spb_dbname The name of one of the databases currentlyinuse 2-byte length String
on the server; this item occurs once for each + string
database in use

isc_info_flag_end Signals the end of arguments to — —

isc_info_svc_svr_db_info

TABLE12.18 Services API database connection information arguments

EXAMPLE12.19 Querying using Services API: database attachments

case isc_info_svc_svr_db_info:

{

API GUIDE

235

CHAPTER 12 WORKING WITH SERVICES

printf ("Database information:\n");
do {
switch (*p++)
{
case isc_spb_dbnane:
{
/ * Database nanes in use */
path_l ength = (unsigned short)
i sc_vax_integer(p, sizeof(unsigned short));
p += sizeof (unsigned short);
buffer = (char*) malloc (path_| ength);
strncpy (buffer, p, path_length);
buffer [path_length] = "'\0";
printf ("Database in use: %\n", buffer);
p += path_l ength;
br eak;
}
case isc_spb_numatt:
{
/* Num Attachments */
unsi gned | ong nAttachnents;
p+= sizeof (unsigned short);
nAttachnents = (unsigned | ong)
i sc_vax_integer(p, sizeof (unsigned |ong));
printf ("\tNumber of attachments: %l\n",
nAtt achnent s) ;
p += sizeof (unsigned |ong);
br eak;
}
case isc_spb_num db:
{
/* Num dat abases */
unsi gned | ong nDat abases;
p+= sizeof (unsigned short);
nDat abases = (unsi gned | ong)
i sc_vax_integer(p, sizeof(unsigned |long));
printf ("\tNunmber of databases: %d\n",
nDat abases) ;
p += sizeof (unsigned |ong);
br eak;

236 INTERBASE 6

QUERYING THE SERVICES MANAGER

} while (*p !'=isc_info_flag_end);
br eak;

EXAMPLE12.20 Querying using Services API: end of example

)
} while (*p);

| i sc_service_detach(status, &service_handle);

Querying service tasks

Some service tasks return textual output. You can use the following items with
isc_service_query() to request output of a service task. The tasks that generate output are
those corresponding to the following Services API task items: isc_action_svc_backup,
isc_action_svc_restore, isc_action_svc_repair, isc_action_svc_db_stats,

| isc_action_svc_get_ib_log, and isc_action_get_users.
Task result items Purpose Return length Return value
isc_info_svc_line One line of output from a service task 2-bytelength Line of text
+ string
| isc_info_svc_to_eof Multiple lines of output from a service task, upto 2-byte length Buffer of text
the size of the result buffer + string
isc_info_svc_running Returns TRUE if a service task is already running 4 bytes Unsigned long;
on the server; used for a non-blocking check fora Tor0
task in progress
| isc_info_svc_get_users See: “Additional data for security q.v. q.v.
information” on page 232
isc_info_svc_limbo_trans Limbo transaction information for unresolved See below See below

distributed transactions

TABLE12.19 Services APl task query items

API GUIDE 237

» Additional data for task results

The isc_info_svc_limbo_trans result item returns multiple sets of data. If there are
multiple limbo transactions to report, the result buffer contains multiple clusters. The
contents of the buffer end when a cluster is identified with the isc_info_flag_end value.
The following table describes the cluster identifiers for the limbo transaction information.

Argument

Purpose

CHAPTER 12 WORKING WITH SERVICES

Return length

Return value

isc_dpb_single_tra_id
isc_spb_multi_tra_id

isc_spb_tra_host_site

isc_spb_tra_advise

isc_spb_tra_remote_site

isc_spb_tra_db_path

isc_spb_tra_state

isc_info_flag_end

Specifies a single-database limbo transaction ID
Specifies a multi-database limbo transaction ID

Hostname of the client host that initiated the
transaction; for multi-database transactions only

Server recommendation for resolution of alimbo
transaction; value is one of the following:
*isc_spb_tra_advise_commit
«isc_spb_tra_advise_rollback
«isc_spb_tra_advise_unknown

Hostname of a server on which the transaction is
in a limbo state

Path of the primary file of the database in which
the transaction is in a limbo state

Introduces a byte specifying the state of the
limbo transaction; value is one of the following:

*isc_spb_tra_state_limbo
*isc_spb_tra_state_commit
«isc_spb_tra_state_rollback

« isc_spb_tra_state_unknown (this state
should never occur)

Signals the end of arguments to
isc_info_svc_limbo_trans

4 bytes
4 bytes

2-byte length
+ string

1 byte

2-byte length
+ string

2-byte length
+ string

1 byte

Unsigned long
Unsigned long
String

Byte

String

String

Byte

TABLE12.20 Services API limbo transaction arguments

238

INTERBASE 6

USING THE SERVICES API' WITH DELPHI AND C++BUILDER

Using the Services APl with Delphi and (++Builder

InterBase Express'" components product provides a package of Data Access Components
for the visual development tools Delphi and C++Builder. This package includes a
component interface to the Services API described in this chapter. Refer to the Developer’s
Guide for documentation of the InterBase Express’" services components.

API GUIDE 239

CHAPTER 12 WORKING WITH SERVICES

240 INTERBASE 6

PART I

API
Reference
Guide

IIIIIIII

‘- -
'y W e
w w
W

CHAPTER

13

API Function Reference

This chapter is an alphabetical reference for the InterBase API function calls. It provides
tables that categorize calls by the tasks they perform, and then provides an alphabetical
and detailed description of each call, including its syntax, arguments, examples of use,
and cross references to related calls.

Function categories

API GUIDE

There are eleven classes of InterBase API function calls:
® Array functions for handling arrays of data
® Blob functions for handling the InterBase Blob datatype
® Database functions for handling database requests

® Conversion functions for translating dates between InterBase format and UNIX format,
and for reversing the byte-order of integers

® DSQL functions for handling SQL statements entered by users at run time
® Error-handling functions

® Event functions for registering interest in events posted by triggers and stored procedures
in applications and for processing the event queue

243

CHAPTER 13 API FUNCTION REFERENCE

® Information functions for retrieving information about databases, transactions, Blob data,
and events

® Security functions for adding, deleting, and modifying user records in the password
database

® Services functions for administering server and database properties
® Transaction functions for handling transactions in an application
Some functions, such as information calls, occur in more than one class.

The embedded installation functions are not counted as part of the InterBase client AP
They typically aren’t used in database client applications, but for product installation
applications. See the Developer’s Guide for information about creating custom
installation applications using the embedded installation functions.

Array functions

The following table summarizes the InterBase API functions available for handling array
data in an application:

Function name Purpose

isc_array_get_slice() Retrieve a specified part of an array field
isc_array_lookup_bounds() Determine the dimensions of an array field
isc_array_lookup_desc() Retrieve an array description
isc_array_put_slice() Write a specified part of an array field
isc_array_set_desc() Set an array description

TABLE13.1 Array functions

244 INTERBASE 6

FUNCTION CATEGORIES

TABLE13.2

API GUIDE

Blob functions

The following table summarizes the InterBase API functions available for handling Blob

data in an application:

Function name

Purpose

isc_blob_default_desc()
isc_blob_gen_bpb()
isc_blob_info()
isc_blob_lookup_desc()
isc_blob_set_desc()
isc_cancel_blob()
isc_close_blob()
isc_create_blob2()
isc_get_segment()
isc_open_blob2()

isc_put_segment()

Set a default Blob description for dynamic access

Generate a Blob parameter buffer (BPB) for dynamic access
Request information about a Blob field

Retrieve a Blob description

Set a Blob description

Discard a Blob

Close a Blob

Create a new Blob

Retrieve a segment of Blob data

Open a Blob for read access

Write a segment of Blob data

Blob functions

245

246

TABLE13.3

TABLE13.4

CHAPTER 13 API FUNCTION REFERENCE

Database functions

The following table summarizes the InterBase API functions available for handling
database requests in an application:

Function name

Purpose

isc_attach_database()
isc_database_info()
isc_detach_database()
isc_drop_database()
isc_expand_dpb()

isc_version()

Connect to an existing database

Request information about an attached database
Disconnect from a database

Delete an attached database and its associated files
Build a database parameter buffer (DPB) dynamically

Retrieve database implementation number and on-disk
structure (ODS) major and minor version numbers

Database functions

Conversion functions

The following table summarizes the InterBase API functions available for translating
between InterBase DATE, TIME, and TIMESTAMP format and the UNIX date format, and for
reversing the byte-order of an integer:

Function name

Purpose

isc_decode_sql_date()
isc_encode_sql_date()
isc_decode_sql_time()
isc_encode_sql_time()
isc_decode_timestamp()
isc_encode_timestamp()

isc_vax_integer()

Translate a date from InterBase format to C struect tm format
Translate a date from Cstruct tm format to InterBase format
Translate a time from InterBase format to C struct tm format
Translate a time from C ¢z format to InterBase format

Translate a date and time from InterBase format to Cstruect tm format
Translate a date and time from Cstruct tm format to InterBase format

Reverse the byte-order of an integer

Date and conversion functions

INTERBASE 6

FUNCTION CATEGORIES

TABLE13.5

API GUIDE

Note To provide backward compatibility, the isc_encode_date() and isc_decode_date()

functions are still available. They behave exactly like isc_encode_timestamp() and

isc_decode_timestamp().

DSQL functions

The following table summarizes the InterBase API functions available for handling DSQL
statements built or entered by users at run time:

Function name

Purpose

isc_dsql_allocate_statement()

isc_dsql_alloc_statement2()

isc_dsql_describe()

isc_dsql_describe_bind()

isc_dsql_execute()
isc_dsql_execute2()

isc_dsql_execute_immediate()

isc_dsql_exec_immed2()

isc_dsql_fetch()

isc_dsql_free_statement()

isc_dsql_prepare()
isc_dsql_set_cursor_name()

isc_dsql_sql_info()

Allocate a statement handle

Allocate a statement handle that is automatically freed on
database detachment

Fill in an XSQLDA with information about values returned by a
statement

Fillin an xsQLDA with information about a statement’s input
parameters

Execute a prepared statement
Execute a prepared statement returning a single set of values

Prepare and execute a statement without return values for
one-time use

Prepare and execute a statement with a single set of return
values for one-time use

Retrieve data returned by a previously prepared and executed
statement

Free a statement handle, or close a cursor associated with a
statement handle

Prepare a statement for execution
Define a cursor name and associate it with a statement handle

Request information about a prepared statement

DSQL functions

247

CHAPTER 13 API FUNCTION REFERENCE

Error-handling functions

The following table summarizes the InterBase API functions available for handling
database error conditions an application:

Function name Purpose

isc_interprete() Capture InterBase error messages to a buffer
isc_print_sqlerror() Display an SQL error message
isc_print_status() Display InterBase error messages
isc_sqlcode() Set the value of SQLCODE

isc_sql_interprete() Capture an SQL error message to a buffer

TABLE13.6 Error-handling functions

Event functions

The following table summarizes the InterBase API functions available for handling events
in an application:

Function name Purpose

isc_cancel_events() Cancel interest in an event

isc_event_block() Allocate event parameter buffers

isc_event_counts() Get the change in values of event counters in the event array
isc_que_events() Wait asynchronously until an event is posted

isc_wait_for_event() Wait synchronously until an event is posted

TABLE13.7 Event functions

248 INTERBASE 6

FUNCTION CATEGORIES

TABLE13.8

TABLE13.9

API GUIDE

Information functions

The following table summarizes the InterBase API functions available for reporting
information about databases, transactions, and Blob data to a client application that

requests it:

Function name

Purpose

isc_blob_info()
isc_database_info()
isc_dsql_sql_info()
isc_transaction_info()

isc_version()

Request information about a Blob field

Request information about an attached database
Request information about a prepared DSQL statement
Request information about a specified transaction

Retrieve database implementation number and on-disk structure
(ODS) major and minor version numbers

Information functions

Security functions

The following table summarizes the InterBase API functions available for adding,
deleting, and modifying user records in the password database:

Function name

Purpose

isc_add_user()
isc_delete_user()

isc_modify_user()

Adds a user to the password database
Deletes a user from the password database

Modifies user information in the password database

Security functions

249

CHAPTER 13 API FUNCTION REFERENCE

Services functions

The following table summarizes the InterBase API functions available for programmatic
control of server and database administration tasks:

Function name Purpose

isc_service_attach() Attach to the InterBase Services Manager facility; required before
using any of the InterBase services

isc_service_detach() End the attachment to the InterBase Services Manager

isc_service_query() Request and retrieve information about the InterBase server to
which the client is attached

isc_service_start() Perform a service task on the InterBase server to which the client
is attached

TABLE13.10 Service functions

Transaction control functions

The following table summarizes the InterBase API functions available for controlling
transactions in an application:

Function name Purpose
isc_commit_retaining() Commit a transaction, and start a new one using the original
transaction’s context

isc_commit_transaction() Save a transaction’s database changes, and end the transaction
isc_prepare_transaction() Execute the first phase of a two-phase commit
isc_prepare_transaction2() Execute the second phase of a two-phase commit
isc_rollback_transaction() Undo a transaction’s database changes, and end the transaction

isc_start_multiple() Begin new transactions (used on systems that do not support a
variable number of input arguments)

isc_start_transaction() Begin new transactions

isc_transaction_info() Request information about a specified transaction

TABLE13.11 Transaction control functions

250 INTERBASE 6

USING FUNCTION DEFINITIONS

Using function definitions

Each function definition in this chapter includes the elements in the following table:

Element Description

Title Function name

Definition Main purpose of function

Syntax Diagram of the function and parameters

Parameters Table describing each parameter

Description Detailed information about using the function

Example Example of using the function in a program

Return value Description of possible values returned in the status vector, if any
See also Cross references to other related functions

TABLE13.12 Function description format

isc_add_usen)

Adds a user record to the password database, isc4.gdb.

Note Use of this function is deprecated. It is replaced by a full featured Services API. See
Chapter 12: “Working with Services” on page 199 and the reference entry for
“isc_service_start()” on page 380.

Syntax | SC_STATUS isc_add_user (
| SC_STATUS *st at us
USER _SEC DATA *user_sec_data);

Parameter Type Description
status vector ISC_STATUS * Pointer to the error status vector
user_sec_data USER_SEC_DATA* Pointer to a struct that is defined in ibase.h

Description The three security functions, isc_add_user(), isc_delete_user(), and isc_modify_user()
mirror functionality that is available in the gsec command-line utility. isc_add_user()
adds a record to isc4.gdb, InterBase’s password database.

API GUIDE 251

252

CHAPTER 13 API FUNCTION REFERENCE

At a minimum, you must provide the user name and password. If the server is not local,
you must also provide a server name and protocol. Valid choices for the protocol field are
sec_protocol_tcpip, sec_protocol_netbeui, sec_protocol_spx, and sec_protocol_local.

InterBase reads the settings for the ISC_USER and ISC_PASSWORD environment variables if
you do not provide a DBA user name and password.

The definition for the USER _SEC_DATA structure in ibase.h is as follows:
typedef struct {

short sec_flags; /* which fields are specified */
i nt ui d; /* the user’'s id */

i nt gi d; /* the user’'s group id */

i nt pr ot ocol ; /* protocol to use for connection */
char *server; /* server to administer */

char *user _nane; /* the user’'s nanme */

char *passwor d; /* the user’s password */

char *group_nane; /* the group nane */

char *first_nane; /* the user’s first nane */

char *m ddl e_nane; /* the user’s middle nane */
char *| ast _nane; /* the user’s last nane */

char *dba_user _nane; /* the dba user nane */
char *dba_password; /* the dba password */
} USER _SEC DATA;

When you pass this structure to one of the three security functions, you can tell it which
fields you have specified by doing a bitwise OR of the following values, which are defined
in ibase.h:

sec_ui d_spec 0x01
sec_gi d_spec 0x02
sec_server_spec 0x04
sec_passwor d_spec 0x08
sec_group_name_spec 0x10
sec_first_name_spec 0x20
sec_m ddl e_nane_spec 0x40
sec_l ast _nane_spec 0x80
sec_dba_user_nane_spec 0x100
sec_dba_passwor d_spec 0x200

No bit values are available for user name and password, since they are required.

INTERBASE 6

isc_add_user()

TABLE13.13

Example

API GUIDE

The following error messages exist for this function:

Code Value Description
isc_usrname_too_long 335544747 The user name passed in is greater than 31 bytes
isc_password_too_long 335544748 The password passed in is longer than 8 bytes
isc_usrname_required 335544749 The operation requires a user name
isc_password_required 335544750 The operation requires a password
isc_bad_protocol 335544751 The protocol specified is invalid
isc_dup_usrname_found 335544752 The user name being added already exists in the
security database
isc_usrname_not_found 335544753 The user name was not found in the security database
isc_error_adding_sec_record 335544754 An unknown error occurred while adding a user
isc_error_deleting_sec_record 335544755 Anunknown error occurred while deleting a user

isc_error_modifying_sec_record

isc_error_updating_sec_db

335544756
335544757

An unknown error occurred while modifying a user

An unknown error occurred while updating the
security database

Error messages for user security functions

The following example adds a user (“Socks”) to the password database, using the
bitwise OR technique for passing values from the USER_SEC_DATA structure.

{

| SC_STATUS st at us[20] ;

USER_SEC DATA sec;

sec. server = "kennel ";

sec. dba_user _nane = "sysdba";

sec. dba_passwor d = "mast erkey";

sec. prot ocol = sec_protocol _tcpip;

sec. first_name = "Socks";

sec. | ast _nane = "dinton";

sec. user_namne = "socks";

sec. password ="2meow "; /* Note: do not hardcode passwords
*/

sec. sec_fl ags

sec_server_spec

253

CHAPTER 13 API FUNCTION REFERENCE

| sec_password_spec
| sec_dba_user_name_spec
| sec_dba_password_spec
| sec_first_name_spec
| sec_l ast_name_spec;
i sc_add_user (status, &sec);
/* check status for errors */

if (status[0] == 1 && status[1])
{
switch (status[1]) {
case isc_usrnane_too_Il ong:
printf("Security database cannot accept |ong user nanes\n");
br eak;
}
}

}

Return Value isc_add_user() returns the second element of the status vector. Zero indicates success. A
nonzero value indicates an error. See the “Description” section for this function for a list
of error codes. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_delete_user(), isc_modify_user()

isc_array_get_slice()

Retrieves data from an array column in a row returned by a SELECT.

Syntax | SC_STATUS isc_array_get_slice(
| SC_STATUS *st at us_vect or,
i sc_db_handl e *db_handl e,
isc_tr_handle *trans_handl e,
| SC_QUAD *array_id,
| SC_ARRAY_DESC *desc,
voi d *dest _array,
| SC_ LONG *slice_l ength);

254 INTERBASE 6

isc_array_get_slice()

Parameter Type Description
status_vector ISC_STATUS * Pointer to the error status vector
db_handle isc_db_handle * Pointer to a database handle set by a previous call to

isc_attach_database(); the handle identifies the
database containing the array column

db_handle returns an error in status_vector if it is NULL
trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been

set by a previous isc_start_transaction() call;
trans_handle returns an error if NULL

array_id ISC_QUAD * Internal identifier for the array; the array ID must be
previously retrieved through API DSQL functions

desc ISC_ARRAY_DESC * Descriptor defining the array slice (entire array or
subset) to be retrieved

dest_array void * Pointer to a buffer of length slice_length into which

the array slice will be copied by this function

slice_length ISC_LONG * Length, in bytes, of the dest_array buffer

isc_array_get_slice() retrieves data from an array column of a table row using an array
ID. You can either retrieve all the array elements in that column, or a subset of contiguous
array elements, called a slice. The upper and lower boundaries in the desc structure
specify which elements are to be retrieved.

InterBase copies the elements into the buffer, dest_array, whose size is specified by
slice_length. This should be at least the expected length required for the elements
retrieved. Before returning from isc_array_get_slice(), InterBase sets slice_length to the
actual number of bytes copied.

Before calling isc_array_get_slice(), there are many operations you must do in order to
fill in the array descriptor, desc, determine the appropriate internal array identifier,
array_id, and fetch the rows whose array columns you want to access. For complete
step-by-step instructions for setting up an array descriptor and retrieving array
information, see Chapter 8, “Working with Array Data.”

API GUIDE 255

Example

256

CHAPTER 13 API FUNCTION REFERENCE

Note Never execute a DSQL statement that tries to access array column data directly
unless you are fetching only a single element. The way to access slices of array column
data is to call isc_array_get_sliceQ) or isc_array_put_slice(). The only supported array
references in DSQL statements are ones that specify an entire array column (that is, just
the column name) in order to get the internal identifier for the array, which is required
by isc_array_get_slice() and isc_array_put_slice(), or single element references.

The following program operates on a table named PROJ_DEPT_BUDGET.

This table contains the quarterly head counts allocated for each project in each
department of an organization. Each row of the table applies to a particular department
and project. The quarterly head counts are contained in an array column named
QUARTERLY_HEAD_CNT. Each row has four elements in this column, one per quarter. Each
element of the array is a number of type long.

The example below selects the rows containing 1994 information for the project named
VBASE. For each such row, it retrieves and prints the department number and the data in
the array column (that is, the quarterly head counts).

In addition to illustrating the usage of isc_array_lookup_bounds() and
isc_array_get_slice(), the program shows data structure initializations and calls to the
DSQL functions required to prepare and execute the SELECT statement, to obtain the
array_id needed by isc_array_get_slice(), and to fetch the selected rows one by one.

#i ncl ude <i base. h>
#define Return_if_Error(stat) if (stat[0] == 1 & stat[1]) \
{\
isc_print_status(stat); \
return(l); \
}
char *sel _str =
"SELECT dept_no, quarterly_head_cnt FROM proj_dept_budget \
WHERE year = 1994 AND proj_id = 'VBASE “;
char dept_no[6] ;
I ong hent[4], tr_handl e, database_handl e, SQLCODE;
short len, i, flag0, flagl;
| SC_QUAD array_id;
| SC_ARRAY_DESC desc;
| SC_STATUS st atus_vector[20], fetch_stat;
isc_stm _ handle stnt = NULL;
XSQ.DA *osql da;
tr_handl e = database_handl e = OL;
/* Attach to a database here--this code onmitted for brevity */
/* Start a transaction here--this code onmitted for brevity */
/* Set up the SELECT statenent. */

INTERBASE 6

isc_array_get_slice()

API GUIDE

/* Allocate the output XSQLDA for holding the array data. */
osql da = (XSQLDA *) mal | oc(XSQLDA_LENGTH(2)) ;
osql da->sqln = 2;
osql da- >version = 1;
/* Allocate a statenent handle. */
i sc_dsql _al | ocat e_st at enment (
status_vector,
&dat abase_ handl e,
&stnt);
Return_if_Error(status_vector);
/* Prepare the query for execution. */
i sc_dsql _prepare(
status_vector,
&t r_handl e,
&stnt,
0,
sel _str,
1,
osql da) ;
Return_if_Error(status_vector);
/* Set up an XSQLVAR structure to allocate space for each item
to be retrieved. */
osql da- >sql var[0] . sql dat a (char *) dept_no;
osql da- >sql var[0] . sql type SQL_TEXT + 1;
osql da->sql var[0] .sqglind = &fl agO;
osql da->sql var[1].sqldata = (char *) &array_id,;
osql da->sql var[1] .sqltype = SQ._ARRAY + 1;
osql da->sql var[1] .sqglind = &fl agl;
/* Execute the SELECT statenent. */
i sc_dsql _execut e(
stat us_vector,
& r _handl e,
&stnt,
1,
NULL) ;
Return_if_Error(status_vector);
/* Set up the array descriptor. */
i sc_array_| ookup_bounds(
status_vector,
&dat abase_handl e, /* Set by previous isc_attach_database() call. */
& r_handle, /* Set by previous isc_start_transaction() call. */
"PRQJ_DEPT_BUDGET", /* Table nane. */

257

258

CHAPTER 13 API FUNCTION REFERENCE

"QUARTERLY_HEAD CNT", /* Array columm name. */
&desc) ;
Return_if_Error(status_vector);

/* Fetch the head count for each departnent’s four quarters. */
while ((fetch_stat = isc_dsqgl _fetch(
stat us_vector,

&stnt,
1,
osqglda)) == 0)
{
if (!flagl)
{
/* There is array data; get the current values. */
I en = sizeof (hent);
/* Fetch the data fromthe array colum into hcnt array. */
isc_array_get_slice(
stat us_vector,
&dat abase_ handl e,
& r _handl e,
&array_id,
&desc,
hcnt
&l en);
Return_if_Error(status_vector);
[* Print departnment nunmber and head counts. */
dept _no[osql da->sqlvar[0].sqllen] = "'\0";
printf("Departnent #: 9%\n\n", dept_no);
printf("\tCurrent counts: %l % % %\ n",
hcnt[0], hent[1], hent[2], hent[3]);
b
}
if (fetch_stat != 100L)
{
SQLCCDE = isc_sql code(status_vector);
isc_print_sqlerror(SQCODE, status_vector);
return(l);
}

INTERBASE 6

isc_array_lookup_bounds()

Return Value isc_array_get_slice() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_bhandle,
isc_bad_trans_bandle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_array_lookup_bounds(), isc_array_lookup_desc(), isc_array_put_slice(),
isc_array_set_desc(), isc_dsql_fetch(), isc_dsql_prepare()

isc_array_lookup_bounds()

Determines the datatype, length, scale, dimensions, and array boundaries for the
specified array column in the specified table.

Syniax | SC_STATUS i sc_array_| ookup_bounds(
| SC_STATUS *st at us_vect or,
i sc_db_handl e *db_handl e,
isc_tr_handle *trans_handl e,
char *tabl e_nane,
char *col um_nane,
| SC_ARRAY_DESC *desc);

API GUIDE 259

Description

260

CHAPTER 13 API FUNCTION REFERENCE

Parameter Type Description
status_vector ISC_STATUS * Pointer to the error status vector
db_handle isc_db_handle * Pointer to a database handle set by a previous call to

isc_attach_database(); the handle identifies the
database containing the array column

db_handle returns an error in status_vector if it is NULL

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been
set by a previous isc_start_transaction() call;
trans_handle returns an error if NULL

table_name char * Name of the table containing the array column,
column_name; can be either null-terminated or
blank-terminated

column_name char* Name of the array column; can be either
null-terminated or blank-terminated

desc ISC_ARRAY_DESC * Pointer to a descriptor for the arrays that will be filled
in by this function

isc_array_lookup_bounds() determines the datatype, length, scale, dimensions, and
array boundaries for the elements in an array column, column_name in the table,
table_name. 1t stores this information in the array descriptor, desc.

isc_array_lookup_bounds() sets a flag in the descriptor to zero. This specifies that the
array should be accessed in future function calls in row-major order, the default. If an
application requires column-major access, reset this flag to 1.

The array descriptor is used in subsequent calls to isc_array_get_slice() or
isc_array_put_sliceQ).

For a detailed description of the array descriptor, see Chapter 8, “Working with Array
Data.”

Note There are ways to fill in an array descriptor other than by calling
isc_array_lookup_bounds(). You can also:

® Call isc_array_lookup_desc(). This is exactly the same as calling
isc_array_lookup_bounds(), except that the former does not fill in information about the
upper and lower bounds of each dimension.

® Call isc_array_set_desc() to initialize the descriptor from parameters you call it with,
rather than accessing the database metadata.

INTERBASE 6

isc_array_lookup_bounds()

® Set the descriptor fields directly. Note that array_desc_dtype must be expressed as one of
the datatypes in the following table, and the parameters, array_desc_field_name, and
array_desc_relation_name, must be null-terminated:

array_desc_dtype Corresponding InterBase datatype
blr_text CHAR

blr_text2 CHAR

blr_short SMALLINT

blr_long INTEGER

blr_quad ISC_QUAD structure
blr_float FLOAT

blr_double DOUBLE PRECISION
blr_sql_date DATE

blr_sql_time TIME

blr_timestamp TIMESTAMP

blr_varying VARCHAR

blr_varying2 VARCHAR

blr_blob_id ISC_QUAD structure
blr_cstring NULL-terminated string
blr_cstring2 NULL-terminated string

TABLE13.14 Datatypes for array descriptor fields

Example The following illustrates a sample call to isc_array_lookup_bounds(). More complete
examples of accessing arrays are found in the example programs for
isc_array_get_slice() and isc_array_put_slice().

#i ncl ude <i base. h>
| SC_STATUS st atus_vector[20];
| SC_ARRAY_DESC desc;

char *str1l = "PRQJ_DEPT_BUDGET";
char *str2 = "QUARTERLY_HEAD CNT":

API GUIDE 261

Return Value

262

See Also

CHAPTER 13 API FUNCTION REFERENCE

i sc_array_| ookup_bounds(
stat us_vector,

&dat abase_handl e, /* Set in previous isc_attach_database() call. */
& r_handle, /* Set in previous isc_start_transaction() call. */
strl,
str2,
&desc) ;
if (status_vector[0] == 1 && status_vector[1])
{
/* Process error. */
isc_print_status(status_vector);
return(l);
}

isc_array_lookup_bounds() returns the second element of the status vector. Zero
indicates success. A nonzero value indicates an error. For InterBase errors, the first
element of the status vector is set to 1, and the second element is set to
isc_bad_stmt_handle, isc_bad_trans_handle, isc_fld_not_def, or another InterBase
error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_array_get_slice(), isc_array_lookup_desc(), isc_array_put_slice(),
isc_array_set_desc()

INTERBASE 6

isc_array_lookup_desc()

isc_array_lookup_desc()

Determines the datatype, length, scale, and dimensions for all elements in the specified

Syniax

Description

API GUIDE

array column in the specified table.

| SC_STATUS i sc_array_| ookup_desc(

| SC_STATUS *st at us_vect or,
i sc_db_handl e *db_handl e,

isc_tr_handle *trans_handl e,

char *tabl e_nane,
char *col um_nane,
| SC_ARRAY_DESC *desc);

Parameter Type

Description

status_vector ISC_STATUS *

db_handle isc_db_handle *

trans_handle isc_tr_handle *

table_name char *

column_name char *

desc ISC_ARRAY_DESC *

Pointer to the error status vector

Pointer to a database handle set by a previous call to
isc_attach_database(); the handle identifies the
database containing the array column

db_handle returns an error in status_vector if it is NULL

Pointer to a transaction handle whose value has been
set by a previous isc_start_transaction() call;
trans_handle returns an error if NULL

Name of the table containing the array column
column_name; can be either null-terminated or
blank-terminated

Name of the array column; can be either
null-terminated or blank-terminated

Pointer to an array descriptor that will be filled in by
this function

isc_array_lookup_desc() determines the datatype, length, scale, and dimensions for the
array column, column_name, in the table, table_name. 1t stores this information in the

array descriptor, desc.

It also sets to 0 a flag in the descriptor. This specifies that the array is accessed in future
function calls in row-major order, the default. If an application requires column-major

access, reset this flag to 1.

263

CHAPTER 13 API FUNCTION REFERENCE

The array descriptor is used in subsequent calls to isc_array_get_slice() or
isc_array_put_sliceQ).

For a detailed description of the array descriptor, see Chapter 8, “Working with Array
Data.”

Note There are ways to fill in an array descriptor other than by calling
isc_array_lookup_desc(). You can also:

® Call isc_array_lookup_bounds(). This is like isc_array_lookup_desc(), except that
isc_array_lookup_bounds() also fills in information about the upper and lower bounds
of each dimension.

® Call isc_array_set_desc(), to initialize the descriptor from parameters you call it with,
rather than accessing the database metadata.

= Set the descriptor fields directly. Note that array_desc_dtype must be expressed as one of
the datatypes in the following table, and the parameters, array_desc_field_name, and
array_desc_relation_name, must be null-terminated:

array_desc_dtype Corresponding InterBase datatype
bir_text CHAR

blr_text2 CHAR

blr_short SMALLINT

blr_long INTEGER

blr_quad ISC_QUAD structure
blr_float FLOAT

blr_double DOUBLE PRECISION
blr_sql_date DATE

blr_sql_time TIME
blr_timestamp TIMESTAMP

TABLE13.15 Datatypes for array descriptor fields

264 INTERBASE 6

isc_array_lookup_desc()

TABLE13.15

Example

Return Value

API GUIDE

array_desc_dtype Corresponding InterBase datatype
blr_varying VARCHAR

blr_varying2 VARCHAR

blr_blob_id ISC_QUAD structure

blr_cstring NULL-terminated string

blr_cstring2 NULL-terminated string

Datatypes for array descriptor fields (continued)

The following illustrates a sample call to isc_array_lookup_desc(). More complete
examples of accessing arrays are found in the example programs for
isc_array_get_slice() and isc_array_put_slice().

#i ncl ude <i base. h>

| SC_STATUS st atus_vector[20];

| SC_ARRAY_DESC desc;

char strl = "PRQJ_DEPT_BUDGET";
char str2 = "QUARTERLY_HEAD_CNT";

i sc_array_| ookup_desc(
status_vector,

&dat abase_handl e, /* Set in previous isc_attach_database() call. */
& r_handle, /* Set in previous isc_start_transaction() call. */
strl,
str2,
&desc) ;
if (status_vector[0] == 1 && status_vector[1])
{
/* Process error. */
isc_print_status(status_vector);
return(l);
H

isc_array_lookup_desc() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_bandle,
isc_bad_trans_bandle, isc_fld_not_def, or another InterBase error code.

265

CHAPTER 13 API FUNCTION REFERENCE

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_array_get_slice(), isc_array_lookup_bounds(), isc_array_put_slice(),
isc_array_set_desc()

isc_array_put_slice()
Writes data into an array column.

Syntax |1 SC_STATUS isc_array_put_slice(
| SC_STATUS *status_vector,
i sc_db_handl e *db_handl e,
isc_tr_handl e *trans_handl e,
| SC_QUAD *array_id,
| SC_ARRAY_DESC *desc,
voi d *source_array,
| SC_LONG *slice_l ength);

Parameter Type Description
status_vector ISC_STATUS * Pointer to the error status vector
db_handle isc_db_handle * Pointer to a database handle set by a previous call to

isc_attach_database(); the handle identifies the
database containing the array column

db_handle returns an error in status_vector if it is NULL

trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been
set by a previous isc_start_transaction() call;
trans_handle returns an error if NULL

array_id ISC_QUAD * On input, NULL (if you are creating a new array), or the
internal identifier for an array to be modified, as
assigned by the InterBase engine. This internal
identifier must have been determined by previous
calls to DSQL functions.

This function changes array_id to be the identifier for
the array it creates or modifies (see below).

266 INTERBASE 6

isc_array_put_slice()

Description

API GUIDE

Parameter Type Description

desc ISC_ARRAY_DESC * Descriptor defining the array slice (entire array or
subset) to be written to

source_array void * Pointer to a buffer of length slice_length, that contains
the slice of data that will be copied to the array by this
function

slice_length ISC_LONG * Length, in bytes, of the source_array buffer

isc_array_put_slice() writes data into an array column. You can either store into all the
array elements in that column, or into an array slice, a subset of contiguous array
elements. The boundaries passed to the function in the array descriptor, desc, specify
which elements are to be stored into.

InterBase copies the elements from the buffer, source_array, whose size is specified by
slice_length.

The array identifier (array ID), array_id, should be passed as NULL if you are calling
isc_array_put_slice() to create a new array. If you are calling it to modify an existing
array, then array_id should be the identifier of the array to be modified. This must have
been determined by previous calls to DSQL functions.

When isc_array_put_slice() is called with an array ID of an existing array, it:

1. Creates a new array with the same dimensions, bounds, etc., as the specified
array, and copies the existing array data to the new array.

2. Writes the data from the array buffer, source_array, to the new array (or slice
of the array), per the bounds specified in the array descriptor, desc.

3. Returns in the same array_id variable the array ID of the new array.
When isc_array_put_slice() is called with a NULL array ID, it:

1. Creates a new empty array with dimensions, bounds, etc., as declared for the
array column whose name and table name are specified in the array
descriptor, desc.

2. Writes the data from the array buffer, source_array, to the new array (or slice
of the array)

3. Returns in the array_id variable the array ID of the new array.

Note that in both cases, a new array is created, and its array ID is returned in the array_id
variable. The array is temporary until an UPDATE or INSERT statement is executed to
associate the array with a particular column of a particular row.

267

Example

268

CHAPTER 13 API FUNCTION REFERENCE

You can make a single call to isc_array_put_slice() to write all the data you wish to the
array. Or, you can call isc_array_put_sliceQ multiple times

to store data into various slices of the array. In this case, each call to isc_array_put_slice()
after the first call should pass the array ID of the temporary array. When
isc_array_put_slice() is called with the array ID of a temporary array, it copies the
specified data to the specified slice of the temporary array (it will not create a new array),
and it doesn’t modify array_id.

Before calling isc_array_put_slice(), there are many operations you must do in order to
fill in the array descriptor, desc, determine the appropriate internal array identifier,
array_id, and fetch the rows whose array columns you want to access.

For complete step-by-step instructions for setting up an array descriptor and writing array
information, see Chapter 8, “Working with Array Data.”

Note Never execute a DSQL statement that tries to directly store data into an array
column. The only way to access array column data is by calling isc_array_get_slice() or
isc_array_put_sliceQ). The only supported array references in DSQL statements are ones
that specify an entire array column (that is, just the column name) in order to get the
internal identifier for the array, which is required by isc_array_get_slice() and
isc_array_put_sliceQ).

The following program operates on a table named PROJ_DEPT_BUDGET. This table
contains the quarterly head counts allocated for each project in each department of an
organization. Each row of the table applies to a particular department and project. The
quarterly head counts are contained in an array column named QUARTERLY_HEAD_CNT.
Each table row has four elements in this column, one per quarter. Each element is a
number of type long.

This program selects the rows containing 1994 information for the project named VBASE.
For each such row, it calls isc_array_get_slice() to retrieve a slice of the array, the
quarterly head counts for the last two quarters. It then increments each, and calls
isc_array_put_slice() to store the updated values.

In addition to illustrating the usage of isc_array_lookup_desc(), isc_array_get_slice(),
and isc_array_put_slice(), the program shows data structure initializations and calls to
the DSQL functions required to prepare and execute the SELECT and UPDATE statements,
to obtain the array_id needed by isc_array_get_slice() and isc_array_put_slice(), to
fetch the selected rows one by one, and to update the array ID.

#i ncl ude <i base. h>
#define Return_if_Error(stat) if (stat[0] == 1 & stat[1]) \
{\

isc_print_status(stat); \

INTERBASE 6

isc_array_put_slice()

API GUIDE

return(l); \
}

char *sel _str =

"SELECT dept_no, quarterly_head_cnt FROM proj_dept_budget \

WHERE year = 1994 AND proj_id = 'VBASE ";
char *upd_str =
" UPDATE proj _dept _budget SET quarterly_head_count = ? \
WHERE CURRENT OF S';

char dept_no[6] ;

Il ong fetch_stat, SQ.CODE, hcnt[2];
short len, i, flag0, flagl, flag2;
| SC_QUAD array_id;

| SC_ARRAY_DESC desc;

| SC_STATUS st atus_vector[20];
isc_stm handle stnt = NULL;
isc_stm handle ustnt = NULL;

char *cursor = "S";

XSQ.DA *osqgl da, *isql da;

/* Set up the SELECT statenent. */

/* Allocate the output XSQLDA for holding the array data. */
osql da = (XSQLDA *) mal | oc(XSQLDA_LENGTH(2)) ;

osql da->sqln = 2;

osql da- >versi on = SQLDA VERSI ON1;

/* Allocate a statenent handle for the SELECT statenent. */
i sc_dsql _al | ocat e_st at enment (

status_vector, &database_handle, &stnt);
Return_if_Error(status_vector);

/* Prepare the query for execution. */
i sc_dsql _prepare(

status_vector,

& r _handl e,

&stnt,

0,

sel _str,

1,

osql da);

269

CHAPTER 13 API FUNCTION REFERENCE

Return_if_Error(status_vector);

/* Set up an XSQLVAR structure to allocate space for each item
to be retrieved. */

osql da- >sql var[0] . sql dat a (char *) dept_no;
osql da->sql var[0].sqltype = SQL_TEXT + 1;
osql da->sql var[0] .sqglind = &fl agO;

osql da->sql var[1].sqldata = (char *) &array_id,;
osql da->sql var[1] .sqltype = SQ_ARRAY + 1;
osql da->sql var[1] .sqglind = &fl agl;

/* Execute the SELECT statenent. */
i sc_dsql _execut e(

st atus_vector,

& r _handl e,

&stnt,

1,

NULL) ;
Return_if_Error(status_vector);

/* Declare a cursor. */

i sc_dsql _set _cursor_nane(
status_vector, &stnt, cursor, 0);

Return_if_Error(status_vector);

/* Set up the UPDATE statenent. */

/* Allocate a statenent handle for the UPDATE statenent. */
i sc_dsql _al | ocat e_st at enment (

status_vector, &database_handl e, &ustnt);
Return_if_Error(status_vector);

/* Allocate the input XSQDA */

isqlda = (XSQLDA *) mal | oc(XSQLDA_LENGTH(2)) ;
i sql da->sqgln = 1;

1sql da- >versi on = SQLDA VERSI ON1;

/* Prepare the UPDATE statenent for execution. */

i sc_dsql _prepare(
status_vector,

270 INTERBASE 6

isc_array_put_slice()

API GUIDE

& r _handl e,

&ust nt

0,

upd_str,

1,

NULL) ;
Return_if_Error(status_vector);

[* Initialize the input XSQLDA. */
i sc_dsql _descri be_bi nd(

status_vector, &ustmt, 1, isqlda);
Return_if_Error(status_vector);

/* Set up the input sqgldata and sqlind fields. */
i sql da->sqgl var[0] . sgl data = (char *) &array_id;
i sql da->sql var[0].sqglind = &fl ag2;

/* Set up the array descriptor. */

i sc_array_| ookup_desc(
stat us_vector,
&dat abase_handl e, /* Set by previous isc_attach_database() call. */
& r_handle, /* Set by previous isc_start_transaction() call. */
"PRQJ_DEPT_BUDGET", /* Table nane. */
"QUARTERLY_HEAD CNT", /* Array columm name. */
&desc) ;

Return_if_Error(status_vector);

/* Set the descriptor bounds to those of the slice to be updated, that
is, to those of the last two el ements. Assuming the array colum was
defined to contain 4 elenents, with a | ower bound (subscript) of 1 and
an upper bound of 4, the |l ast two el ements are at subscripts 3 and 4. */
desc->array_desc_bounds[0] . array_bound_| ower = 3;
desc->array_desc_bounds[0] . array_bound_upper = 4;
/* Fetch and process the rows of interest. */
while ((fetch_stat = isc_dsqgl _fetch(
status_vector, &stnt, 1, osqlda)) == 0)
{
if (!flagl)
{
/* There is array data; get values for last two quarters. */
I en = sizeof (hent);

271

/* Fetch the data fromthe array slice
isc_array_get_slice(

st atus_vector,

&dat abase_handl e,

& r _handl e,

&array_id,

&desc,

hcnt

&l en);
Return_if_Error(status_vector);

/* Add 1 to each count. */
for (i =0; i <2; i++)
hent[i] = hent[i] + 1;

/* Save new val ues. */
isc_array_put_slice(

status_vector,

&dat abase_ handl e,

& r _handl e,

&array_id,

&desc,

hcnt

&l en);
Return_if_Error(status_vector);

/* Update the array ID. */
i sc_dsql _execut e(

CHAPTER 13 API FUNCTION REFERENCE

into hcnt array. */

status_vector, & r_handle, &ustnt, 1, isqlda);

Return_if_Error(status_vector);

H

H

if (fetch_stat != 100L)

{
SQLCCODE = isc_sql code(status_vector);
isc_print_sqlerror(SQCODE, status_vector);
return(l);

}

272

INTERBASE 6

isc_array_set_desc()

Return Value isc_array_put_slice() returns the second element of the status vector. Zero indicates

See Also

success. A nonzero value indicates an error. For InterBase errors, the first element of the

status vector is set to 1, and the second element is set to isc_bad_stmt_bhandle,

isc_bad_trans_bandle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_array_get_slice(), isc_array_lookup_bounds(), isc_array lookup_desc(),
isc_array_set_desc(), isc_dsql_allocate_statement(), isc_dsql_describe_bind(),

isc_dsql_execute(), isc_dsql_fetch(), isc_dsql_prepare(),

isc_dsql_set_cursor_name()

isc_array_set_desc()

Syniax

API GUIDE

Initializes an array descriptor.

| SC_STATUS isc_array_get _slice(

| SC_STATUS *st at us_vect or,

char *tabl e_nane,
char *col um_nane,
short *sql _dtype,
short *sql _I| ength,
short *di nensi ons,

| SC_ARRAY_DESC *desc);

Parameter Type

Description

status_vector ISC_STATUS *

table_name char *

column_name char *

sql_dtype short *
sql_length short *
dimensions short *
desc ISC_ARRAY_DESC *

Pointer to the error status vector

Blank- or null-terminated name of the table
containing the array column, column_name

Name of the array column; this may be either
null-terminated or blank-terminated

Pointer to SQL datatype of the array elements
Pointer to length of each array element
Pointer to number of array dimensions

Array descriptor to be filled in by this function

273

Description

274

TABLE 13.16

CHAPTER 13 API FUNCTION REFERENCE

isc_array_set_desc() initializes the array descriptor, desc, from the function parameters,
table_name, column_name, sql_dtype, sql_length, and dimensions.

isc_array_set_desc() also sets to 0 a flag in the descriptor. This specifies that the array is
accessed in future function calls in row-major order, the default. If an application requires
column-major access, reset this flag to 1.

table_name and column_name can be either null-terminated or blank-terminated. The
names stored in the descriptor will be null-terminated.

sql_dtype must be given as an SQL macro constant.

The array descriptor is used in subsequent calls to isc_array_get_slice() or
isc_array_put_slice().

For a detailed description of the array descriptor, see Chapter 8, “Working with Array
Data.”

Note There are ways to fill in an array descriptor other than by calling
isc_array_set_desc(). You can also:

Call isc_array_lookup_bounds(). This function is similar to isc_array_lookup_desc(),
except that isc_array_lookup_bounds() also fills in information about the upper and
lower bounds of each dimension.

Call isc_array_lookup_desc(). This function is similar to isc_array_lookup_boundsQ,
except that isc_array_lookup_desc() does not fill in information about the upper and
lower bounds of each dimension.

Set the descriptor fields directly. Note that array_desc_dtype must be expressed as one of
the datatypes in the following table, and the

parameters, array_desc_field_name, and array_desc_relation_name, must be
null-terminated:

array_desc_dtype Corresponding InterBase datatype
blr_text CHAR

blr_text2 CHAR

blr_short SMALLINT

blr_long INTEGER

blr_quad ISC_QUAD structure

blr_float FLOAT

Datatypes for array descriptor fields

INTERBASE 6

isc_array_set_desc()

array_desc_dtype Corresponding InterBase datatype
blr_double DOUBLE PRECISION

blr_sql_date DATE

blr_sql_time TIME

blr_timestamp TIMESTAMP

blr_varying VARCHAR

blr_varying2 VARCHAR

blr_blob_id ISC_QUAD structure

blr_cstring NULL-terminated string

blr_cstring2 NULL-terminated string

TABLE13.16 Datatypes for array descriptor fields (continued)

Example The following illustrates a sample call to isc_array_set_desc(). More complete examples
of accessing arrays are found in the example programs for isc_array_get_slice() and
isc_array_put_sliceQ).

#i ncl ude <i base. h>

| SC_STATUS st atus_vector[20];
| SC_ARRAY_DESC desc;

short dtype = SQ_TEXT;

short len = §;

short dims = 1;

i sc_array_set_desc(
st atus_vector,
"TABLE1",
" CHAR_ARRAY",
&dt ype,
&l en,
&di ns,
&desc) ;
if (status_vector[0] == 1 && status_vector[1])

/* Process error. */

isc_print_status(status_vector);
return(l);

API GUIDE 275

CHAPTER 13 API FUNCTION REFERENCE

}

Return Value isc_array_set_desc() returns the second element of the status vector. Zero indicates

success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_array_get_slice(), isc_array_lookup_bounds(), isc_array_lookup_desc(),
isc_array_put_slice()

isc_attach_database()

276

Attaches to an existing database.

Syntax 1 SC_STATUS isc_attach_dat abase(
| SC_STATUS *status_vector,
short db_name_| engt h,
char *db_nane,
i sc_db_handl e *db_handl e,
short parm buffer_|ength,
char *parm buffer);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_name_length short Number of bytes in db_name string; if 0, the string is
assumed to be null-terminated

db_name char * Database name

db_handle isc_db_handle * Pointer to a database handle set by this function;

Itis recommended that you set db_handle to NULL before
passing it to isc_attach_database()

parm_buffer_length short Number of bytes in the database parameter buffer (DPB)
parm_buffer char * Address of the DPB

INTERBASE 6

isc_attach_database()

Description

Example

API GUIDE

The isc_attach_database() function connects to an existing database to enable
subsequent program access. It also optionally specifies various operational
characteristics, such as a user name and password combination for access to a database
on a remote server, or the number of database cache buffers to use. These optional
characteristics are passed in a database parameter buffer (DPB) supplied and populated
by the calling program, either through direct program construction, and by calling
isc_expand_dpb() to build the DPB.

A program passes the name of the database file to which to attach in db_name. For
programs not written in C, the program must also pass the length, in bytes, of db_name
in the db_name_length parameter. C programs should pass a 0 length in this parameter.

If successful, isc_attach_database() assigns a unique ID to db_handle. Subsequent API
calls use this handle to identify the database against which they operate.

When finished accessing a database, disconnect from the database with
isc_detach_database().

The following program fragment attaches to a database named employee.db. In the
parameter buffer, it specifies a user name and password. These come from the contents
of char * variables named user_name and user_password, respectively.

char dpb_buffer[256], *dpb, *p;
| SC_STATUS st atus_vector[20];

i sc_db_handl e handl e = NULL;
short dpb_I engt h;

[* Construct the database paraneter buffer. */
dpb = dpb_buffer;
*dpb++ = isc_dpb_versionl;

*dpb++ = i sc_dpb_user_nane;

*dpb++ = strlen(user_nane);

for (p = user_nane; *p;)
*dpb++ = *p++;

*dpb++ = isc_dpb_password;
*dpb++ = strlen(user_password);
for (p = user_password; *p;)
*dpb++ = *p++;
/* An alternate choice for the above construction is to call:
i sc_expand_dpb(). */

dpb_l ength = dpb - dpb_buffer;

277

CHAPTER 13 API FUNCTION REFERENCE

i sc_attach_dat abase(
stat us_vector,
0,
"enpl oyee. db",
&handl e,
dpb_I engt h,
dpb_buffer);
if (status_vector[0] == 1 && status_vector[1])

/* An error occurred. */
isc_print_status (status_vector);
return(l);

}

Return Value isc_attach_database() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_detach_database(), isc_expand_dpb()

For more information about creating and populating a DPB, see “Creating and
populating a DPB” on page 44. For more information about attaching to a database, see
“Connecting to databases” on page 42.

278 INTERBASE 6

isc_blob_default_desc()

isc_blob_default desc()

Loads a data structure with default information about a Blob, including its subtype,
character set, and segment size.

Syntax void isc_blob_default_desc(
| SC_BLOB_DESC *desc,
unsi gned char *tabl e_nane,
unsi gned char *col um_nane) ;

Parameter Type Description

desc ISC_BLOB_DESC * Pointer to a Blob descriptor
table_name unsigned char * Table name

column_name unsigned char * Blob column name

Description isc_blob_default_desc() loads a Blob descriptor, desc, with the specified table_name
and column_name, and the following default values prior to calling
isc_blob_gen_bpb() to generate a Blob parameter buffer (BPB) for the Blob column
being accessed:

® Subtype is set to TEXT.

Character set is set to the default character set for the process or database.

Segment size is set to 80 bytes.

isc_blob_default_desc() and three related functions, isc_blob_gen_bpb(),
isc_blob_lookup_desc(), and isc_blob_set_desc(), provide dynamic access to Blob
information. In particular, these functions can define and access information about a
Blob for filtering purposes, such as character set information for text Blob data, and
subtype information for text and non-text Blob data.

API GUIDE 279

CHAPTER 13 API FUNCTION REFERENCE

The following table lists the fields in the desc structure:

Parameter Type Description

blob_desc_subtype short Subtype of the Blob filter

blob_desc_charset short Character set being used

blob_desc_segment _size short Blob segment size

blob_desc_field_name [32] char Array containing the name of the Blob column

blob_desc_relation_name [32] ~ char Array containing the name of the table in which the
Blob is stored

TABLE13.17 Blob descriptor fields

Example The following fragment loads the Blob descriptor with default information:

typedef struct

{
short bl ob_desc_subt ype;
short bl ob_desc_charset;
short bl ob_desc_segnent _si ze;
unsi gned char bl ob_desc_fi el d_nane[32] ;
unsi gned char bl ob_desc_rel ati on_nane[32];

| SC BLOB_DESC;
i sc_bl ob_default_desc(&desc, &relation, &field);

Return Value None.

See Also isc_blob_gen_bphb(), isc_blob_lookup_desc(), isc_blob_set_desc()

For more information about Blob descriptors, see Chapter 7, “Working with Blob
Data.”

280 INTERBASE 6

isc_blob_gen_bpb()

isc_blob_gen_bpb()

Syniax

Description

Example

API GUIDE

Generates a Blob parameter buffer (BPB) to allow dynamic access to Blob subtype and
character set information.

| SC_STATUS i sc_bl ob_gen_bpb(
| SC_STATUS *st at us_vect or,
| SC_BLOB_DESC *to_desc,
| SC_BLOB_DESC *from desc,
unsi gned short bpb_buffer_I ength,
unsi gned char *bpb_buffer,
unsi gned short *bpb_l ength);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

to_desc ISC_BLOB_DESC * Pointer to the target Blob descriptor

from_desc ISC_BLOB_DESC * Pointer to the source Blob descriptor
bpb_buffer_length unsigned short Length of the BPB bpb_ buffer

bpb_buffer unsigned char * Pointer to the BPB

bpb_length unsigned short * Pointer to the length of the data stored into the BPB

isc_blob_gen_bpb() generates a Blob parameter buffer (BPB) from subtype and
character set information stored in the source Blob descriptor from_desc and the target
(destination) Blob descriptor to_desc.

A BPB is needed whenever a filter will be used when writing to or reading from a Blob
column. Two Blob descriptors are needed for filtering: one (from_desc) to describe the
filter source data, and the other (fo_desc) to describe the destination. The descriptors
must have been previously created either directly, or via a call to isc_blob_default_desc(),
isc_blob_lookup_desc(), or isc_blob_set_desc().

The BPB generated by isc_blob_gen_bpb() is subsequently needed in calls to
isc_open_blob2() or isc_create_blob2() if filtering will be utilized. For more information
about the BPB, see Chapter 7, “Working with Blob Data.”

The following fragment generates the Blob descriptor:

i sc_bl ob_gen_bpb(status, & o_desc, & rom.desc, bpb_| ength, &buffer,
&buf _| engt h);

281

CHAPTER 13 API FUNCTION REFERENCE

Return Value isc_blob_gen_bpb() returns the second element of the status vector. Zero indicates

See Also

success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_blob_default_desc(), isc_blob_lookup_desc(), isc_blob_set_desc(),
isc_create_blob2(), isc_open_blob2()

isc_blob_info()

Syniax

Description

282

Returns information about an open Blob.

| SC_STATUS i sc_bl ob_i nf o(
| SC_STATUS *st at us_vect or,
i sc_bl ob_handl e *bl ob_handl e,
short itemlist_buffer_length,
char *itemlist_buffer,
short result_buffer_Ilength,
char *result_buffer);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

blob_handle isc_blob_handle * Pointer to the Blob

item_list_buffer_length short Length of the item-list buffer in which you specify
the items for which you want information

item_list_buffer char * Pointer to the item-list buffer

result_buffer_length short Length of the result buffer into which InterBase

returns the requested information

result_buffer char * Pointer to the result buffer

isc_blob_info() returns information about an existing Blob specified by blob_handle.
The item-list buffer is an unstructured byte vector. An application lists the items about
which it wants information in the item-list buffer.

INTERBASE 6

isc_blob_info()

Example

Return Value

See Also

API GUIDE

InterBase returns the requested information to the result buffer as a series of clusters of
information, one per item requested. Each cluster consists of three parts:

1. A one-byte item type. Each is the same as one of the item types in the item-list
buffer.

2. A 2-byte number specifying the number of bytes that follow in the remainder
of the cluster.

3. Awalue, stored in a variable number of bytes, whose interpretation depends
on the item type.

A calling program is responsible for interpreting the contents of the result buffer and for
deciphering each cluster as appropriate.

For a list of items that can be requested and returned, see Chapter 7, “Working with
Blob Data.”

The following example retrieves information about the current open Blob:

static char blob_itens[] = {
i sc_i nfo_bl ob_nax_segnent,
i sc_i nfo_bl ob_num segnents,
i sc_info_blob_type};

CHAR bl ob_i nfo[32];

i sc_open_bl ob2(status_vector, &db, & r_handl e, &bl ob_handl e,
&bl ob_id, blength, baddr)
if (status_vector[0] == 1 && status_vector[1])
{
isc_print_status(status_vector);
return(l);
}
i sc_blob_info(status_vector, &blob_handle, sizeof(blob_itens),
bl ob_itens, sizeof(blob_info), blob_info));

isc_blob_info() returns the second element of the status vector. Zero indicates success. A
nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_create_blob2(), isc_open_blob2()

283

CHAPTER 13 API FUNCTION REFERENCE

isc_blob_lookup_desc()

Determines the subtype, character set, and segment size of a Blob, given a table name

Syniax

Description

284

and

Blob column name.

| SC_STATUS i sc_bl ob_I ookup_desc(

| SC_STATUS *st at us_vect or,

i sc_db_handl e **db_handl e,
isc_tr_handle **trans_handl e,
unsi gned char *tabl e_nane,
unsi gned char *col unm_narne,

| SC_BLOB_DESC *desc,

unsi gned char *gl obal);

Parameter Type Description
status_vector ~ ISC_STATUS * Pointer to the error status vector
db_handle isc_db_handle ** Pointer to a database handle set by a previous call to

isc_attach_database()
db_handle returns an error in status_vector if it is NULL

trans_handle isc_tr_handle ** Pointer to a transaction handle whose value has been set by

apreviousisc_start_transaction() call; trans_handle returns
an error if NULL

table_name unsigned char * Name of the table containing the Blob column

column_name unsigned char * Name of the Blob column

desc ISC_BLOB_DESC * Pointer to the Blob descriptor to which the function returns
information

global unsigned char * Global column name, returned by this function

isc_blob_lookup_desc() uses the system tables of a database to determine the subtype,
character set, and segment size of a Blob given a table name and Blob column name.

isc_blob_lookup_desc() and three related functions, isc_blob_default_desc(),
isc_blob_gen_bpb(), and isc_blob_set_desc() provide dynamic access to Blob
information. In particular, you can use these functions to define and access information
about Blob data for filtering purposes, such as character set information for text Blob
data, and subtype information for text and non-text Blob data.

INTERBASE 6

isc_blob_lookup_desc()

TABLE13.18

Example

| Return Value

See Also

API GUIDE

isc_blob_lookup_desc() stores the requested information about the Blob into the desc
Blob descriptor structure. The following table describes the desc structure:

Parameter Type Description

blob_desc_subtype short Subtype of the Blob filter

blob_desc_charset short Character set being used

blob_desc_segment _size short Blob segment size

blob_desc_field_name [32] char Array containing the name of the Blob column

blob_desc_relation_name [32] char Array containing the name of the table in which the
Blob is stored

Blob descriptor fields

The following fragment retrieves information into a Blob descriptor:

i sc_bl ob_| ookup_desc(status, &b_handle, &t r_handle,
&rel ation_name, &field_nane, desc, &global);

isc_blob_lookup_desc() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.To
check for an InterBase error, examine the first two elements of the status vector directly.
For more information about examining the status vector, see Chapter 10, “Handling
Error Conditions.”

isc_blob_default_desc(), isc_blob_gen_bpb(), isc_blob_set_desc()

For more information about Blob descriptors, see Chapter 7, “Working with Blob
Data.”

285

CHAPTER 13 API FUNCTION REFERENCE

isc_blob _set desc()

Sets the subtype and character set for a Blob.

Syniax | SC_STATUS i sc_bl ob_set _desc(
| SC_STATUS *st at us_vect or,
unsi gned char *tabl e_nane,
unsi gned char *col unm_nane,
short subtype,
short charset,
short segnent _si ze,
| SC_BLOB_DESC *desc);

Parameter Type Description

status_vector ~ ISC_STATUS * Pointer to the error status vector

table_name unsigned char * Name of the table containing the Blob column
column_name unsigned char * Name of the Blob column in the table

subtype short Specifies the subtype of the Blob; value are:

« InterBase-defined subtype values, 0 or 1 (TEXT)
« User-defined subtypes, —1 to —32768

charset short Specifies the character set for the Blob
segment_size short Specifies the segment size for the Blob
desc ISC_BLOB_DESC * Pointer to a Blob descriptor to populate

Description isc_blob_set_desc() sets the Blob column name, table name, subtype, segment size, and
character set for a Blob column to values specified by the application. To set these
values to InterBase defaults, use isc_blob_default_desc().

isc_blob_set_desc() and three related functions, isc_blob_default_desc(),
isc_blob_gen_bpb(), and isc_blob_lookup_desc() provide dynamic access to Blob data.
In particular, you can use these functions to define and access information about Blob
data for filtering purposes, such as character set information for text Blob data, and
subtype information for text and non-text Blob data.

You can manually set the subtype and character set information (for a TEXT subtype) in
a Blob descriptor, by way of a call to isc_blob_set_desc(). Pass the subtype, character set,
and segment size to the Blob descriptor in your application.

286 INTERBASE 6

isc_cancel_blob()

Example

Return Value

See Also

isc_blob_set_desc() is useful for setting the contents of the Blob descriptor without
querying the system tables for the information. Calls to this function also let an
application specify character set and subtype for custom filtering operations.

Note Do not call this function while running against a V3.x database.

The following example sets the default values for a tour guide application, including
subtype, character set, and segment size:

i sc_blob_set_desc(status, "TOURI SM', "GUJ DEBOXX", 1, 2, 80, &desc);

isc_blob_set_desc() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_blob_default_desc(), isc_blob_gen_bpb(), isc_blob_lookup_desc()

For more information about Blob descriptors, see Chapter 7, “Working with Blob
Data.”

isc_cancel _blob()

Syniax

API GUIDE

Discards a Blob, frees internal storage used by the Blob, and sets the Blob handle to NULL.

| SC_STATUS i sc_cancel _bl ob(
| SC_STATUS *st at us_vect or,
i sc_bl ob_handl e *bl ob_handl e);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

blob_handle isc_blob_handle * Pointer to the handle for the Blob you want to cancel; sets
the handle to zero and returns a successful result even if
the handle is NULL

287

Description

Example

Return Value

288

See Also

CHAPTER 13 API FUNCTION REFERENCE

InterBase temporarily stores Blob data in the database during create operations. If, for
some reason, you do not, or cannot, close a Blob, the storage space remains allocated in
the database and InterBase does not set the handle to NULL. Call isc_cancel_blob() to
release the temporary storage in the database, and to set blob_bhandle to NULL. If you
close the Blob in the normal course of your application processing logic, this step is
unnecessary as InterBase releases system resources on a call to isc_close_blob().

Note A call to this function does not produce an error when the handle is NULL.
Therefore, it is good practice to call isc_cancel_blob() before creating or opening a Blob
to clean up existing Blob operations.

The following fragment cancels any open Blob before creating a new one:

i sc_cancel _bl ob(status_vector, &blob_handle);
if (status_vector[0] == 1 && status_vector[1])
{

/* process error */

isc_print_status(status_vector);

return(l);

}
i sc_create_bl ob(status_vector, &DB, &trans, &blob_handl e, &blob_id)

isc_cancel_blob() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_close_blob()

INTERBASE 6

isc_cancel_events()

isc_cancel _events()

Syniax

Description

Example

Return Value

See Also

API GUIDE

Cancels an application’s interest in asynchronous notification of any of a specified group
of events.

| SC_STATUS i sc_cancel _event s(
| SC_STATUS *st at us_vect or,
i sc_db_handl e *db_handl e,
| SC_LONG *event _id);

Parameter Type Description
status_vector ~ ISC_STATUS * Pointer to the error status vector
db_handle isc_db_handle * Pointer to a database handle set by a previous call to

isc_attach_database(); the handle identifies the database
for which the event watch is to be canceled.

db_handle returns an error in status_vector if it is NULL

event_id ISC_LONG * Pointer to the event or events to cancel; set by a previous call
to isc_que_events()

isc_cancel_events() cancels an application program’s asynchronous wait for any of a
specified list of events. The events are the ones that were associated with event_id as a
result of a previous call to isc_qgue_eventsQ.

The following call cancels a program’s wait for events associated with event_id, where
event_id was previously returned from a call to isc_que_eventsQ):

i sc_cancel _event s(status_vector, &database_handl e, &event_id);
A more complete example is provided in the section on isc_que_events().

isc_cancel_events() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_que_events()

289

CHAPTER 13 API FUNCTION REFERENCE

isc_close _blob()

Syniax

Description

Example

Return Value

See Also

290

Closes an open Blob, which involves flushing any remaining segments, releasing system
resources associated with Blob update or retrieval, and setting the Blob handle to zero.

| SC_STATUS i sc_cl ose_bl ob(
| SC_STATUS *st at us_vect or,
i sc_bl ob_handl e *bl ob_handl e);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

blob_handle isc_blob_handle * Pointer to the handle of the Blob to close

isc_close_blob() is used to store a Blob in the database and clean up after Blob
operations. Close any Blob after reading from or writing to it. If, for some reason, your
application does not close a Blob, you can lose data. If your application might open a
Blob without closing it then you should call isc_cancel_blob() to make sure that the
application does not try to open a

Blob that is already open.

blob_handle is set by a call to isc_create_blob2() or to isc_open_blob2().

The following example closes a Blob and frees system resources:
if (status_vector[1l] == isc_segstr_eof)
i sc_cl ose_bl ob(status_vector, &blob_handl e)

isc_close_blob() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_cancel_blob(), isc_create_blob2(), isc_open_blob2()

INTERBASE 6

isc_commit_retaining()

isc_commit_retaining()

Syniax

Description

Examples

API GUIDE

Commits an active transaction and retains the transaction context after a commit.

| SC_STATUS i sc_comit_retaining(
| SC_STATUS *st at us_vect or,
isc_tr_handle *trans_handl e);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle* Pointertoatransaction handle whose value has been set by
aprevious isc_start_transaction() call; trans_handle returns
an error if NULL

isc_commit_retaining() commits an active transaction and immediately clones itself.
This means that the function retains the transaction name, system resources associated
with the transaction, and the current state of any open cursors in the transaction.
Although the function is actually initiating a new transaction, by assigning the new
transaction the active transaction handle it is, in effect, keeping the transaction open
across commits. This results in improved performance by allowing an application to
minimize the overhead of initiating additional transactions. isc_commit_retaining()
allows you to commit updates while keeping a cursor open.

You can initiate a rollback within the active transaction but the rollback only affects
uncommitted updates. In other words, a rollback is legal, even after the transaction
context has been passed to the cloned transaction, but, in that case, the rollback will only
affect the updates your application has made to the database since the last commit.

To audit the commits made by your calls to this function, check the first element in the
status vector to see if the call was successful. If this element contains a zero, the call was
successful.

The transaction ends when you commit or roll back without using the retention feature,
with a call to isc_commit_transaction() or isc_rollback_transaction().

The following C/C++ code commits a transaction, prints a message, and starts a new
transaction with the same handle within the same request:
if (lisc_conmmit_retaining(status, & etained_trans))

{
fprintf(stderr, "Comitted and retained\n");

i sc_print_status(status);

291

Return Value

See Also

CHAPTER 13 API FUNCTION REFERENCE

The following call commits a transaction, prints a confirmation message, starts a new
transaction with the same handle within the same request, or, if the commit fails, prints
an error message and rolls back.

isc_comit_retaining(status, &retained_trans);

if (status[0] == 1 && status[1])
{
fprintf(stderr, "Error during commit, rolling back.\n");
rb_status = isc_rollback_transaction(status, &retained_trans);
}
el se
{
fprintf(stderr, "Conmit successful.\n");
tr_count++; /*Increnents the nunber of recycles. */
}

isc_commit_retaining() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_commit_transaction(), isc_rollback_transaction(), isc_start_transaction()

isc_commit_transaction()

292

Syntax

Commits a specified active transaction.

| SC_STATUS i sc_comit_transaction(
| SC_STATUS *status_vector,
isc_tr_handle *trans_handl e);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle* Pointertoatransaction handle whose value has been set by
aprevious isc_start_transaction() call; trans_handle returns
an error if NULL

INTERBASE 6

isc_commit_transaction()

Description

Example

Return Value

See Also

API GUIDE

isc_commit_transaction() closes record streams, frees system resources, and sets the
transaction handle to zero for the specified transaction.

When you call this function to execute a commit operation against multiple databases,
InterBase first initiates a call to the isc_prepare_transaction() function.
isc_prepare_transaction() executes the first phase of a two-phase commit. This puts the
transaction into limbo and signals your intention to commit, so that InterBase can poll
all target databases to verify that they are ready to accept the commit. Also,
isc_commit_transaction() writes a Blob message to the RDB§TRANSACTION_DESCRIPTION
column of the RDB$TRANSACTIONS system table, detailing information required by
InterBase to perform a reconnect in case of system failure during the commit process.

The isc_commit_transaction() function also performs the second phase of a two-phase
commit upon receiving verification that all databases are ready to accept the commit.
Also, isc_commit_transaction() cleans up RDB$TRANSACTIONS.

The following call commits a transaction and prints a message:

isc_comt_transaction(status, & rans);
if (status[0] == 1 && status[1])
{
fprintf(stderr, "Error on wite\n");
i sc_print_status(status);

}

isc_commit_transaction() returns the second element of the status vector. Zero
indicates success. A nonzero value indicates an error. For InterBase errors, the first
element of the status vector is set to 1, and the second element is set to an InterBase
error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_commit_retaining(), isc_prepare_transaction()

293

CHAPTER 13 API FUNCTION REFERENCE

isc_create _blob2()

Syniax

Description

294

Creates and opens the Blob for write access, and optionally specifies the filters to be used
to translate the Blob from one subtype to another.

| SC_STATUS i sc_create_bl ob2(
| SC_STATUS *st at us_vect or,
i sc_db_handl e *db_handl e,
isc_tr_handle *trans_handl e,
i sc_bl ob_handl e *bl ob_handl e,
| SC_QUAD *bl ob_i d,
short bpb_I ength,
char *bpb_address);

Parameter Type Description
status_vector ~ ISC_STATUS * Pointer to the error status vector
db_handle isc_db_handle* Pointer to a database handle set by a previous call to

isc_attach_database()
db_handle returns an error in status_vector if it is NULL

trans_handle isc_tr_handle * Pointer to the handle of the transaction in which you want
the Blob to be created

blob_handle isc_blob_handle * Pointer to the Blob handle

blob_id ISC_QUAD * Pointer to the 64-bit system-defined Blob ID, which is
stored in afield in the table and points to the first segment
of the Blob or to a page of pointers to Blob fragments

bpb_length short Length of the Blob parameter buffer (BPB)

bpb_address char * Pointer to the BPB

isc_create_blob2() creates a context for storing a Blob, opens a Blob for write access,
and optionally specifies the filters used to translate from one Blob format to another.
Subsequent calls to isc_put_segment() write data from an application buffer to the Blob.

If a Blob filter is used, it is called for each segment written to the Blob. InterBase selects
the filter to be used based on the source and target subtypes specified in a previously
populated Blob parameter buffer (BPB), pointed to by bpb_address.

Note Blob filters are not supported on Netware.

INTERBASE 6

isc_create_blob2()

Example

API GUIDE

If a Blob filter is not needed or cannot be used, a BPB is not needed; pass 0 for bpb_length
and NULL for bpb_addyress.

The Blob handle pointed to by blob_handle must be zero when isc_create_blob2() is
called. To reuse blob_handle, close the Blob with a call to isc_close_blob() to zero out
the handle before calling isc_create_blob2().

On success, isc_create_blob2() assigns a unique ID to blob_handle, and a Blob identifier
to blob_id. Subsequent API calls require one or both of these to identify the Blob against
which they operate.

After a blob is created, data can be written to it by a sequence of calls to
isc_put_segment(). When finished writing to the Blob, close it with isc_close_blob().

When you create a Blob, it is essentially an “orphan” until you assign its blob_id to a
particular Blob column of a particular row of a table. You do this, after closing the Blob,
by using DSQL to execute either an INSERT statement to insert a new row containing the
Blob (and any other columns desired), or an UPDATE statement to replace an existing Blob
with the new one.

For more information about BPBs and Blob filters, see Chapter 7, “Working with Blob
Data.”

The following fragment declares a BPB, populates it with filter information, then creates
a Blob and passes the BPB:

i sc_bl ob_handl e bl ob_handle; /* declare at beginning */
| SC_QUAD blob_id; /* declare at beginning */
char bpb[] = {

i sc_bpb_versionl,

i sc_bpb_target _type,

1, /* # bytes that foll ow which specify target subtype */
1, /* target subtype (TEXT) */

i sc_bpb_source_type,

1, /* # bytes that foll ow which specify source subtype */
-4, /* source subtype*/

s

i sc_create_bl ob2(
status_vector,

&db_handl e,
& r_handl e,
&bl ob_handl e, /* to be filled in by this function */
&bl ob_id, /* to be filled in by this function */

295

CHAPTER 13 API FUNCTION REFERENCE

actual _bpb_length, /* length of BPB data */
&bpb /* Blob paraneter buffer */

)

Return Value isc_create_blob2() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_blob_gen_bphb(), isc_open_blob2(), isc_put_segment()

296 INTERBASE 6

isc_create_database()

isc_create _database()

The isc_create_database() method is not currently supported from user applications. It
is for internal use only. Use isc_dsql_execute_immediate() to create a database with a
valid database handle.

isc_database_info()

Reports requested information about a previously attached database.

Syntax |1 SC_STATUS i sc_dat abase_i nf o(
| SC_STATUS *status_vector,
i sc_db_handl e *db_handl e,
short itemlist_buffer_|ength,
char *itemlist buffer,
short result_buffer_Ilength,
char *result_buffer);

Parameter Type Description
status_vector ISC_STATUS * Pointer to the error status vector
db_handle isc_db_handle * Pointerto adatabase handle set by a previous call

to isc_attach_database()
db_handle returns an error in status_vector if it is

NULL
item_list_buffer_length short Number of bytes in the item-list buffer
item_list_buffer char * Address of the item-list buffer
result_buffer_length short Number of bytes in the result buffer
result_buffer char * Address of the result buffer

Description isc_database_info() returns information about an attached database. Typically,
isc_database_info() is called to:

® Determine how much space is used for page caches. The space is the product of the
number of buffers and the page size, which are determined by calling
isc_database_info() with the isc_info_num_buffers and isc_info_page_size item-list
options.

API GUIDE 297

CHAPTER 13 API FUNCTION REFERENCE

® Monitor performance. For example, to compare the efficiency of two update strategies,
such as updating a sorted or unsorted stream.

The calling program passes its request for information through the item-list buffer
supplied by the program, and InterBase returns the information to a program-supplied
result buffer.

Example The following program fragment requests the page size and the number of buffers, then
examines the result buffer to retrieve the values supplied by the InterBase engine:

char db_items[] = {
i sc_info_page_size, isc_info_numbuffers,
i sc_info_end};

char res_buffer[40], *p, item

int |ength;

SLONG page_size = OL, num buffers = OL;

| SC_STATUS st at us_vector[20];

i sc_dat abase_i nf o(
status_vector,

&handle, /* Set in previous isc_attach_database() call. */
si zeof (db_i tens),
db_itens,

si zeof (res_buffer),
res_buffer);
if (status_vector[0] == 1 && status_vector[1])
{
/* An error occurred. */
isc_print_status(status_vector);

return(l);
3
/* Extract the values returned in the result buffer. */
for (p = res_buffer; *p !'=1isc_info_end ;)
{
item = *p++;
I ength = isc_vax_integer (p, 2);
p += 2;
switch (item
{
case isc_info_page_size:
page_size = isc_vax_integer (p, length);
br eak;

case isc_info_num buffers:

298 INTERBASE 6

isc_decode_sql_date()

num buffers = isc_vax_integer (p, |length);
br eak;
defaul t:
br eak;
}
p += |l ength;

b

Return Value isc_database_info() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_attach_database(), isc_detach_database()

For more information about requesting database attachment information, see
“Requesting information about an attachment” on page 51.

isc_decode_sql_date()
Translates a date from InterBase ISC_DATE format into the C struct tm format.

Syntax void isc_decode_sql _dat e(
| SC_DATE *ib_date,
void *tm date);

Parameter Type Description

ib_date ISC_DATE * Pointer to a four-byte /SC_DATE structure containing a
date in InterBase format

tm_date void * Pointer to a C tm structure

Description isc_decode_sql_date() translates a date retrieved from a table and stored in an ISC_DATE
variable, ib_date, into a C time structure for program manipulation. Both ib_date and
tm_date must be declared and initialized before use.

Use the isc_dsql family of API calls to retrieve InterBase DATE data from a table into the
ISC_DATE structure prior to translation.

API GUIDE 299

Example

CHAPTER 13 API FUNCTION REFERENCE

Note In InterBase 6, the DATE datatype is available only in dialect 3. It holds only date
information, and does not include time information. In version 6 dialect 1, the TIMESTAMP
datatype holds both date and time information and is exactly equivalent to the DATE
datatype that was present in earlier versions of InterBase.

The following code fragment illustrates declaring time structures and calling
isc_decode_sql_date() to translate an InterBase date format into a C time format:

#i ncl ude <tine. h>
#i ncl ude <i base. h>

struct tmhire_tine;
| SC_DATE hire_date;

/* Retrieve DATE data froma table here. */

i sc_decode_sqgl _date(&hire_date, &hire_tine);

Return Value None.

See Also

isc_decode_sql_time(), isc_decode_timestamp(), isc_encode_sql_date()

isc_decode_sql_time()

Syniax

Description

300

Translates a time from InterBase ISC_TIME format into the C struct tm format.

voi d i sc_decode_sql _time(
ISC_ TIME *ib_tine,
void *tm date);

Parameter Type Description

ib_time ISC_TIME * Pointer to a four-byte /SC_TIME structure containing a
time in InterBase format

tm_date void * Pointer to a C struct tm structure

isc_decode_sql_time() translates a time retrieved from a table and stored in an ISC_TIME
variable, ib_time, into a C time structure for program manipulation. Both ib_time and
tm_date must be declared and initialized before use.

Use the isc_dsql family of API calls to retrieve InterBase TIME data from a table into the
ISC_TIME structure prior to translation.

INTERBASE 6

isc_decode_timestamp()

Example

The following code fragment illustrates declaring time structures and calling
isc_decode_sql_time() to translate an InterBase date format into a C time format:

#i ncl ude <tine. h>
#i ncl ude <i base. h>

struct tmhire_tine;
| SC_TI ME hire_date;

/* Retrieve TIME data froma table here. */

i sc_decode_sql _tine(&hire_date, &hire_tine);

Return Value None.

See Also

isc_decode_sql_date(), isc_decode_sql_time(), isc_encode_sql_date()

isc_decode_timestamp()

Syntax

Description

API GUIDE

Translates a date and time from InterBase ISC_TIMESTAMP format into the C struct tm
format.

voi d i sc_decode_ti mest anp(
| SC_TI MESTAMP *i b_dat e,
void *tm date);

Parameter Type Description

ib_timestamp ISC_TIMESTAMP * Pointer to an eight-byte ISC_TIMESTAMP structure
containing a date and time in InterBase format

tm_date void * Pointer to a C struct tm structure

isc_decode_timestamp() translates a date retrieved from a table and stored in an
ISC_TIMESTAMP variable, ib_timestamp, into a C time structure for program
manipulation. Both ib_timestamp and tm_date must be declared and initialized before

use. The isc_decode_timestamp() is exactly the same as the isc_decode_date() function

in versions of InterBase prior to 6.0.

Use the isc_dsql family of API calls to retrieve InterBase TIMESTAMP data from a table into

the ISC_TIMESTAMP structure prior to translation.

Example

CHAPTER 13 API FUNCTION REFERENCE

The following code fragment illustrates declaring time structures and calling
isc_decode_sql_timestamp() to translate an InterBase date format into a C time format:

#i ncl ude <tine. h>
#i ncl ude <i base. h>

struct tmhire_tine;
| SC_TI MESTAMP hire_date;

/* Retrieve TI MESTAMP data froma table here. */

i sc_decode_timestanp(&hire_date, &hire_tine);

Return Value None.

See Also

isc_decode_sql_date(), isc_decode_sql_time(), isc_encode_sql_date()

isc_delete_usen()

Syntax

Description

302

Deletes a user record from the password database, isc4.gdb.

Note Use of this function is deprecated. It is replaced by a full featured Services API. See
Chapter 12: “Working with Services” on page 199 and the reference entry for
“isc_service_start()” on page 380.

| SC_STATUS i sc_del ete_user(
| SC_STATUS *st at us
USER_SEC DATA *user_sec_data);

Parameter Type Description
status vector ISC_STATUS * Pointer to the error status vector
user_sec_data USER_SEC_DATA * Pointer to a struct that is defined in ibase.h

The three security functions, isc_add_user(), isc_delete_user(), and isc_modify_user()
mirror functionality that is available in the gsec command-line utility. isc_delete_user()
deletes a record from isc4.gdb, InterBase’s password database.

At a minimum, you must provide the user name. If the server is not local, you must
provide both a server name and a protocol. Valid choices for the protocol field are
sec_protocol_tcpip, sec_protocol_netbeui, sec_protocol_spx, and sec_protocol_local.

INTERBASE 6

isc_delete_user()

InterBase reads the settings for the ISC_USER and I1SC_PASSWORD environment variables if
you do not provide a DBA user name and password.

The definition for the USER_SEC_DATA struct in ibase.h is as follows:

typedef struct {
short sec_flags

i nt ui d;
i nt gi d;
i nt pr ot ocol

char *server;

char *user _nane;

char *passwor d;

char *group_nane;

char *first_nane;

char *m ddl e_nane;

char *| ast _nane;

char *dba_user _nane;

char *dba_passwor d;
} USER SEC DATA;

/* which fields are specified */
/* the user’s id */

/* the user’'s group id */

/* protocol to use for connection */
/* server to administer */

/* the user’'s nanme */

/* the user’s password */

/* the group nane */

/* the user’s first nane */

/* the user’s middle nane */

/* the user’s last nanme */

/* the dba user nane */

/* the dba password */

When you pass this struct to one of the three security functions, you can tell it which
fields you have specified by doing a bitwise OR of the following values, which are defined

in ibase.h:

sec_ui d_spec

sec_gi d_spec
sec_server_spec
sec_passwor d_spec
sec_group_nane_spec
sec_first_name_spec
sec_m ddl e_nane_spec
sec_l ast _nane_spec
sec_dba_user_nane_spec
sec_dba_passwor d_spec

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80
0x100
0x200

No bit values are available for user name and password, since they are required.

API GUIDE

303

TABLE13.19

Example

304

CHAPTER 13 API FUNCTION REFERENCE

The following error messages exist for this function:

Code Value Description
isc_usrname_too_long 335544747 The user name passed in is greater than 31 bytes
isc_password_too_long 335544748 The password passed in is longer than 8 bytes
isc_usrname_required 335544749 The operation requires a user name
isc_password_required 335544750 The operation requires a password
isc_bad_protocol 335544751 The protocol specified is invalid
isc_dup_usrname_found 335544752 The user name being added already exists in the
security database.
isc_usrname_not_found 335544753 The user name was not found in the security database
isc_error_adding_sec_record 335544754 An unknown error occurred while adding a user
isc_error_deleting_sec_record 335544755 Anunknown error occurred while deleting a user

isc_error_modifying_sec_record

isc_error_updating_sec_db

335544756
335544757

An unknown error occurred while modifying a user

An unknown error occurred while updating the
security database

Error messages for user security functions

The following example deletes a user (“Socks”) from the password database, using the
bitwise OR technique for passing values from the USER_SEC_DATA struct.

{

| SC_STATUS st at us[20] ;

USER_SEC DATA sec;

sec. server
sec. dba_user _nane
sec. dba_passwor d
sec. protoco

sec. user _nane
sec. sec_fl ags

i sc_del et e_user (status,

"kennel ";
"sysdba";

= "mast erkey";

= sec_protocol _tcpip;

= "socks";

= sec_server_spec

| sec_dba_user_nane_spec

| sec_dba_passwor d_nane_spec;

&sec);

INTERBASE 6

isc_detach_database()

/* check status for errors */

if (status[0] == 1 && status[1])
{
switch (status[1]) {
case isc_usrnane_too_Il ong:
printf("Security database cannot accept |ong user nanes\n");
br eak;
}
}

}

Return Value isc_delete_user() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. See the “Description” section for this function for a
list of error codes. For more information about examining the status vector, see Chapter
10, “Handling Error Conditions.”

See Also isc_add_user(), isc_modify_uvser()

isc_detach database()

Detaches from a database previously connected with isc_attach_database().

Syniax | SC_STATUS i sc_det ach_dat abase(
| SC_STATUS *st at us_vect or,
i sc_db_handl e *db_handl e);

Parameter Type Description
status_vector ~ ISC_STATUS * Pointer to the error status vector
db_handle isc_db_handle * Pointer to a database handle set by a previous call to

isc_attach_database()
db_handle returns an error in status_vector if it is NULL

Description isc_detach_database() detaches an attached database. Call this function to release
system resources when you are done using a database or before re-attaching the
database with different attach parameters. isc_detach_database() also releases the
buffers and structures that control the remote interface on the client and the remote
server where the database is stored.

API GUIDE 305

Example

Return Value

See Also

CHAPTER 13 API FUNCTION REFERENCE

Before calling isc_detach_database() commit or roll back transactions affecting the
database from which you want to detach.

The following conditional statement detaches a database:

i f (handl e)
i sc_det ach_dat abase(status_vector, &handle);

Assuming that handle is valid and identifies an attached database, the specified database
is detached when this statement executes.

isc_detach_database() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_attach_database()

isc_drop_database()

Syniax

306

Deletes a currently attached database and all of its supporting files, such as secondary
database files, write-ahead log files, and shadow files.

| SC_STATUS i sc_drop_dat abase(
| SC_STATUS *st at us_vect or,
i sc_db_handl e *db_handl e);

Parameter Type Description
status_vector ~ ISC_STATUS * Pointer to the error status vector
db_handle isc_db_handle * Pointer to a database handle set by a previous call to

isc_attach_database(); the handle identifies the database
containing the array column

db_handle returns an error in status_vector if it is NULL

INTERBASE 6

isc_drop_database()

Description

Example

Return Value

See Also

API GUIDE

isc_drop_database() deletes an attached database and all of its supporting files. Call this
routine when you no longer have a use for the database (for example, if you moved all
the data into another database, or if the database was just temporary and is no longer
needed). To succeed, isc_drop_database() must be issued when no other processes are
attached to the database.

The following conditional statement drops a database:

i f (handl e)
i sc_drop_dat abase(status_vector, &handle);

Assuming that handie is valid and identifies an attached database, the specified database
is dropped when this statement executes.

isc_drop_database() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_attach_database()

307

CHAPTER 13 API FUNCTION REFERENCE

isc_dsql_allocate_statement()

Syniax

Description

Example

308

Allocates a statement handle for subsequent use with other API dynamic SQL (DSQL)
calls.

| SC_STATUS i sc_dsql _al |l ocat e_st at enent (
| SC_STATUS *st at us_vect or,
i sc_db_handl e *db_handl e,
isc_stm _handl e *stnt_handl e);

Parameter Type Description
status_vector ~ ISC_STATUS * Pointer to the error status vector
db_handle isc_db_handle* Pointer to a database handle set by a previous call to

isc_attach_database()
db_handle returns an error in status_vector if it is NULL
stmt_handle isc_stmt_handle* Pointer to the statement handle to be allocated by this

function; the handle must be NULL when this function is
called, or an error is returned in status_vector

isc_dsql_allocate_statement() allocates a statement handle and returns a pointer to it in
stmi_handle. This pointer is passed to isc_dsql_prepare() to associate the statement
handle with a particular DSQL statement for processing.

If a DSQL statement is to be executed multiple times, or if it returns output (other than
the results from a stored procedure), isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2() should be called to allocate a statement handle prior to
preparing and executing the statement with isc_dsql_prepare() and isc_dsql_execute().

Note The function, isc_dsql_allocate_statement(), is very similar to the function,
isc_dsql_alloc_statement2() except that statement handles allocated using
isc_dsql_allocate_statement() are not automatically reset to NULL when the database
under which they are allocated is detached. To reset statement handles automatically, use
isc_dsql_alloc_statement2().

When you are done processing a statement, the statement handle can be freed with the
isc_dsql_free_statement() or by calling isc_detach_database().

The following program fragment allocates a statement handle for an SQL statement that
will access the database referenced by the database handle, database_handie:

| SC_STATUS st atus_vector[20];
i sc_stm _handl e statenent_handl e;

INTERBASE 6

isc_dsql_allocate_statement()

Return Value

See Also

API GUIDE

statenment _handl e = NULL; /* Set handl e to NULL before allocating it. */
i sc_dsql _al | ocat e_st at enment (
status_vector,

&dat abase_handl e, /* Set in previous isc_attach_database() call. */
&st at enent _handl e) ;

if (status_vector[0] == 1 && status_vector[1])

{
isc_print_status(status_vector); /* Display error nmessage. */
return(l); /* Return now. */

}

/* Call other functions to associate a particular SQ statenment
with the statenent handle, and to do other operations necessary to
prepare and execute the DSQL statement. Free the statenment handl e when
it is no |longer needed. */

isc_dsql_allocate_statement() returns the second element of the status vector. Zero
indicates success. A nonzero value indicates an error. For InterBase errors, the first
element of the status vector is set to 1, and the second element is set to
isc_bad_stmt_bandle, isc_bad_db_bandie, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_dsql_alloc_statement2(), isc_dsql_execute(), isc_dsql_free_statement(),
isc_dsql_prepare()

309

CHAPTER 13 API FUNCTION REFERENCE

isc_dsql_alloc_statement2()

Syniax

Description

Example

310

Allocates a statement handle for subsequent use with other API dynamic SQL (DSQL)
calls.

| SC_STATUS i sc_dsql _al | oc_stat enent 2(
| SC_STATUS *st at us_vect or,
i sc_db_handl e *db_handl e,
isc_stm _handl e *stnt_handl e);

Parameter Type Description
status_vector ~ ISC_STATUS * Pointer to the error status vector
db_handle isc_db_handle* Pointer to a database handle set by a previous call to

isc_attach_database(); the handle identifies the database
containing the array column

db_handle returns an error in status_vector if it is NULL
stmt_handle isc_stmt_handle* Pointer to the statement handle to be allocated by this

function; the handle must be NULL when this function is
called, or an error is returned in status_vector

isc_dsql_alloc_statement2() allocates a statement handle and returns a pointer to it in
stmt_handle. This pointer is passed to isc_dsql_prepare() to associate the statement
handle with a particular DSQL statement for processing.

If a DSQL statement is to be executed multiple times, or if it returns output (other than
the results from a stored procedure), isc_dsql_alloc_statement2() or
isc_dsql_allocate_statement() should be called to allocate a statement handle prior to
preparing and executing the statement with isc_dsql_prepare() and isc_dsql_execute().

Note The isc_dsql_allocate_statement2() function is similar to the
isc_dsql_alloc_statement() function except that statement handles allocated using
isc_dsql_allocate_statement2() are automatically reset to NULL when the database under
which they are allocated is detached.

The following program fragment allocates a statement handle for an SQL statement that
will access the database referenced by the database handle, database_handie:

| SC_STATUS st at us_vector[20];
isc_stm handl e statenent_handl e;

i sc_dsql _al | oc_st at ement 2(
st atus_vector,

INTERBASE 6

isc_dsql_alloc_statement2()

&dat abase_handl e, /* Set in previous isc_attach_database() call. */
&st at enent _handl e) ;

if (status_vector[0] == 1 && status_vector[1])

{
isc_print_status(status_vector); /* Display an error message. */
return(l); /* Return now. */

}

/[* Call other functions to associate a particular SQ statenment
with the statenent handle, and to do other operations necessary to
prepare and execute the DSQ statement. */

Return Value isc_dsql_alloc_statement2() returns the second element of the status vector. Zero
indicates success. A nonzero value indicates an error. For InterBase errors, the first
element of the status vector is set to 1, and the second element is set to
isc_bad_stmt_bandle, isc_bad_db_bandle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_allocate_statement(), isc_dsql_execute(), isc_dsql_free_statement(),
isc_dsql_prepare()

API GUIDE 311

CHAPTER 13 API FUNCTION REFERENCE

isc_dsql_describe()

Syniax

Description

Example

312

Provides information about columns retrieved by the execution of a DSQL SELECT or
EXECUTE PROCEDURE statement.

| SC_STATUS i sc_dsql _descri be(
| SC_STATUS *st at us_vect or,
isc_stm _handl e *stnt_handl e,
unsi gned short da_versi on,
XSQLDA *xsql da);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returnsan errorin
status_vector if it is NULL

da_version unsigned short Indicates the version of the SQL descriptor area passed to
the function; set this value to 1

xsqlda XSQLDA * Pointer to a previously allocated XSQLDA used for output

isc_dsql_describe() stores into xsqlda a description of the columns that make up the
rows returned for a SELECT statement, or a description of the result values returned by an
EXECUTE PROCEDURE statement. These statements must have been previously prepared
for execution with isc_dsql_prepare(), before isc_dsql_describe() can be called.

Note Using isc_dsql_describe() is not necessary unless a previously issued
isc_dsql_prepare() function indicates that there is insufficient room in the output XSQLDA
for the return values of the DSQL statement to be executed.

The following program fragment illustrates a sequence of calls which allocates an
XSQLDA, prepares a statement, checks whether or not the appropriate number of
XSQIVARs was allocated, and corrects the situation if needed.

#i ncl ude <i base. h>
| SC_STATUS st atus_vector[20];
XSQ.DA *osql da;
int n;
char *query = "SELECT * FROM CI TI ES
VWHERE STATE = ' NY
ORDER BY CI TY DESCENDI NG';

INTERBASE 6

isc_dsql_describe()

API GUIDE

osql da = (XSQLDA *) mal | oc(XSQLDA_LENGTH(3) ;
osql da- >versi on = SQLDA VERSI ON1;
osql da->sqln = 3;

i sc_dsql _prepare(
stat us_vector,
& r_handle, /* Set in previous isc_start_transaction() call. */
&stnt _handl e,
/* Alocated previously by isc_dsql _allocate_statenent()

or isc_dsql _alloc_statenment2() call. */
0,
query,
1,
osql da);
if (status_vector[0] == 1 && status_vector[1])
{
/* Process error. */
isc_print_status(status_vector);
return(l);
}

if (osqglda->sqld > osqlda->sqln) /* Need nmore XSQ.VARS. */

n = osql da->sql d;
free(osql da);
osql da = (XSQLDA *) mal | oc(XSQLDA_LENGTH(n) ;
osql da->sqln = n;
osql da- >versi on = SQLDA VERSI ON1;
i sc_dsql _descri be(
stat us_vector,
&stnt handl e,

1,
osql da) ;
if (status_vector[0] == 1 && status_vector[1])
{
/* Process error. */
isc_print_status(status_vector);
return(l);
}

313

CHAPTER 13 API FUNCTION REFERENCE

Return Value isc_dsql_describe() returns the second element of the status vector. Zero indicates

See Also

success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_handle, or
another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_dsql_describe_bind(), isc_dsql_execute(), isc_dsql_execute2(),
isc_dsql_prepare()
For more information about preparing a DSQL statement with return values, see “DSQL

programming methods” on page 96. For more information about creating and
populating the XSQLDA, see “Understanding the XSQLDA” on page 85.

isc_dsql_describe_bind()

Syniax

Description

314

Provides information about dynamic input parameters required by a previously prepared
DSQL statement.

| SC_STATUS i sc_dsql _descri be_bi nd(
| SC_STATUS *st at us_vect or,
isc_stm _handl e *stnt_handl e,
unsi gned short da_versi on,
XSQLDA *xsql da);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returnsan errorin
status_vector if it is NULL

da_version unsigned short Indicates the version of the SQL descriptor area passed to
the function; set this value to 1

xsqlda XSQLDA * Pointer to a previously allocated XSQLDA used for input

isc_dsql_describe_bind() stores into the input XSQLDA xsqlda information about the
dynamic input parameters required by a DSQL statement previously prepared with
isc_dsql_prepare().

INTERBASE 6

isc_dsql_describe_bind()

Example

API GUIDE

Before an application can execute a statement with input parameters, it must supply
values for them in an input XSQLDA structure. If you know exactly how many parameters
are required, and their datatypes, you can set up the XSQLDA directly without calling
isc_dsql_describe_bind(). But if you need InterBase to analyze the statement and provide
information such as the number of parameters and their datatypes, you must call
isc_dsql_describe_bind() to supply the information.

The following program fragment illustrates a sequence of calls that allocates an input
XSQLDA, prepares a DSQL UPDATE statement, calls the function isc_dsql_describe_bind(),
checks whether or not the appropriate number of XSQIVARs was allocated, and corrects
the situation if necessary.

#i ncl ude <i base. h>

| SC_STATUS st atus_vector[20];

XSQLDA *isqgl da

int n;

char *str = "UPDATE DEPARTMENT SET BUDGET = ?, LOCATION = ?";

i sc_dsql _prepare(
status_vector,
&r_handle, /* Set in previous isc_start_transaction() call. */
&st nt _handl e,
/* Al'located previously by isc_dsql _allocate_statenent()

or isc_dsql _alloc_statenent2() call. */
0,
str,
1,
NULL) ;
if (status_vector[0] == 1 && status_vector[1])
{
/* Process error. */
isc_print_status(status_vector);
return(l);
}

/* Allocate an input XSQLDA. */
i sqlda = (XSQLDA *) nmal | oc(XSQLDA_LENGTH(1) ;
i sql da->versi on = SQLDA_VERSI ON1,;
i sql da->sqgln = 1;
i sc_dsql _descri be_bi nd(
status_vector,
&st nt _handl e,
/* Allocated previously by isc_dsql _allocate_statenment()
or isc_dsql _alloc_statenent2() call. */

315

Return Value

316

See Also

CHAPTER 13 API FUNCTION REFERENCE

1,
i sql da);
if (status_vector[0] == 1 && status_vector[1])
{
/* Process error. */
isc_print_status(status_vector);
return(l);
}

if (isqglda->sqld > isqlda->sqln) /* Need nmore XSQ.VARs. */

n = isql da->sql d;
free(isqlda);
i sqlda = (XSQLDA *) mal | oc(XSQLDA_LENGTH(n) ;
i sql da->sqgln = n;
i sql da->versi on = SQLDA VERSI ON1;
i sc_dsql _descri be_bi nd(
stat us_vector,
&stnt _handl e,

1,
i sql da);
if (status_vector[0] == 1 && status_vector[1])
{
/* Process error. */
isc_print_status(status_vector);
return(l);
}

}

isc_dsql_describe_bind() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_bandle, or
another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_dsql_describe(), isc_dsql_execute(), isc_dsql_execute2(), isc_dsql_prepare()

For more information about preparing a DSQL statement with input parameters, see
“DSQL programming methods” on page 96. For more information about creating and
populating the XSQLDA, see “Understanding the XSQLDA” on page 85.

INTERBASE 6

isc_dsql_execute()

isc_dsql_execute()

Executes a previously prepared DSQL statement.

Syniax | SC_STATUS i sc_dsql _execut e(
| SC_STATUS *st at us_vect or,
isc_tr_handle *trans_handl e,
isc_stm _handl e *stnt_handl e,
unsi gned short da_versi on,

XSQLDA *xsql da);

Parameter Type

Description

status_vector ISC_STATUS *

trans_handle isc_tr_handle *

stmt_handle isc_stmt_handle *

da_version unsigned short

xsqlda XSQLDA *

Pointer to the error status vector

Pointer to a transaction handle whose value has been set
by a previous isc_start_transaction() call; trans_handle
returns an error if NULL

Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); returns an error in
status_vector if NULL

Indicates the version of the extended SQL descriptor area
(XsQLDA) passed to the function; set this value to 1

Pointer to a previously allocated XSQLDA used for input

Description isc_dsql_execute() executes a DSQL statement previously prepared with
isc_dsql_prepare(). isc_dsql_execute() can be used to execute two types of statements:

® Statements that may return more than one row of data.

® Statements that need to be executed more than once.

If a statement to execute has input parameters, then isc_dsql_execute() requires an input
XSQLDA to describe those parameters. It does not provide for an output XSQLDA. A call to
isc_dsql_execute() that executes a SELECT statement results in the creation of a /ist

containing all the rows of data that are the result of execution of the statement. To access
these rows, call isc_dsql_fetch() in a loop. Each call to isc_dsql_fetch() fetches the next

row from the select-list.

If the statement to be executed requires input parameter values (that is, if it contains
parameter markers), these values must be supplied in the input XSQLDA xsqlda before

calling isc_dsql_execute().

API GUIDE

317

Example

318

CHAPTER 13 API FUNCTION REFERENCE

Note To execute a statement repeatedly when it both has input parameters and return
values, such as EXECUTE PROCEDURE, use isc_dsql_execute2() which requires both an
input and an output XSQLDA.

If you only need to execute a statement once, and it does not return any data, call
isc_dsql_execute_immediate() instead of isc_dsql_prepare() and isc_dsql_execute(). To
execute a statement with both input and output parameters a single time, use
isc_dsql_exec_immed2().

Note CREATE DATABASE and SET TRANSACTION cannot be executed with isc_dsql_execute()
or isc_dsql_execute2(). To execute these statements, use isc_dsql_execute_immediate().

The following program fragment illustrates calls to isc_dsql_execute() and
isc_dsql_fetch(). 1t allocates input and output XSQLDAS, prepares a SELECT statement,
executes it, and fetches and processes each row one-by-one.

#i ncl ude <i base. h>

| SC_STATUS st atus_vector[20], fetch_stat;

XSQLDA *isql da, *osql da;

XSQLVAR *ijvar, *ovar;

char *str = "SELECT CITY, POPULATION FROM CI TI ES WHERE STATE = ?";
char *state = "CA";

/* Allocate an output XSQ.DA osqlda. */

osql da = (XSQLDA *) mal | oc(XSQLDA_LENGTH(2) ;

osql da- >versi on = SQLDA VERSI ON1;

osql da->sqln = 2;

/* Prepare the statement, including filling in osqlda with information
about the select-list itens to be returned by the statenent. */
i sc_dsql _prepare(
status_vector,
& r_handle, /* Set in previous isc_start_transaction() call. */
&stnt _handl e,
/* Allocated previously by isc_dsqgl _allocate_statemnent()

or isc_dsql _alloc_statenment2() call. */
0,
str,
1,
osql da) ;
if (status_vector[0] == 1 && status_vector[1])

{

/* Process error. */
isc_print_status(status_vector);
return(l);

INTERBASE 6

isc_dsql_execute()

API GUIDE

}

/* Check to see whether or not the output XSQLDA had enough XSQ.VARS
al located. If not, correct it -- see isc_dsql_describe(). */

/[* Allocate and fill in the i nput XSQLDA. Thi s exanpl e assunmes you know

how many input parameters there are (1), and all other information
necessary to supply a value. If this is not true, youwill need to call
sc_dsql _descri be_bind(). */

sqlda = (XSQLDA *) mal | oc(XSQLDA_LENGTH(1)) ;

sql da- >versi on = SQLDA VERSI ON1;

sqgl da->sqgl n 1,

sql da->sqld = 1;

var = isql da->sql var[0];

var - >sqgl type = SQ_TEXT;

var->sgl l en = sizeof (state);

var->sqgl data = state;

/* Execute the statement. */
i sc_dsql _execut e(
stat us_vector,
& r_handle, /* Set in previous isc_start_transaction() call. */
&stnt _handl e,
/* Allocated previously by isc_dsqgl _allocate_statemnent()

or isc_dsql _alloc_statenment2() call. */
1,
i sql da) ;
if (status_vector[0] == 1 && status_vector[1])
{
/* Process error. */
isc_print_status(status_vector);
return(l);
}

/* Set up an output XSQ.VAR structure to allocate space for each item
to be returned. */
for (i=0, ovar = osqglda->sqlvar; i < osglda->sqgld; i++ ovar++)
{
dtype = (ovar->sqltype & ~1) /* Drop NULL bit for now. */
swi t ch(dtype)
{
case SQ._TEXT:

319

Return Value

320

See Also

CHAPTER 13 API FUNCTION REFERENCE

ovar - >sqgl data = (char *)mal | oc(si zeof (char) * ovar->sqgllen);
br eak;

case SQ._LONG
ovar->sgl data = (char *)nmall oc(sizeof(long));

/* Process remaining types. */

}
if (ovar->sqgltype & 1)
{
/* Assign a variable to hold NULL status. */
ovar->sglind = (short *)nalloc(sizeof(short));
}

} /'* end of for loop */

/* Fetch and process the rows in the select |list one by one. */
while ((fetch_stat = isc_dsqgl _fetch(

status_vector,

&stnt _handl e,

1,

osqlda)) == 0)

{
for (i=0; i < osqglda->sqld; i++)
{
[* Call a function you've written to process each returned
select-list item. */
process_column(osglda->sqglvar[i]);
}
}

isc_dsql_execute() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_bandle,
isc_bad_trans_bandle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_dsql_describe_bind(), isc_dsql_exec_immed2(), isc_dsql_execute_immediate(),
isc_dsql_execute2(), isc_dsql_fetch(), isc_dsql_prepare()

For more information about creating and populating the XSQLDA, see “Understanding
the XSQLDA” on page 85.

INTERBASE 6

isc_dsql_execute2()

isc_dsql_execute2()

Executes a previously prepared DSQL statement.

Syniax | SC_STATUS i sc_dsql _execut e2(
| SC_STATUS *st at us_vect or,
isc_tr_handle *trans_handl e,
isc_stm _handl e *stnt_handl e,
unsi gned short da_versi on,
XSQ.DA *i n_xsql da,
XSQLDA *out _xsql da);

Parameter

Type

Description

status_vector

trans_handle

stmt_handle

da_version

in_xsqlda

out_xsqlda

ISC_STATUS *

isc_tr_handle *

isc_stmt_handle *

unsigned short

XSQLDA *

XSQLDA *

Pointer to the error status vector

Pointer to a transaction handle whose value has been set
by a previous isc_start_transaction() call; trans_handle
returns an error if NULL

Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returnsan errorin
status_vector if it is NULL

Indicates the version of the extended SQL descriptor area
(XsQLDA) passed to the function; set this value to 1

Pointer to an optional, previously allocated XSQLDA used for
input; ifinput parameters are not supplied, set this value to
NULL

Pointer to an optional, previously allocated XSQLDA used for
results of statement execution; if not required, set this
value to NULL

Description isc_dsql_execute2() executes a previously prepared DSQL statement that has input
parameters and returns results, such as EXECUTE PROCEDURE and SELECT.

If the statement to execute requires input parameter values (that is, if it contains
parameter markers), these values must be supplied in the input XSQLDA, in_xsqlda before
calling isc_dsql_execute2().

API GUIDE

321

Tip

Example

322

CHAPTER 13 API FUNCTION REFERENCE

If the statement to execute returns values, they are placed in the specified output XSQLDA,
out_xsqlda. If a NULL value is supplied for the output XSQLDA and the statement returns
values, they are stored in a result set. To access the returned data, use isc_dsql_fetch() in
a loop.

If you just want to execute once a statement returning just one group of data, call
isc_dsql_exec_immed2() instead of isc_dsql_prepare() and isc_dsql_execute2().

To execute a statement that does not return any data a single time, call
isc_dsql_execute_immediate() instead of isc_dsql_prepare() and isc_dsql_execute2().

Note CREATE DATABASE and SET TRANSACTION cannot be executed with isc_dsql_execute()
or isc_dsql_execute2(). To execute these statements, use isc_dsql_execute_immediate().

The following program fragment illustrates a sequence of calls that allocates an input
XSQLDA and loads values into it, allocates an output XSQLDA, prepares an EXECUTE
PROCEDURE statement, allocates space in the output XSQLDA for each column returned
for each row retrieved by the call, and executes the prepared statement, placing return
values in the output XSQLDA.

#i ncl ude <i base. h>

| SC_STATUS st atus_vector[20];

XSQLDA *isql da, *osql da;

XSQ.VAR *ivar, *ovar;

short null _fl ag;

char *str = "EXECUTE PROCEDURE Pl1";

char *state = "CA";

/* Al'l ocat e an out put XSQLDA osql da. Thi s exanpl e assunes you know t hat
P1L will return one value. */

osqgl da = (XSQLDA *) mal | oc(XSQLDA_LENGTH(1) ;
osqgl da- >versi on = SQLDA VERSI ON1;

osql da->sqln = 1;

/* Prepare the statement, including fillingin osqgldawith information
about the itemto be returned by the statenent (procedure). */
i sc_dsql _prepare(

status_vector,

&r_handle, /* Set in previous isc_start_transaction() call. */

&st nt _handl e,

/* Allocated previously by isc_dsql _allocate_statenment()

or isc_dsql _alloc_statenent2() call. */

0,

str,

1,

INTERBASE 6

isc_dsql_execute2()

API GUIDE

osql da) ;
if (status_vector[0] == 1 && status_vector[1])
{
/* Process error. */
isc_print_status(status_vector);
return(l);
}

/* Set up the out put XSQLVAR structure to al |l ocate space for the return
val ue. Again, this exanple assunmes you know that Pl returns just one
value. For an example of what to do if you're not sure, see
isc_dsql_describe(). For an example of setting up an output XSQLVAR
structure to allocate space for multiple return items, see the
isc_dsql_execute() example program. */
ovar = osglda->sqlvar[0];
dtype = (ovar->sqltype & ~1); /* Drop NULL bit for now. */
switch(dtype)
{
case SQL_TEXT:
ovar->sgldata = (char *)malloc(sizeof(char) * ovar->sqllen);
break;
case SQL_LONG:
ovar->sgldata = (char *)malloc(sizeof(long));
[* Process remaining types. */

}

if (ovar->sqltype & 1)

{
[* Assign a variable to hold NULL status. */
ovar->sglind = &null_flag;

}

/* Allocate andfillinthe input XSQLDA. This example assumes you know
how many input parameters there are (1), and all other information
necessary to supply avalue. Ifthisis not true, you will need to call
isc_dsql_describe_bind(). */

isglda = (XSQLDA *)malloc(XSQLDA_LENGTH(1);
isglda->version = SQLDA_VERSION1;

isglda->sqin = 1;

isglda->sqld = 1;

ivar = isglda->sqlvar[0];

ivar->sqltype = SQL_TEXT;

ivar->sqllen = sizeof(state);

ivar->sqgldata = state;

323

Return Value

See Also

324

CHAPTER 13 API FUNCTION REFERENCE

/* Execute the statement. */
i sc_dsql _execute2(
stat us_vector,
& r_handle, /* Set in previous isc_start_transaction() call. */
&stnt _handl e,
/* Allocated previously by isc_dsqgl _allocate_statemnent()

or isc_dsql _alloc_statenment2() call. */
1,
i sql da,
osql da) ;
if (status_vector[0] == 1 && status_vector[1])
{
/* Process error. */
isc_print_status(status_vector);
return(l);
}

/* Now process the value returned in osqgl da->sqlvar[0]. */

isc_dsql_execute2() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_bandle,
isc_bad_trans_bandle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_dsql_exec_immed2(), isc_dsql_execute_immediate(), isc_dsql_execute(),
isc_dsql_fetch(), isc_dsql_prepare()

For more information about creating and populating the XSQLDA, see “Understanding
the XSQLDA” on page 85.

INTERBASE 6

isc_dsql_execute_immediate()

isc_dsql_execute_immediate()

Syniax

API GUIDE

Prepares and executes just once a DSQL statement that does not return data. There is a
special case of isc_dsql_execute_immediate() for creating databases.

| SC_STATUS i sc_dsql _execut e_i medi at (
| SC_STATUS *st at us_vect or,
i sc_db_handl e *db_handl e,
isc_tr_handle *trans_handl e,
unsi gned short | ength,
char *statenent,
unsi gned short dial ect,
XSQLDA *xsql da);

Note In the special case where the statement is CREATE DATABASE, there is no transaction,
so db_handle and trans_bandle must be pointers to handles whose value is NULL. When
isc_dsql_execute_immediate() returns, db_handle is a valid handle, just as though you
had made a call to isc_attach_database().

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

db_handle isc_db_handle * -« If statement is not CREATE DATABASE, this is a pointer to a database
handle setby a previous call to isc_attach_database(); db_handle
returns an error in status_vector if it is NULL
« If statement is CREATE DATABASE, this must point to a database
handle whose value is NULL

trans_handle isc_tr_handle * -« If statement is not CREATE DATABASE, this is a pointer to a
transaction handle whose value has been set by a previous
isc_start_transaction() call; trans_handle returns an error if NULL

« If statement is CREATE DATABASE or SET TRANSACTION, this must point
to a transaction handle whose value is NULL

length unsigned short Length of the DSQL statement in bytes; set to 0 in C programs to
indicate a null-terminated string

325

Description

Tip

Examples

326

CHAPTER 13 API FUNCTION REFERENCE

Parameter Type Description
statement char* DSQL string to be executed
dialect unsigned short « Indicates the SQL dialect of statement

+ Must be less than or equal to the SQL dialect of the client

xsglda XSQLDA * Pointer to an optional, previously allocated XSQLDA used for input;
if you don’t supply input parameters, set this value to NULL

isc_dsql_execute_immediate() prepares the DSQL statement specified in statement,
executes it once, and discards it. The statement must not be one that returns data (that
is, it must not be a SELECT or EXECUTE PROCEDURE statement).

If statement requires input parameter values (that is, if it contains parameter markers),
these values must be supplied in the input XSQLDA, xsqlda.

To create a database using isc_dsql_execute_immediate(), supply a CREATE DATABASE
statement and have db_handle and trans_handle point to handles with a NULL value.

If statement returns data, or if it needs to be executed more than once, use
isc_dsql_prepare() and isc_dsql_execute() (or isc_dsql_execute2()) instead of
isc_dsql_execute_immediate().

Note You must call isc_dsql_execute_immediate() rather than isc_dsql_prepare() and
isc_dsql_execute() for CREATE DATABASE or SET TRANSACTION. To start a transaction, you
also have the option of using isc_start_transaction().

The following program fragment calls isc_dsql_execute_immediate() to perform an
insert:

#i ncl ude <i base. h>

| SC_STATUS st atus_vector[20];

char *insert_stm =
"I NSERT | NTO CUSTOVER(CUSTNAME, BAL, CUSTNO)
VALUES("John Smth", 299.0, 5050)";

i sc_dsql _execut e_i nmedi at ¢(
status_vector,
&dat abase_handl e, /* Set in previous isc_attach_database() call. */
&r_handle, /* Set in previous isc_start_transaction() call. */
0,
i nsert_stnt,
1,
NULL) ;

INTERBASE 6

isc_dsql_execute_|

Return Value

See Also

API GUIDE

immediate()

if (status_vector[0] == 1 && status_vector[1])
{
/* Process error. */
isc_print_status(status_vector);
return(l);

}

The following C/C++ code fragment uses isc_dsql_execute_immediate() to create a
database and return a handle to the new database:

#i ncl ude <i base. h>
| SC_STATUS st atus_vector[20];
char *statement =
" CREATE DATABASE ' C:. /1 NVENTORY. GDB' PAGE_SI ZE 4096 \
USER ' SYSDBA' PASSWORD ' mast erkey’";
i sc_db_handl e db_handl e = NULL;
i sc_tr_handl e dummy_handl e = NULL;

i sc_dsql _execut e_i nredi at e(
st atus_vector,
&db_handl e,
&dumy_handl e,
0,
st at enent,
1,
NULL) ;
if (status_vector[0] == 1 && status_vector[1])

/* Process error. */
isc_print_status(status_vector);
return(l);

}

isc_dsql_execute_immediate() returns the second element of the status vector. Zero
indicates success. A nonzero value indicates an error. For InterBase errors, the first
element of the status vector is set to 1, and the second element is set to
isc_bad_db_bandle, isc_bad_trans_handle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_dsql_exec_immed2(), isc_dsql_execute(), isc_dsql_prepare()

327

CHAPTER 13 API FUNCTION REFERENCE

For more information about creating and populating the XSQLDA, see “Understanding
the XSQLDA” on page 85.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_dsql_exec_immed2()

Prepares and executes just once, a DSQL statement that returns no more than one row of
data.

Syntax 1 SC_STATUS isc_dsql _exec_i mred2(
| SC_STATUS *status_vector,
i sc_db_handl e *db_handl e,
isc_tr_handl e *trans_handl e,
unsi gned short | ength,
char *statenent,
unsi gned short di al ect,
XSQ.DA *in_xsql da,
XSQLDA *out _xsql da) ;

Parameter Type Description
status_vector ~ ISC_STATUS * Pointer to the error status vector
db_handle isc_db_handle * Pointer to a database handle set by a previous call to

isc_attach_database()
db_handle returns an error in status_vector if it is NULL

trans_handle isc_tr_handle* Pointertoatransaction handle whose value has been set by
apreviousisc_start_transaction() call; trans_handle returns
an error if NULL

length unsigned short Length of the DSQL statement, in bytes; set to 0in C
programs to indicate a null-terminated string

statement char * DSQL string to be executed

328 INTERBASE 6

isc_dsql_exec_immed2()

Description

Example

API GUIDE

Parameter Type Description

dialect unsigned short « Indicates the SQL dialect of statement
+ Must be less than or equal to the SQL dialect of the client

in_xsqlda XSQLDA * Pointer to an optional, previously allocated XSQLDA used for
input; if input parameters are not supplied, set this value to
NULL

out_xsqlda XSQLDA * Pointer to an optional, previously allocated XSQLDA used for
results of statement execution. If not required, set this value
to NULL

isc_dsql_exec_immed2() prepares the DSQL statement specified in statement, executes
it once, and discards it. statement can return a single set of values (i.e, it can be an
EXECUTE PROCEDURE or singleton SELECT) in the output XSQLDA.

If statement requires input parameter values (that is, if it contains parameter markers),
these values must be supplied in the input XSQLDA, in_xsqlda.

For statements that return multiple rows of data, use isc_dsql_prepare(),
isc_dsql_execute2(), and isc_dsql_fetch().

The following program fragment calls isc_dsql_exec_immed2():

| SC_STATUS status_vector[20];

XSQLDA *in_xsqgl da, *out_xsql da;

char *execute_pl = "EXECUTE PROCEDURE P1 ?";

/* Set up input and output XSQLDA structures here. */

i sc_dsql _exec_i med2(
status_vector,
&dat abase_handl e, /* Set in previous isc_attach_database() call. */
&r_handle, /* Set in previous isc_start_transaction() call. */
0,
execut e_p1l,
1,
i n_xsql da,
out _xsql da);
if (status_vector[0] == 1 && status_vector[1]) {
/* Process error. */
isc_print_status(status_vector);
return(l);

329

CHAPTER 13 API FUNCTION REFERENCE

Return Value isc_dsql_exec_immed2() returns the second element of the status vector. Zero indicates

See Also

success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_db_handle,
isc_bad_trans_bandle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_dsql_execute2(), isc_dsql_prepare()

For more information about creating and populating the XSQLDA, see “Understanding
the XSQLDA” on page 85.

isc_dsql_fetch()

Syniax

Description

330

Retrieves data returned by a previously prepared and executed DSQL statement.

| SC_STATUS i sc_dsql _fetch(
| SC_STATUS *st at us_vect or,
isc_stm _handl e *stnt_handl e,
unsi gned short da_versi on,
XSQLDA *xsql da);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returnsan errorin
status_vector if it is NULL

da_version unsigned short Indicates the version of the extended SQL descriptor area
(XsQLDA) passed to the function; set this value to 1

xsqlda XSQLDA * Pointer to an optional, previously allocated XSQLDA used for
results of statement execution

isc_dsql_fetch() retrieves one row of data into xsqlda each time it is called. It is used in
a loop to retrieve and process each row of data for statements that return multiple rows
in a cursor.

INTERBASE 6

isc_dsql_fetch()

Example

API GUIDE

A cursor is a one-way pointer into the ordered set of rows retrieved by a statement. A
cursor is only needed to process positioned UPDATE and DELETE statements made against
the rows retrieved by isc_dsql_fetch() for SELECT statements that specify an optional FOR
UPDATE OF clause.

It is up to the application to provide the loop construct for fetching the data.

Before calling isc_dsql_fetch(), a statement must be prepared with isc_dsql_prepare(),
and executed with isc_dsql_execute() (or isc_dsql_execute2() with a NULL output xsqlda
argument). Statement execution produces a result set containing the data returned. Each
call to isc_dsql_fetch() retrieves the next available row of data from the result set into
xsqlda.

The following program fragment illustrates a sequence of calls that allocates an output
XSQLDA, prepares a statement for execution, allocates an XSQIVAR structure in the XSQLDA
for each column of data to be retrieved, executes the statement, producing a select list of
returned data, then fetches and processes each row in a loop:

#i ncl ude <i base. h>
#define LASTLEN 20
#define FI RSTLEN 15
#def i ne EXTLEN 4
typedef struct vary {
short vary_| ength;
char vary_string[1];
} VARY;
| SC_STATUS st atus_vector[20], retcode;
| ong SQLCODE;
XSQ.DA *osql da;
XSQVAR *ovar;
short flag0, flagl, flag2;
char *str =
"SELECT | ast_nane, first_name, phone_ext FROM phone_li st
WHERE | ocation = "Mnterey" ORDER BY | ast_nane, first_name";
char | ast_name[LASTLEN + 2];
char first_nane[FI RSTLEN + 2];
char phone_ext [EXTLEN + 2];
VARY *vary;
/* Allocate an output XSQ.DA osqglda. */
osql da = (XSQLDA *) mal | oc(XSQLDA_LENGTH(3) ;
osql da- >versi on = SQLDA VERSI ON1;
osql da->sqln = 3;
/* Prepare the statenent. */
i sc_dsql _prepare(

331

332

CHAPTER 13 API FUNCTION REFERENCE

status_vector,

& r_handle, /* Set in previous isc_start_transaction() call. */
&stnt _handl e,

/* Allocated previously by isc_dsqgl _allocate_statemnent()

or isc_dsql _alloc_statenment2() call. */
0,
str,
1,
osql da);
if (status_vector[0] == 1 && status_vector[1])
{
/* Process error. */
isc_print_status(status_vector);
return(l);
}

/* Set up an output XSQ.VAR structure to allocate space for each item
to be returned. */
osql da- >sql var[0] . sql dat a | ast _nane;
osql da- >sql var[0] . sql type SQL_VARYING + 1;
osql da->sql var[0] .sqglind = &fl agO;
osql da->sql var[1] .sqldata = first_name;
osql da->sql var[1] . sgl type = SQ_VARYI NG + 1;
osql da->sql var[1] .sqglind = &fl agl;
osql da- >sql var[2] . sgql data = phone_ext;
osql da->sql var[2] . sqgltype = SQ_VARYI NG + 1;
osql da->sql var[2].sqglind = &fl ag2;
/* Execute the statement. */
i sc_dsql _execut e(
stat us_vector,
& r_handle, /* Set in previous isc_start_transaction() call. */
&stnt _handl e,
/* Allocated previously by isc_dsql __allocate_statemnent()

or isc_dsql _alloc_statenment2() call. */
1,
NULL) ;
if (status_vector[0] == 1 && status_vector[1])
{
/* Process error. */
isc_print_status(status_vector);
return(l);
}

INTERBASE 6

isc_dsql_fetch()

printf("\n% 20s % 15s % 10s\n\n", "LAST NAME"', "FIRST NAME',
"EXTENSI ON') ;
/* Fetch and print the records in the select |ist one by one. */
while ((retcode = isc_dsqgl _fetch(

stat us_vector,

&stnt _handl e,

1,

osqglda)) == 0)

{
vary = (VARY *)| ast _nane;
printf("%20.*s ", vary->vary_|length, vary->vary_string);
vary = (VARY *)first_nane;
printf("%15.*s ", vary->vary_length, vary->vary_string);
vary = (VARY *)phone_ext;
printf("%4.*s ", vary->vary_length, vary->vary_string);
}
if (retcode != 100L)
{
SQLCODE = isc_sql code(status_vector);
isc_print_sqlerror(SQCODE, status_vector);
return(l);
}

Return Value isc_dsql_fetch() returns the second element of the status vector. Zero indicates success.
The value 100 indicates that no more rows remain to be retrieved. Any other nonzero
value indicates an error. For InterBase errors, the first element of the status vector is set
to 1, and the second element is set to isc_bad_stmt_bandle, or another InterBase error
code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_execute(), isc_dsql_execute2(), isc_dsql_prepare()

API GUIDE 333

CHAPTER 13 API FUNCTION REFERENCE

isc_dsql_free_statement()

Syniax

Description

334

Frees a statement handle and all resources allocated for it, or closes a cursor associated
with the statement referenced by a statement handle.

| SC_STATUS i sc_dsql _free_stat enent(
| SC_STATUS *st at us_vect or,
isc_stm _handl e *stnt_handl e,
unsi gned short option);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returnsan errorin
status_vector if it is NULL

option unsigned short Either DSQL_close or DSQL_drop

isc_dsql_free_statement() either frees a statement handle and all resources allocated for
it (option = DSQL_drop), or closes a cursor associated with the statement (option =
DSQL_close).

Note isc_dsql_free_statement() does nothing if it is called with an option value other
than DSQL_drop or DSQL_close.

» DSQL_close

Call isc_dsql_free_statement() with the DSQL_close option to close a cursor after it is no
longer needed, that is, after fetching and processing all the rows resulting from the
execution of a query. A cursor need only be closed in this manner if it was previously
opened and associated with stmt_bandle by isc_dsql_set_cursor_nameQ.

DSQIL_close closes a cursor, but the statement it was associated with remains available for
further execution.

If you have used a cursor to perform updates or deletes on all the rows returned from the
execution of a query, and you want to perform other update or delete operations on rows
resulting from execution of the same statement again (possibly with different input
parameters), follow these steps:

1. Close the cursor with isc_dsql_free_statement().

2. Re-open it with isc_dsql_set_cursor_name().

INTERBASE 6

isc_dsql_free_statement()

Example

API GUIDE

3. If desired, change the input parameters to be passed to the statement.

4. Re-execute the statement to retrieve a new select list.

5. Retrieve rows in a loop with isc_dsql_fetch() and process them again with
isc_dsql_execute_immediate().

» DSQL_drop

Statement handles allocated with isc_dsql_allocate_statement() must be released when
no longer needed by calling isc_dsql_free_statement() with the DSQL_drop option. This
option frees all resources associated with the statement handle, and closes any open
cursors associated with the statement handle.

The following program fragment shows examples of the two types of
isc_dsql_free_statement() calls. It assumes that stmt_handlel and stmt_handle2 are
statement handles, each of which was previously allocated with either
isc_dsql_allocate_statement() or isc_dsql_alloc_statement2(). A cursor is also assumed
to have been associated with the statement referenced by stm¢_bandlel.

#i ncl ude <i base. h>
| SC_STATUS st atus_vector[20];

/* Free the cursor associated with stnt_handl el. */
i sc_dsql _free_statement (

st atus_vector,

&stm handl el,

DSQL_cl ose);
if (status_vector[0] == 1 && status_vector[1])
{

isc_print_status(status_vector);

return(l);
}

/* Free stnt_handl e2. */
i sc_dsql _free_statement (
st atus_vector,
&stnm _handl e2,

DSQL_dr op) ;
if (status_vector[0] == 1 && status_vector[1])
{

isc_print_status(status_vector);

return(l);

}

335

CHAPTER 13 API FUNCTION REFERENCE

Return Value isc_dsql_free_statement() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_handle, or
another InterBase error code.To check for an InterBase error, examine the first two
elements of the status vector directly. For more information about examining the status
vector, see Chapter 10, “Handling Error Conditions.”

See Also isc_dsql_allocate_statement(), isc_dsql_alloc_statement2(),

isc_dsql_set_cursor_name()

isc_dsql_prepare()

Prepares a DSQL statement for repeated execution.

Syntax |1 SC_STATUS isc_dsql _prepare(
| SC_STATUS *status_vector,
isc_tr_handl e *trans_handl e,
isc_stm handle *stnt_handl e,

unsi gned short | ength,

char *statenent,

unsi gned short dial ect,

XSQLDA *xsqgl da) ;

Parameter Type

Description

status_vector ISC_STATUS *

trans_handle isc_tr_handle *

stmt_handle isc_stmt_handle *

length unsigned short

Pointer to the error status vector

Pointer to a transaction handle whose value has been set
by a previous isc_start_transaction() call; trans_handle
returns an error if NULL

Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handlereturnsan errorin
status_vector if it is NULL

Length of the DSQL statement, in bytes; set to 0in C
programs to indicate a null-terminated string

336

INTERBASE 6

isc_dsql_prepare()

Description

API GUIDE

Parameter Type Description
statement char * DSQL string to be executed
dialect unsigned short + Indicates the SQL dialect of statement

+ Must be less than or equal to the SQL dialect of the client

xsglda XSQLDA * Pointer to an optional, previously allocated XSQLDA used
for results of statement execution

isc_dsql_prepare() readies the DSQL statement specified in statement for repeated
execution by checking it for syntax errors and parsing it into a format that can be
efficiently executed. All SELECT statements must be prepared with isc_dsql_prepare().

After a statement is prepared, it is available for execution as many times as necessary
during the current session. Preparing a statement for repeated execution is more efficient
than using isc_dsql_execute_immediate() or isc_dsql_exec_immed2() over and over
again to prepare and execute a statement.

If a statement to be prepared does not return data, set the output XSQLDA to NULL.
Otherwise, the output XSQLDA must be allocated prior to calling isc_dsql_prepare().
Allocate the XSQLDA using the macro, XSQLDA_LENGTH, defined in ibase.h, as follows:

xsqgl da = (XSQLDA *) nal | oc(XSQ.DA _LENGTH(n));
XSQLDA_LENGTH calculates the number of bytes required when 7 result columns will be

returned by the statement, and allocates the appropriate amount of storage.

After allocating the XSQLDA xsqlda, set xsqlda->version to SQLDA_VERSION1, and set
xsqlda_sqln to indicate the number of XSQIVAR structures allocated.

When isc_dsql_prepare() is called, it fills in the other fields of the XSQZDA and all the
XSQIVARs with information such as the datatype, length, and name of the corresponding
select-list items in the statement. It fills in xsqlda->sqld with the actual number of
select-list items returned. If xsqlda->sqld is greater than xsqlda->sqln, then enough room
is not allocated, and the XSQLDA must be resized by following these steps:

1. Record the current value of the xsqlda->sqld.
2. Free the storage previously allocated for xsglda.

3. Reallocate storage for xsqlda, this time specifying the correct number (from
step 1) in the argument to XSQLDA_LENGTH.

4. Reset xsqlda->sqld and xsqlda->version.
5. Execute isc_dsql_describe() to fill in the xsqlda fields.

337

Example

338

CHAPTER 13 API FUNCTION REFERENCE

Note If the prepared statement requires input parameter values, then an input XSQLDA
will need to be allocated and filled in with appropriate values prior to calling
isc_dsql_execute() or isc_dsql_execute2(). You can either allocate and directly fill in all
the fields of the input XSQLDA, or you can allocate it, call isc_dsql_describe_bind() to get
information regarding the number and types of parameters required, then fill in
appropriate values.

The following program fragment illustrates the allocation of the output XSQLDA, and a
call to isc_dsql_prepare():

#i ncl ude <i base. h>

| SC_STATUS st atus_vector[20];

XSQ.DA *osql da;

char *query = "SELECT CITY, STATE, POPULATION FROM CITIES \
WHERE STATE = "NY" ORDER BY CI TY DESCENDI NG';

osql da = (XSQLDA *) mal | oc(XSQLDA_LENGTH(3) ;
osqgl da- >versi on = SQLDA VERSI ON1;
osql da->sqln = 3;

i sc_dsql _prepare(
status_vector,
&r_handle, /* Set in previous isc_start_transaction() call. */
&st nt _handl e,
/* Al'located previously by isc_dsql _allocate_statenent()

or isc_dsql _alloc_statenent2() call. */
0,
query,
1,
osql da);
if (status_vector[0] == 1 && status_vector[1])
{
isc_print_status(status_vector);
return(l);
}

More complete examples showing the subsequent execution and fetching of result data
are provided in the example programs for isc_dsql_execute(), isc_dsql_execute2(), and
isc_dsql_fetch().

INTERBASE 6

isc_dsql_set_cursor_name()

Return Value isc_dsql_prepare() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to isc_bad_stmt_bhandle,
isc_bad_trans_bandle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_describe(), isc_dsql_describe_bind(), isc_dsql_execute(),
isc_dsql_execute2(), isc_dsql_fetch()

For more information about creating and populating the XSQLDA, see “Understanding
the XSQLDA” on page 85 of Chapter 6, “Working with Dynamic SQL.”

isc_dsql_set_cursor_name()

Defines a cursor name and associates it with a DSQL statement.

Syntax | SC_STATUS i sc_dsql _set _cursor _nanmg(
| SC_STATUS *st at us_vect or,
isc_stm _handl e *stnt_handl e,
char *cursor_nane,
unsi gned short type);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returnsan errorin
status_vector if it is NULL

cursor_name char * String name of a cursor

type unsigned short Reserved for future use; set to NULL

Description isc_dsql_set_cursor_name() defines a cursor name and associates it with a DSQL
statement handle for a statement that returns multiple rows of data (for example,
SELECT), effectively opening the cursor for access.

API GUIDE 339

Example

340

CHAPTER 13 API FUNCTION REFERENCE

A cursor is a one-way pointer into the ordered set of rows retrieved by a statement. A
cursor is only needed to process positioned UPDATE and DELETE statements made against
the rows retrieved by isc_dsql_fetch() for SELECT statements that specify an optional FOR
UPDATE OF clause.

Note In UPDATE or DELETE statements, the cursor name cannot be supplied as a
parameter marker (?).

When a cursor is no longer needed, close it with the DSQL_close option of
isc_dsql_free_statement().

The following pseudo-code illustrates the calling sequence necessary to execute an
UPDATE or DELETE with the WHERE CURRENT OF clause using a cursor name established
and opened with isc_dsql_set_cursor_name():

#i ncl ude <i base. h>

| SC_STATUS st atus_vector[20], fetch_stat;
isc_stm handl e st_handl e = NULL;

char *cursor = "S";

/* Allocate the statenent handle st _handle. */
i sc_dsql _al | ocat e_st at enment (
st atus_vector,
&db, /* Database handle set by isc_attach_database() call. /*

&st _handl e);
if (status_vector[0] == 1 && status_vector[1])
{

isc_print_status(status_vector);

return(l);
}

/* Set up an output XSQLDA osqgl da here. */
[* Call isc_dsqgl _prepare() to prepare the SELECT statement. */
/[* Set up an input XSQDA, if needed, for the SELECT statement. */
[* Call isc_dsqgl _execute() to execute the SELECT statement. */
/[* Set up an input XSQDA (if needed) for the UPDATE or DELETE
statement. */
/* Declare the cursor nane, and associate it with st_handle. */
i sc_dsql _set _cursor_nane(

status_vector,

&st _handl e,

cursor, 0);
if (status_vector[0] == 1 && status_vector[1])

{

isc_print_status(status_vector);

INTERBASE 6

isc_dsql_set_cursor_name()

return(l);
}
/* Fetch rows one by one, with the cursor pointing to each row as it
is fetched, and execute an UPDATE or DELETE statement to update or
delete the row pointed to by the cursor. */
while ((fetch_stat = isc_dsqgl _fetch(

status_vector, &st_handle, 1, osqlda)) == 0)
{

/* Update or delete the current row by executing an "UPDATE ...
WHERE CURRENT OF S" or "DELETE ... WHERE CURRENT OF S"
statenent, where "S" is the nane of the cursor declared in
i sc_dsql _set_cursor_nane(). */

}

Return Value isc_dsql_set_cursor_name() returns the second element of the status vector. Zero
indicates success. A nonzero value indicates an error. For InterBase errors, the first
element of the status vector is set to 1, and the second element is set to
isc_bad_stmt_bandle, or another InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_dsql_fetch(), isc_dsql_free_statement()

API GUIDE 341

CHAPTER 13 API FUNCTION REFERENCE

isc_dsql_sql_info()
Returns requested information about a prepared DSQL statement.

Syniax | SC_STATUS i sc_dsql _sql _i nf o(
| SC_STATUS *st at us_vect or,
isc_stm _handl e *stnt_handl e,
unsi gned short item.length,
char *itens,
unsi gned short buffer_I ength,
char *buffer);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

stmt_handle isc_stmt_handle * Pointer to a statement handle previously allocated with
isc_dsql_allocate_statement() or
isc_dsql_alloc_statement2(); the handle returnsan errorin
status_vector if it is NULL

item_length unsigned short Number of bytes in the string of information items in jitems
items char* String of requested information items
buffer_length unsigned short Number of bytes in the result buffer, buffer

buffer char* User-provided buffer for holding returned data; must be
large enough to hold the information requested

Description isc_dsql_sql_info() returns requested information about a statement prepared with a
call to isc_dsql_prepare(). The main application need for this function is to determine
the statement type of an unknown prepared statement, for example, a statement entered
by the user at run time.

Requested information can include the:
® Statement type
= Number of input parameters required by the statement
= Number of output values returned by the statement

® Detailed information regarding each input parameter or output value, including its
datatype, scale, and length

® The query plan prepared by the optimizer

342 INTERBASE 6

isc_dsql_sqgl_info()

Example

Return Value

See Also

API GUIDE

The following illustrates a call to isc_dsql_sql_info() to determine the statement type of
the statement whose handle is referenced by stmt:

int statement_type;
int |ength;
char type_iten{] = {isc_info_sqgl _stnt_type};
char res_buffer[8];
i sc_dsql _sql _i nfo(
stat us_vector,

&stnt,
/* Allocated previously by isc_dsql _allocate_statement() or
isc_dsql __alloc_statenment2() call. */
sizeof (type_item,
type_item

si zeof (res_buffer),
res_buffer);

if (res_buffer[0] == isc_info_sql_stnt_type)
{
I ength = isc_vax_integer(buffer[1], 2);
statement _type = isc_vax_integer(buffer[3], |ength);

}

isc_dsql_sql_info() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_dsql_describe_bind(), isc_dsql_describe(), isc_vax_integer()

For more information about determining unknown statement types at run time, see
“Determining an unknown statement type at runtime” on page 113 of Chapter 6,
“Working with Dynamic SQL.”

343

CHAPTER 13 API FUNCTION REFERENCE

isc_encode_sql_date()

Syniax

| Description

Example

344

Translates a date from the C struct tm format to InterBase ISC_DATE format prior to
inserting or updating a DATE value in a table.

voi d i sc_encode_sql _dat e(
voi d *tm date,
| SC_DATE *i b_date);

Parameter Type Description

tm_date void * Pointer to a Cstruct tm structure

ib_date ISC_DATE * Pointer to a four-byte ISC_DATE structure containing a date in
InterBase format

isc_encode_sql_date() translates a date in a C time structure into an ISC_DATE format
internal to InterBase. This call is used prior to writing DATE data to a table to guarantee
that the date is in a format recognized by InterBase.

Use the isc_dsql family of API calls to insert or update DATE data from the ISC_DATE
structure in a table.

Note In InterBase 6, the DATE datatype is available only in dialect 3. It holds only date
information, and does not include time information. In version 6 dialect 1, the TIMESTAMP
datatype holds both date and time information and is exactly equivalent to the DATE
datatype that was present in earlier versions of InterBase.

The following code fragment illustrates declaring time structures and calling
isc_encode_sql_date() to translate a C time format into an InterBase date format prior to
inserting or updating a table:

#i ncl ude <tine.h>
#i ncl ude <i base. h>

struct tmhire_tine;
| SC_DATE hire_date;

/* Store date info into the tmstruct here. */
i sc_encode_sqgl _date(&hire_tine, &ire_date);

/* Now use a DSQ. | NSERT or UPDATE statenent to nove the date into a
DATE col um. */

INTERBASE 6

isc_encode_sql_time()

Return Value None.

See Also

isc_decode_sql_date(), isc_encode_sql_time(), isc_encode_timestamp()

isc_encode_sql_time()

Syntax

Description

Example

API GUIDE

Translates a time from the C struct tm format to InterBase 1SC_SQL_TIME format prior to
inserting or updating a TIME value in a table.

voi d isc_encode_sql _time(
void *tm date,
ISC_ TIME *ib_tine);

Parameter Type Description

tm_date void * Pointer to a C tm structure

ib_time ISC_TIME * Pointer to a four-byte ISC_TIME structure containing a time in
InterBase format

isc_encode_sql_time() translates a date in a C time structure into an ISC_TIME format
internal to InterBase. This call is used prior to writing TIME data to a table to guarantee
that the time is in a format recognized by InterBase.

Use the isc_dsql family of API calls to insert or update TIME data from the ISC_TIME
structure in a table.

The following code fragment illustrates declaring time structures and calling
isc_encode_sql_time(Q) to translate a C time format into an InterBase date format prior to
inserting or updating a table:

#i ncl ude <tine. h>
#i ncl ude <i base. h>

struct tmhire_tine;
| SC_TI ME hire_date;

/* Store time info into the tmstruct here. */
i sc_encode_sqgl _tine(&ire_tine, &hire_date);

/* Now use a DSQ. | NSERT or UPDATE statenment to nove the date into a
TI ME col um. */

345

CHAPTER 13 API FUNCTION REFERENCE

Return Value None.

See Also

isc_decode_sql_time(), isc_encode_sql_date(), isc_encode_timestamp()

isc_encode_timestamp()

Syntax

Description

Example

346

Translates a time from the C struct tm format to InterBase I1SC_TIMESTAMP format prior to
inserting or updating a TIMESTAMP value in a table.

voi d i sc_encode_ti mestanp(
void *tm date,
| SC_TI MESTAMP *i b_ti mest anp);

Parameter Type Description

tm_date void * Pointer to a C tm structure

ib_timestamp ISC_TIMESTAMP * Pointer to an eight-byte ISC_TIMESTAMP structure containing a
date and time in InterBase format

isc_encode_timestamp() translates a date in a C time structure into an 1SC_TIMESTAMP
format internal to InterBase. This call is used prior to writing TIMESTAMP data to a table
to guarantee that the date and time are in a format recognized by InterBase. This call is
exactly the same as the older isc_encode_date(), which is still available for backward
compatibility.

Use the isc_dsql family of API calls to insert or update TIMESTAMP data from the
ISC_TIMESTAMP structure in a table.

The following code fragment illustrates declaring time structures and calling
isc_encode_timestamp() to translate a C time format into an InterBase date format prior
to inserting or updating a table:

#i ncl ude <tine. h>
#i ncl ude <i base. h>

struct tmhire_tine;
| SC_TI MESTAMP hire_date;

/* Store date and tinme info into the tmstruct here. */

i sc_encode_timestanp (&hire_time, &hire_date);

INTERBASE 6

isc_event_block()

/* Now use a DSQ. | NSERT or UPDATE statenment to nove the date into a
TI MESTAMP col um. */

Return Value None.

See Also isc_decode_timestamp(), isc_encode_sql_date(), isc_encode_sql_time()

isc_event block()

Allocates two event parameter buffers (EPBs) for subsequent use with other API event
calls.

Syniax 1 ong isc_event_bl ock(
char **event _buffer,
char **result_buffer,
unsi gned short id_count,

)

Parameter Type Description

event_buffer char ** Address of a character pointer; this function allocates and
initializes an event parameter buffer and stores its address
into the character pointer

result_buffer char ** Address of a character pointer; this function allocates an
event parameter buffer, and stores its address into the
character pointer

id_count unsigned short Number of event identifier strings that follow

char * Up to 15 null-terminated and comma-separated strings
that each name an event

Description isc_event_block() must be called before any other event functions. It:

= Allocates two event parameter buffers of the same size, and stores their addresses into the
character pointers addressed by event_buffer and result_buffer.

® Stores into the buffer referenced by event_buffer the names and event counts for each of
the specified events. The names are the ones that appear as the final arguments to
isc_event_block(). The event counts are initialized to zero and are used to specify how
many times each event has been posted prior to each wait for events to occur.

= Returns the length, in bytes, of the buffers.

API GUIDE 347

Example

Return Value

348

See Also

CHAPTER 13 API FUNCTION REFERENCE

The buffers, and their lengths, are used in subsequent calls to the functions
isc_wait_for_event(), isc_que_events(), and isc_event_counts(). event_buffer is used to
indicate the events of interest, and to hold the counts in effect before a wait for one of
the events. After an event is posted, result_buffer is filled in exactly as event_buffer,
except that the event counts are updated. isc_event_counts() is then called to determine
which events were posted between the time the counts were set in event_buffer, and the
time the counts are set in result_buffer.

The following program fragment illustrates a call to isc_event_block():

#def i ne number _of _stocks 3;

char *event _buffer, *result_buffer;
| ong | engt h;

I ength = isc_event _bl ock(
&event _buffer,
&result_buffer,
nunber _of _st ocks,
"DEC', "HP", "SUN"');

isc_event_block() returns a number that is the size, in bytes, of each event parameter
buffer it allocates.

isc_event_counts(), isc_que_events(), isc_wait_for_event()

INTERBASE 6

isc_event_counts()

isc_event_counts()

Syniax

Description

API GUIDE

Compares event parameter buffers (EPBs) to determine which events have been posted,
and prepares the event parameter buffers for the next call to isc_que_events() or
isc_wait_for_event().

voi d i sc_event _count s(
| SC_STATUS *st at us_vect or,
short buffer_Il ength,
char *event _buffer,
char *result_buffer);

Parameter Type Description

status_vector ~ long * Pointer to the status vector, which is used to store the
differences in event counts for each corresponding event in
event_buffer and result_buffer

buffer_length short Length of the event parameter buffers, returned by the
isc_event_block() call that allocated them

event_buffer char * Pointer to the event parameter buffer that specifies the event
counts prior to the previous call to isc_wait_for_event() or
isc_que_events()

result_buffer char ointer to the event parameter buffer filled in as a result o
It_buffe har * Pointer to th tp ter buffer filled It of
posting an event

isc_event_counts() compares the event counts in the event parameter buffers,
event_buffer and result_buffer, and sets up to the first 15 elements of status_array to
contain the differences. It then modifies event_buffer to contain the same event counts
as result_buffer in preparation for the next call to either isc_wait_for_event() or
isc_que_events().

The counts in event_buffer specify how many times each event had been posted since
the previous call to isc_event_wait() or isc_que_events(). The counts in result_buffer
equal the values in event_buffer plus the number of additional times an event is posted
after the current call to isc_event_wait() or isc_que_events(). If an event is posted after
a call to either of these functions, its count is greater in result_buffer than in event_buffer.
Other event counts may also be greater because an event may have been posted between
calls to either of these functions. The values in status_array are the differences in values
between event_buffer and result_buffer. This mechanism of comparing all the counts
ensures that no event postings are missed.

349

CHAPTER 13 API FUNCTION REFERENCE

Example The following program fragment illustrates the set-up and waiting on any of the events
named “DEC”, “HP”, or “SUN”, then calling isc_event_counts() to determine which
events have been posted:

#i ncl ude <i base. h>
#define nunber of stocks 3;

char *event buffer, *result_buffer;
| SC_STATUS st at us_vector[20];
char *event _names[] = {"DEC', "HP", "SUN'};

| ong | engt h;
int i;
I ength = isc_event_bl ock(

&event buffer,

& esult _buffer,
nunber _of stocks,
"DEC', "HP", "SUN');

isc_wait_for_event(
stat us_vector,
&dat abase_handl e, /* Set by previous isc_attach_database(). */
| engt h, /* Returned fromisc_event_bl ock(). */
event buffer,
result_buffer);
if (status_vector[0] == 1 && status_vector[1])

isc_print_status(status_vector); /* Display error nessage. */
return(l);

}

i sc_event _count s(
st atus_vector,
(short) Iength,
event buffer,
result_buffer);

for (i=0; i<number_of_stocks; i++)

if (status_vector[i])

{

350 INTERBASE 6

isc_expand_dpb()

/* The event has been posted. Do whatever is appropriate, for
exanpl e,
initiating a buy or sell order. */

}

Return Value None.

See Also

isc_que_events(), isc_wait_for_event()

isc_expand_dpb()

Syniax

Description

API GUIDE

Dynamically builds or expands a database parameter buffer (DPB) to include database
parameters.

voi d i sc_expand_dpb(

char **dpb,
unsi gned short *dpb_si ze,
)
Parameter Type Description
dpb char ** Pointer to an existing DPB
dpb_size unsigned short * Pointer to the current size, in bytes, of the DPB
char * Pointers to items to insert into the expanded DPB

isc_expand_dpb() builds or expands a DPB dynamically. Its main use is to simplify the
building of the DPB prior to a call to isc_attach_database(), or to allow an end user to
supply a user name and password combination at run time. In many cases, the DPB
must be constructed programmatically, but isc_expand_dpb() enables an application to
pass user names, password, message file, and character set parameters to the function,
which then adds them to an existing DPB.

A pointer to a previously allocated and initialized DPB must be passed to
isc_expand_dpb() along with a pointer to a variable containing the current size of the
DPB when this function is called. If the space allocated for the DPB is not large enough
for the parameters passed to isc_expand_dpb(), then the function reallocates a larger
DPB, preserving its current contents, and adds the new parameters.

To ensure proper memory management, applications that call isc_expand_dpb() should
always allocate DPBs large enough to hold all anticipated parameters.

351

Example

CHAPTER 13 API FUNCTION REFERENCE

The following code calls isc_expand_dpb() to create a DPB, then attaches to a database
using the newly created DPB. user_name and user_password are assumed to be
variables whose values have been filled in, for example, after asking the user to specify
the name and password to be used.

#i ncl ude <i base. h>

char *dpb;

| SC_STATUS st atus_vector[20];
i sc_db_handl e handl e = NULL;
short dpb_I engt h;

/* Build the database paranmeter buffer. */

dpb = (char *) mall oc(50);
dpb_l ength = 0;

i sc_expand_dpb(&dpb, &dpb_l ength, isc_dpb_user_nanme, user_nane,
i sc_dpb_password, user_password, NULL);

i sc_attach_dat abase(
stat us_vector,
0,
"enpl oyee. db",
&handl e,
dpb_I engt h,
dpb_buffer);
if (status_vector[0] == 1 && status_vector[1])

/* An error occurred. */
isc_print_status(status_vector);
return(l);

}

Return Value None.

352

See Also

isc_attach_database()

INTERBASE 6

isc_get_segment()

isc_get_segment()
Reads a segment from an open Blob.

Syniax | SC_STATUS i sc_get _segnent (
| SC_STATUS *st at us_vect or,
i sc_bl ob_handl e *bl ob_handl e,
unsi gned short *actual _seg_| ength,
unsi gned short seg_buffer_I ength,
char *seg_buffer);

Parameter Type Description
status_vector ISC_STATUS * Pointer to the error status vector
blob_handle isc_blob_handle * Pointer to the handle of the Blob you want to read.

actual_seg_length unsigned short* Pointer to the actual segment length that InterBase
reads into the buffer; useful if the segment length is
shorter than the buffer length

seg_buffer_length unsigned short Length of the segment buffer

seq_buffer char * Pointer to the segment buffer

Description isc_get_segment() reads a Blob segment from a previously opened Blob. You can set the
seg_buffer_length parameter to a size that is efficient for a particular type of Blob data.
For example, if you are reading Blob data from a text file, you might set the segment
buffer length to 80, to take advantage of the 72 to 80 character line lengths that are
common in text files. By periodically checking the value of the actual segment length in
your loop, you can determine an end-of-line or end-of-file condition.

Before reading any part of a Blob, you must open the Blob with a call to
isc_open_blob2(). isc_get_segment() behaves differently depending on which call
precedes it. If the most recent call is to isc_open_blob2(), then a call to isc_get_segment()
reads the first segment in the Blob. If the most recent call is to isc_get_segment(), then it
reads the next segment.

If Blob filters are specified when a Blob is opened, then each segment retrieved by
isc_get_segment() is filtered on read.

Note Blob filters are not supported on NetWare.

API GUIDE 353

Example

Return Value

354

CHAPTER 13 API FUNCTION REFERENCE

You can read bitmaps and other binary files directly, without filtering, if you don’t need
to change from one format to another, say from .TIF to .JPEG. You can also store
compressed bitmaps directly in a database in formats such as .JpG (JPEG), .BMP (Windows
native bitmaps), or .GIF (CompuServe Graphic Interchange Format). No filtering is
required.

You can store bitmaps in a database in row-major or column-major order.

If the buffer is not large enough to hold the entire current segment, the function returns
isc_segment, and the next call to isc_get_segment() gets the next chunk of the oversized
segment rather than getting the next segment.

When isc_get_segment() reads the last segment of the Blob, the function returns the code
isc_segstr_eof.

For more information about reading data from a Blob, see Chapter 7, “Working with
Blob Data.”

The following call gets a segment from one Blob and writes it to another:

get _status = isc_get_segnent(status, & rom bl ob, &seg_len, 80,
buffer);
if (status[0] == 1 && status[1])
{
isc_print_status(status);
return(l);
}
if (get_status != isc_segstr_eof)
write_status = isc_put_segnent(status, & o_blob, seg len, buffer);
if (status[0] == 1 && status[1])
{
i sc_print_status(status);
return(l);
}

isc_get_segment() returns the second element of the status vector. Zero indicates
success. isc_segment indicates the buffer is not large enough to hold the entire current
segment; the next call to isc_get_segment() gets the next chunk of the oversized
segment rather than getting the next segment. isc_segstr_eof indicates that the last
segment of the Blob has been read. Any other nonzero value indicates an error. For
InterBase errors, the first element of the status vector is set to 1, and the second element
is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

INTERBASE 6

isc_interprete()

See Also

isc_create_blob2(), isc_open_blob2(), isc_put_segment()

isc_interprete()

Syniax

Description

Example

API GUIDE

Extracts the text for an InterBase error message from the error status vector to a
user-defined buffer.

| SC_STATUS i sc_interprete(
char *buffer,
| SC_STATUS **st atus_vector);

Parameter Type Description
buffer char * Application buffer for storing an InterBase error message
status_vector ISC_STATUS ** Pointer to a pointer to the error status vector

Given both the location of a storage buffer allocated in a program, and the address of
the status vector, isc_interprete() builds an error message string from the information in
the status vector, puts the formatted string in the buffer where the program can
manipulate it, and advances the status vector pointer to the start of the next cluster of
error message information. For example, you might declare an error string buffer, call
isc_interprete() to retrieve the first error message and insert the message into the buffer,
write the buffer to a log file, then peek at the next cluster to see if it contains more error
information.

isc_interprete() retrieves and formats a single message each time it is called. When an
error occurs, however, the status vector usually contains more than one error message.
To retrieve all relevant error messages, you must make repeated calls to isc_interprete()
until no more messages are returned.

Note Do not pass the address of the status vector directly, because each time
isc_interprete() is called, it modifies the pointer to the status vector to point to the start
of the next available message.

To display all error messages on the screen instead of to a buffer, use isc_print_status().
The following code declares a message buffer, a status vector, and a pointer to the

vector, then illustrates how repeated calls are made to isc_interprete() to store all
messages in the buffer:

#i ncl ude <i base. h>
char nmsg[512];
| SC_STATUS status_vector[20];

355

CHAPTER 13 API FUNCTION REFERENCE

| ong *pvector; /* Pointer to pointer to status vector. */
FILE *efile; /* Code fragnent assumes this points to an open file. */

pvector = status_vector; /* (Re)set to start of status vector. */
isc_interprete(msg, &pvector); /* Retrieve first nmessage. */
fprintf(efile, "%\n", msg); /* Wite buffer to log file. */

msg[0] = "'-'; /* Append | eadi ng hyphen to secondary messages. */
while(isc_interprete(nmsg + 1, &vector)) /* More nessages? */
{

fprintf(efile, "%\n", nsg); /* If so, wite them too. */

}

fclose(efile);

Return Value 1f successful, isc_interprete() returns the length of the error message string it stores in
buffer. Tt also advances the status vector pointer to the start of the next cluster of error
message information.

If there are no more messages in the status vector, or if isc_interprete() cannot interpret
the next message, it returns 0.

See Also isc_print_sqlerror(), isc_print_status(), isc_sqlcode(), isc_sql_interprete()

isc_modify_user()
Modifies a user record from the password database, isc4.gdb.

Note Use of this function is deprecated. It is replaced by a full featured Services API. See
Chapter 12: “Working with Services” on page 199 and the reference entry for
“isc_service_start()” on page 380.

Syntax 1 SC_STATUS isc_nodify_user(
| SC_STATUS *st at us
USER_SEC DATA *user_sec_data);

Parameter Type Description
status vector ISC_STATUS * Pointer to the error status vector
user_sec_data USER_SEC_DATA * Pointer to a struct that is defined in ibase.h

356 INTERBASE 6

isc_modify_user()

Description

API GUIDE

The three security functions, isc_add_user(), isc_delete_user(), and isc_modify_user()
mirror functionality that is available in the gsec command-line utility. isc_modify_user()
modifies a record from isc4.gdb, InterBase’s password database.

At a minimum, you must provide the user name. Any additional user information that
you supply, such as first name, last name, or password, overwrites the information that
is already in isc4.gdb.

If the server is not local, you must provide both a server name and a protocol. Valid
choices for the protocol field are sec_protocol_tcpip, sec_protocol_netbeui,
sec_protocol_spx, and sec_protocol_local.

InterBase reads the settings for the ISC_USER and ISC_PASSWORD environment variables if
you do not provide a DBA user name and password.

The definition for the USER_SEC_DATA struct in ibase.h is as follows:
typedef struct {

short sec_fl ags; /* which fields are specified */
i nt ui d; /* the user’'s id */

i nt gi d; /* the user’s group id */

i nt pr ot ocol ; /* protocol to use for connection */
char *server; /* server to adninister */

char *user _nane; /* the user’s nane */

char *passwor d; /* the user’s password */

char *group_nane; /* the group nane */

char *first_nane; /* the user’s first name */

char *m ddl e_nane; /* the user’s mddle nane */
char *| ast _nane; /* the user’s |ast nane */

char *dba_user_nane; /* the dba user nane */
char *dba_password; /* the dba password */
} USER_SEC DATA;

When you pass this struct to one of the three security functions, you can tell it which
fields you have specified by doing a bitwise OR of the following values, which are defined
in ibase.h:

sec_ui d_spec 0x01
sec_gi d_spec 0x02
sec_server_spec 0x04
sec_passwor d_spec 0x08
sec_group_name_spec 0x10
sec_first_name_spec 0x20
sec_m ddl e_nane_spec 0x40
sec_|l ast _name_spec 0x80

357

TABLE 13.20

Example

358

CHAPTER 13 API FUNCTION REFERENCE

sec_dba_user_nanme_spec 0x100
sec_dba_passwor d_spec 0x200

No bit values are available for user name and password, since they are required.

The following error messages exist for this function:

Code Value Description

isc_usrname_too_long 335544747 The user name passed in is greater than 31 bytes

isc_password_too_long 335544748 The password passed in is longer than 8 bytes

isc_usrname_required 335544749 The operation requires a user name

isc_password_required 335544750 The operation requires a password

isc_bad_protocol 335544751 The protocol specified is invalid

isc_dup_usrname_found 335544752 The user name being added already exists in the
security database.

isc_usrname_not_found 335544753 The user name was not found in the security database

isc_error_adding_sec_record 335544754 An unknown error occurred while adding a user
isc_error_deleting_sec_record 335544755 Anunknown error occurred while deleting a user
isc_error_modifying_sec_record 335544756 An unknown error occurred while modifying a user

isc_error_updating_sec_db 335544757 Anunknown error occurred while updating the
security database

Error messages for user security functions

The following example modifies isc4.gdb to change the password for the user Socks,
using the bitwise OR technique for passing values from the USER_SEC_DATA struct.

{
| SC_STATUS st at us[20] ;

USER_SEC DATA sec;

sec. server = "kennel ";

sec. dba_user _nane= "sysdba";

sec. dba_password = "nast er key";

sec. prot ocol = sec_protocol _tcpip;
sec. user _nane = "socks";

INTERBASE 6

isc_modify_user()

Return Value isc_modify_user() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. See the “Description” section for this
function for a list of error codes. For more information about examining the status

See Also

API GUIDE

sec. password
*/
sec. sec_fl ags

"feed_me!"; /* Note: do not hardcode passwords

sec_server_spec
sec_passwor d_spec
sec_dba_user_nanme_spec
sec_dba_passwor d_spec;

i sc_add_user (status, &sec);
/* check status for errors */

printf("Security database cannot accept |ong user nanes\n");

if (status[0] == 1 && status[1])
{
switch (status[1]) {
case isc_usrnane_too_Il ong:
br eak;
}
}

}

vector, see Chapter 10, “Handling Error Conditions.”

isc_add_user(), isc_delete_user()

359

CHAPTER 13 API FUNCTION REFERENCE

isc_open_blob2()

Opens an existing Blob for retrieval and optional filtering.

Syniax

Description

360

| SC_STATUS i sc_open_bl ob2(

| SC_STATUS *st at us_vect or,

i sc_db_handl e *db_handl e,
isc_tr_handle *trans_handl e,

i sc_bl ob_handl e *bl ob_handl e,
| SC_QUAD *bl ob_i d,
short bpb_I ength,
char *bpb_address);

Parameter

Type

Description

status_vector

db_handle

trans_handle

blob_handle

blob_id

bpb_length
bpb_address

ISC_STATUS *
isc_db_handle *

isc_tr_handle *

isc_blob_handle *

ISC_QUAD *

short

char *

Pointer to the error status vector

Pointer to a database handle set by a previous call to
isc_attach_database()

db_handle returns an error in status_vector if it is NULL

Pointer to a transaction handle whose value has been set
by a previous isc_start_transaction() call; trans_handle
returns an error if NULL

Pointer to the Blob handle, which must be NULL when you
make this call

Pointer to the 64-bit system-defined Blob ID, which is
stored in afield in the table and points to the first segment
of the Blob or to a page of pointers to Blob fragments

Length of the Blob parameter buffer (BPB)

Pointer to the BPB

isc_open_blob2() opens an existing Blob for retrieval and optional filtering from one
Blob subtype to another.

Note Using Blob filters is not supported on NetWare.

Input and output Blob filter types are passed to isc_open_blob2() as subtype information
in a previously populated BPB, pointed to by bpb_address. If Blob filters are not needed
or cannot be used, a BPB is not needed; pass 0 for bpb_length and NULL for bpb_address.

INTERBASE 6

isc_open_blob2()

Example

Return Value

See Also

API GUIDE

The blob_id identifies which particular Blob is to be opened. This blob_id is set by a
sequence of DSQL function calls.

On success, isc_open_blob2() assigns a unique ID to blob_handle. Subsequent API calls
use this handle to identify the Blob against which they operate.

After a blob is opened, its data can be read by a sequence of calls to isc_get_segment().
When finished accessing the Blob, close it with isc_close_blob().

For more information about opening a Blob for retrieval and optional filtering, see
Chapter 7, “Working with Blob Data.”

The following fragment is excerpted from the example file, api9.c. The example program
displays job descriptions that are passed through a filter.
while ((fetch_stat = isc_dsql _fetch(status, &tm, 1, sqlda)) == 0)
{
printf("\nJOB CODE: %bs CRADE: %", job_code, job_grade);
printf(" COUNTRY: % 20s\n\n", job_country);
/* Open the blob with the fetched blob_id. */
i sc_open_bl ob2(status, &DB, &trans, &blob_handle, &blob_id, 9,

bpb) ;
if (status[0] == 1 && status[1])
{
i sc_print_status(status);
return(l);
}
}

isc_open_blob2() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_close_blob()

361

CHAPTER 13 API FUNCTION REFERENCE

isc_prepare_transaction()

Syniax

Description

Example

362

Executes the first phase of a two-phase commit against multiple databases.

| SC_STATUS i sc_prepare_transacti on(
| SC_STATUS *st at us_vect or,
isc_tr_handle *trans_handl e);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle* Pointer to a transaction handle whose value has been set by a
previous is¢_start_transaction() call; trans_handle returns an
error if NULL

isc_prepare_transaction() initiates the first phase of a two-phase commit under
program direction. It alerts InterBase, which polls all database participants and waits for
replies. The isc_prepare_transaction() function puts the transaction in limbo.

Because a call to this function indicates that you intend to control all phases of the
commit, you must complete the second phase of the commit by explicitly calling the
isc_commit_transaction() function.

If a call to isc_prepare_transaction() fails, the application should roll back the
transaction with a call to the isc_rollback_transaction() function.

Note If you want InterBase to automatically perform the two-phase commit, call
isc_commit_transaction() without calling isc_prepare_transaction().

The following example executes the first phase of a two-phase commit and includes a
rollback in case of failure:

i sc_prepare_transaction(status_vector, &rans);

if (status_vector[0] == 1 && status_vector[1])
rb_status = isc_rollback_transaction(status_vector, &trans)
el se
{
isc_comit_transaction(status_vector, &trans);
if (!(status_vector[0] == 1 && status_vector[1]))
fprintf(stderr, "Conmmit successful.\n");
}

INTERBASE 6

isc_prepare_transaction2()

Return Value isc_prepare_transaction() returns the second element of the status vector. Zero
indicates success. A nonzero value indicates an error. For InterBase errors, the first
element of the status vector is set to 1, and the second element is set to an InterBase
error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_commit_transaction(), isc_prepare_transaction2(), isc_rollback_transaction()

isc_prepare_transaction2()

Performs the first phase of a two-phase commit for multi-database transactions.

Syntax | SC_STATUS i sc_prepare_transacti on2(
| SC_STATUS *st at us_vect or,
isc_tr_handle *trans_handl e,
unsi gned short nsg_|l ength,
char *nessage);

Parameter Type Description
status_vector ISC_STATUS * Pointer to the error status vector
trans_handle isc_tr_handle* Pointer to a transaction handle whose value has been set

by a previous isc_start_transaction() call; trans_handle
returns an error if NULL

msg_length unsigned short Length of message in bytes

message char * Transaction description buffer

Description isc_prepare_transaction2() performs the first phase of a two-phase commit, just as
isc_prepare_transaction() does, but isc_prepare_transaction2() expects you to provide
two additional arguments:

® An information message to write to the RDB§TRANSACTION_DESCRIPTION column in the
RDB$TRANSACTIONS system table that describes the transaction to commit, so that recovery
is possible in the event a system crash occurs during the completion of the commit.

® The length, in bytes, of the information message.

API GUIDE 363

Example

Return Value

364

See Also

CHAPTER 13 API FUNCTION REFERENCE

By electing to use isc_prepare_transaction2(), you are, in effect, disabling the automatic
recovery functions inherent in the two-phase commit. It is your responsibility to deal with
recovery issues that might occur during failure of the two-phase commit. Normally,
InterBase automatically writes to the RDB§TRANSACTION_DESCRIPTION column in the
RDB$TRANSACTIONS system table information that makes it possible to reconnect
following a system crash during the commit. You can manually write a message string
into RDB$TRANSACTIONS, by using the message parameter in this function.

At the risk of preventing recovery in the event of a system crash, you might choose to
avoid writing a message to RDB$TRANSACTION altogether if you determine that there is too
much overhead associated with this extra action every time your application commits.

The following example executes the first phase of a two-phase commit and includes a
rollback in case of failure:

i sc_prepare_transacti on2(status_vector, &rans, nmsg_len, nsg);
if (status_vector[0] == 1 && status_vector[1])
rb_status = isc_rollback_transaction(status_vector, &rans);

isc_prepare_transaction2() returns the second element of the status vector. Zero
indicates success. A nonzero value indicates an error. For InterBase errors, the first
element of the status vector is set to 1, and the second element is set to an InterBase
error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_commit_transaction(), isc_prepare_transaction(), isc_rollback_transaction()

INTERBASE 6

isc_print_sqlerror()

isc_print_sqlerron)

Syniax

Description

Example

Return Value

See Also

API GUIDE

Displays an SQLCODE value, a corresponding SQL error message, and any additional
InterBase error messages in the error status vector.

void isc_print_sqlerror(
short SQ.CODE,
| SC_STATUS *status_vector);

Parameter Type Description
SQLCODE short Variable containing an SQLCODE value
status_vector ~ ISC_STATUS * Pointer to the error status vector

During the processing of DSQL API calls, SQL errors can occur. SQL errors are generally
reported in a variable called SQLCODE. DSQL calls return error information to a
user-defined error status vector like any other API call, but isc_print_sqlerror() can be
used to interpret the primary error condition as an SQL error message for direct display
on the screen. To use isc_print_sqlerror(), an application must declare both an SQLCODE
variable for holding the SQL error number, and an error status vector for holding
InterBase error information. isc_print_sqlerror() displays the SQLCODE value, a related
SQL error message, and any additional InterBase error messages in the status array.

Note Some windowing systems do not permit direct screen writes. Do not use
isc_print_sqlerror() when developing applications for these environments. Instead, use
isc_sql_interprete() and isc_interprete() to capture messages to a buffer for display.

The following code calls isc_print_sqlerror() when an error occurs:

#i ncl ude <i base. h>
| ong SQLCODE;
| SC_STATUS status_vector[20];

if (status_vector[0] == 1 && status_vector[1])
{
SQLCODE = isc_sql code(status_vector);
isc_print_sqlerror(SQCODE, status_vector);
}

None.

isc_interprete(), isc_print_status(), isc_sql_interprete(), isc_sqlcode()

365

CHAPTER 13 API FUNCTION REFERENCE

isc_print_status()

Syniax

Description

Example

Return Value

See Also

366

Builds and displays error messages based on the contents of the InterBase error status
vector.

| SC_STATUS i sc_print_status(lSC_STATUS *status_vector);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

isc_print_status() builds all error messages based on the contents of the error status
vector, and displays them on the screen. status_vector must be declared in the program
as an array of twenty elements.

The following code displays error messages when an error occurs during processing:

#i ncl ude <i base. h>
| SC_STATUS st atus_vector[20];

if (status_vector[0] == 1 && status_vector[1])

{
isc_print_status(status_vector);
return(l);

}

isc_print_status(Q returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_interprete(), isc_print_sqlerror(), isc_sqlcode(), isc_sql_interprete()

INTERBASE 6

isc_put_segment()

isc_put_segment()

Syniax

Description

API GUIDE

Writes a Blob segment.

| SC_STATUS i sc_put _segnent (
| SC_STATUS *st at us_vect or,
i sc_bl ob_handl e *bl ob_handl e,
unsi gned short seg_buffer_I| ength,
char *seg_buffer);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

blob_handle isc_blob_handle * Pointer to the handle of the Blob to which you want
to write; use isc_create_blob2() to set a value for this
handle

seqg_buffer_length unsigned short Length of the Blob segment buffer

seg_buffer_address char * Pointer to the Blob segment buffer that contains
data for writing

isc_put_segment() writes a Blob segment in seg_buffer_address to a Blob previously
created and opened with isc_create_blob20).

If a Blob filter was specified when the Blob was created, then each segment is filtered
before storing the result into the Blob.

The behavior of isc_put_segment() depends on what call preceded it. If the most recent
call was to isc_create_blob() or isc_create_blob2(), then a call to isc_put_segment()
writes the first segment of the Blob. If the most recent call was to isc_put_segment(), then
it writes the next segment.

You can write bitmaps and other binary files directly, without filtering, unless you intend
to change from one format to another, say from .GEM to .BMP. You can also store
compressed bitmaps directly in a database, in formats such as .JpG (JPEG), .BMP (Windows
native bitmaps), or .GIF (CompuServe Graphic Interchange Format).

You can store bitmaps in your database in row-major or column-major order.

You cannot update a Blob directly. If you want to modify Blob data, you must do one of
the following:

® Create a new Blob.

® Read the old Blob data into a buffer where you can edit or modify it.

367

Example

CHAPTER 13 API FUNCTION REFERENCE

® Write the modified data to the new Blob.

® Prepare and execute an UPDATE statement that will modify the Blob column to contain
the Blob ID of the new Blob, replacing the old Blob’s Blob ID.

For more information about creating and writing Blob data, see Chapter 7, “Working
with Blob Data.”

Note To read a segment that you wrote with a call to isc_put_segment(), you must close
the Blob with isc_close_blob(), and then open it with isc_open_blob20).

The following example reads a segment of one Blob and writes it to another Blob:

get _status = isc_get_segnent(status, & rom bl ob, &seg_len, 80,
buffer);
if (status[0] == 1 && status[1])
{
isc_print_status(status);
return(l);
}
if (get_status != isc_segstr_eof)
write_status = isc_put_segnent (status, & o_blob, seg_len, buffer);
if (status[0] == 1 && status[1])
{
isc_print_status(status);
return(l);
}

Return Value isc_put_segment() returns the second element of the status vector. Zero indicates

See Also

368

success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_close_blob(), isc_get_segment(), isc_open_blob2()

INTERBASE 6

isc_que_events()

isc_que_events()

Requests asynchronous notification of one of a specified group of events.

Syniax | SC_STATUS i sc_que_event s(
| SC_STATUS *st at us_vect or,
i sc_db_handl e *db_handl e,
| SC_LONG *event _id,
short | ength,
char *event _buffer,
i sc_cal | back event _function,
voi d *event _function_arg);

Parameter Type Description
status_vector ISC_STATUS * Pointer to the error status vector
db_handle isc_db_handle * Pointer to a database handle set by a previous call to

isc_attach_database(),; the handle identifies the
database against which the events are expected to be
posted

db_handle returns an error in status_vector if it is NULL
event_id ISC_LONG * Pointer to an event identifier to set

length short Length of the event parameter buffers, returned by
the isc_event_block() call which allocated them

event_buffer char * Pointer to the event parameter buffer that specifies
the current counts of the events to be waited on; this
buffer should have been initially allocated and filled
in by a call to isc_event_block()

event_function isc_callback Pointer to the address of the function to receive event
notification
event_function_arg void * First argument to be passed to event_function,

usually a pointer to the event parameter buffer you
want filled in with updated event counts

API GUIDE 369

Description

Example

370

CHAPTER 13 API FUNCTION REFERENCE

isc_que_events() is called to request asynchronous notification of any of the events
listed in event_buffer. Upon completion of the call, but before events are posted, control
is returned to the calling application, which can continue other processing. When a
requested event is posted, InterBase calls the function specified in event_function to
process event occurrence.

After event_function is called, you must call isc_que_events() again if you want to start
another asynchronous wait on the specified events.

Note isc_que_events() cannot be called from within event_function.

If you want to cancel your isc_que_events() request for asynchronous event notification,
call isc_cancel_events().

Note To request synchronous notification, call isc_wait_for_event().

The following program fragment illustrates calling isc_que_events() to wait
asynchronously for event occurrences. Within a loop, it performs other processing, and
checks the event flag (presumably set by the specified event function) to determine
when an event has been posted. If one has, the program resets the event flag, calls
isc_event_counts() to determine which events have been posted since the last call to
isc_que_events(), and calls isc_que_events() to initiate another asynchronous wait.

#i ncl ude <i base. h>
#define nunber of stocks 3;
#define MAX_LOOP 10

char *event _names[] = {"DEC', "HP", "SUN'};
char *event buffer, *result_buffer;

| SC_STATUS count _array[number _of _st ocks] ;
short | ength;

| SC_ LONG event _i d;

int i, counter;

int event_flag = 0;

I ength = (short)isc_event_bl ock(
&event buffer,
& esult _buffer,
nunber _of stocks,
"DEC', "HP", "SUN');

i sc_que_event s(
stat us_vector,
&dat abase_handl e, /* Set in previous isc_attach_database(). */
&event i d,

INTERBASE 6

isc_que_events()

I ength, /* Returned fromisc_event_block(). */
event buffer,
(i sc_call back)event _function,
result_buffer);
if (status_vector[0] == 1 && status_vector[1])
{
isc_print_status(status_vector); /* Display error nessage. */
return(l);

b

counter = O;
whil e (counter < MAX_LOOP)

{
count er ++;
if ('event_flag)
{
/* Do whatever other processing you want. */
}
el se
{ event_flag = 0;
i sc_event _count s(
count _array,
| engt h,
event buffer,
result_buffer);
if (status_vector[0] == 1 && status_vector[1])
{
isc_print_status(status_vector); /* Display error message.
*/

return(l);

for (i=0; i<number_of_stocks; i++)
if (count_array[i])
{
/* The event has been posted. Do whatever is appropriate,
for exanple, initiating a buy or sell order.
Note: event_nanes[i] tells the nane of the event
corresponding to count_array[i]. */

API GUIDE 371

Return Value

372

See Also

CHAPTER 13 API FUNCTION REFERENCE

i sc_que_event s(
status_vector,
&dat abase_ handl e,
&event id,
| engt h,
event buffer,
(i sc_call back)event _function,
result_buffer);
if (status_vector[0] == 1 && status_vector[1])
{
isc_print_status(status_vector); /* Display error message.
*/
return(l);
}
} /* End of else. */
} /* End of while. */

/* Let InterBase know you no |onger want to wait asynchronously. */
i sc_cancel _event s(

status_vector,

&dat abase_handl e,

&event _id);

if (status_vector[0] == 1 && status_vector[1])

{
isc_print_status(status_vector); /* Display error nessage. */
return(l);

}

isc_que_events() returns the second element of the status vector. Zero indicates success.
A nonzero value indicates an error. For InterBase errors, the first element of the status
vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_cancel_events(), isc_event_block(), isc_event_counts(), isc_wait_for_event()

For more information about writing an asynchronous event trap (AST) function, see
Chapter 11, “Working with Events.”

INTERBASE 6

isc_rollback_retaining()

isc_rollback_retaining()

Syniax

Description

API GUIDE

Undoes changes made by a transaction and retains the transaction context after the
rollback.

| SC_STATUS i sc_rol | back_retaini ng(
| SC_STATUS *st at us_vect or,
isc_tr_handle *trans_handl e);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle* Pointertoatransaction handle whose value has been set by
a previous isc_start_transaction() call; this function returns
an error if trans_handle is NULL

isc_rollback_retaining() rolls back an active transaction and immediately clones itself.
This means that the function retains the transaction name, system resources associated
with the transaction, and the current state of any open cursors in the transaction.
Although the function is actually initiating a new transaction, by assigning the new
transaction the existing transaction handle it is, in effect, keeping the transaction open
after the rollback. This results in improved performance by allowing an application to
minimize the overhead of initiating additional transactions. isc_rollback_retaining()
allows you to roll back updates while keeping a cursor open.

You can initiate a rollback within the active transaction but the rollback only affects
uncommitted updates. In other words, a rollback is legal, even after the transaction
context has been passed to the cloned transaction, but, in that case, the rollback will only
affect the updates your application has made to the database since the last commit or
rollback.

To audit the rollbacks made by your calls to this function, check the first element in the
status vector to see if the call was successful. If this element contains a zero, the call was
successful.

The transaction ends when you commit or roll back without using the retention feature,
with a call to isc_commit_transaction() or isc_rollback_transaction().

373

Examples

Return Value

See Also

374

CHAPTER 13 API FUNCTION REFERENCE

The following C/C++ code rolls back a transaction, prints a message, and starts a new
transaction with the same handle within the same request:

if (!lisc_rollback_retaining(status, &retained_trans))

{
fprintf(stderr, "Rolled back and retained\n");

isc_print_status(status);

}

The following C/C++ code rolls back a transaction, prints a confirmation message, starts
a new transaction with the same handle within the same request, or, if the rollback fails,
prints an error message and rolls back.

i sc_rollback_retaining(status, & etained_trans);

if (status[0] == 1 && status[1])

{
fprintf(stderr, "Error retaining; rolling back instead.\n");
rb_status = isc_rollback_transaction(status, &retained_trans);

}

el se

{
fprintf(stderr, "Rollback retaining successful.\n");
tr_count++; /* Increments the nunber of recycles. */

}

isc_rollback_retaining() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_commit_retaining(), isc_commit_transaction(), isc_rollback_transaction(),
isc_start_transaction()

INTERBASE 6

isc_rollback_transaction()

isc_rollback _transaction()

Undoes changes made by a transaction, and restores the database to its state prior to the
start of the specified transaction.

Syniax | SC_STATUS i sc_rol | back_transaction(
| SC_STATUS *st at us_vect or,
isc_tr_handle *trans_handl e);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

trans_handle isc_tr_handle* Pointer to a transaction handle whose value has been set by a
previous is¢_start_transaction() call; trans_handle returns an
error if NULL

Description isc_rollback_transaction() rolls back a specified transaction, closes record streams,
frees system resources, and sets the transaction handle to zero. It is typically used to
undo all database changes made by a transaction when an error occurs.

A call to this function can fail only if:
® You pass a NULL or invalid transaction handle.

® The transaction dealt with more than one database and a communications link fails
during the rollback operation. If that happens, subtransactions on the remote node will
end up in limbo. You must use the database maintenance utility to manually roll back
those transactions.

Example The following call rolls back a transaction:

i sc_roll back_transaction(status_vector, &trans);

Return Value isc_rollback_transaction() returns the second element of the status vector. Zero
indicates success. A nonzero value indicates an error. For InterBase errors, the first
element of the status vector is set to 1, and the second element is set to an InterBase
error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_commit_transaction(), isc_rollback_retaining(), isc_start_transaction()

API GUIDE 375

CHAPTER 13 API FUNCTION REFERENCE

isc_service _attach()

Syniax

Description

376

Attaches to the InterBase Services Manager facility. You must do this before using the
InterBase services functions to request execution of tasks or query information from the
Services Manager.

| SC_STATUS i sc_service_attach(
| SC_STATUS *st at us_vect or,
unsi gned short service_l ength,
char *service,
i sc_svc_handl e *svc_handl e,
unsi gned short spb_l ength,

char *spb);
Parameter Type Description
status_vector ~ ISC_STATUS * Pointer to the error status vector

service_length unsigned short Length in characters of the service name; a value of zero
means that the service name is a null-terminated string

service char * String containing the name of the service to which the client
requests an attachment

sv¢_handle isc_svc_handle * Pointer to a long value containing the handle of the service
structure

spb_length unsigned short Length in bytes of the services parameter buffer

spb char* Pointer to a services parameter buffer

You can use this function to attach to the Services Manager on a given InterBase server.
The InterBase service must be running on that host before you can attach to the Services
Manager.

You must specify the hostname and the literal string service_mgr in the service argument.
For example, jupiter:service_mgr is the string you use to connect to the Services Manager
on host jupiter using TCP/IP as the network protocol.

You must specify a user ID and the corresponding password as part of the options in the
service parameter buffer. The Services Manager uses this user ID when performing
service tasks you request.

There are components in the InterBase Express™ package for Delphi and C++Builder
that provide a visual interface to the Services Manager. See the Developer’s Guide.

INTERBASE 6

isc_service_detach()

Example See “Attaching to the Services Manager with isc_service_attach()” on page 202 for
an example using C/C++ code.

Return Value isc_service_attach() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_service_detach(), isc_service_query(), isc_service_start()

isc_service_detach()

Terminates the attachment to the InterBase Services Manager.

Syntax | SC_STATUS isc_service_det ach(
| SC_STATUS *status_vector,
i sc_svc_handl e *svc_handl e);

Parameter Type Description

status_vector ~ ISC_STATUS * Pointer to the error status vector

sv¢_handle isc_svc_handle * Pointer to a long value containing the handle of the service
structure

Description After you have performed all tasks and retrieved all information needed from the
Services Manager, you should use this function to detach.

There are components in the InterBase Express™ package for Delphi and C++Builder
that provide a visual interface to the Services Manager. See the Developer’s Guide.

Example See “Detaching from a Services Manager with isc_service_detach()” on page 203
for an example using C/C++ code.

Return Value isc_service_detach() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

API GUIDE 377

CHAPTER 13 API FUNCTION REFERENCE

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_service_attach(), isc_service_query(), isc_service_start()

isc_service_query()

Requests and retrieves information about the InterBase server to which the client is
attached.

Syntax |1 SC_STATUS isc_service_query(
| SC_STATUS *status_vector,
i sc_svc_handl e *svc_handl e,
i sc_resv_handl e *reserved,
unsi gned short send_spb_I ength,
char *send_spb,
unsi gned short request_spb_| ength,
char *request_spb,
unsi gned short buffer_Il ength,
char *buffer);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

sv¢_handle isc_svc_handle * Pointer to a long value containing the handle of the service
structure

reserved isc_resv_handle * Reserved for future use; should be NULL

send_spb_length unsignedshort Length in bytes of the service parameter buffer

send_spb char * Pointer to a service parameter buffer containing flags for the
Services Manager

request_spb_length unsignedshort ~ Length in bytes of the request buffer

378 INTERBASE 6

isc_service_query()

Description

Example

Return Value

See Also

API GUIDE

Parameter Type Description

request_spb char * Pointer to a buffer containing item specifiers for requested
information

buffer_length unsigned short ~ Length in bytes of the return buffer

buffer char * Pointer to a buffer containing information received from the
Services Manager

Use isc_service_query() to request information from the Services Manager. You must
have an active connection to a running Services Manager, made using
isc_service_attach() (see page 376).

There are components in the InterBase Express™ package for Delphi and C++Builder
that provide a visual interface to the Services Manager. See the Developer’s Guide.

There are several examples of using isc_service_query() with C/C++ in “Querying the
Services Manager” on page 220.

isc_service_query() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_service_attach(), isc_service_detach(), isc_service_start()

379

CHAPTER 13 API FUNCTION REFERENCE

isc_service start()

Description

Example

Return Value

380

Syniax

See Also

Performs a service task on the InterBase server to which the client is attached.

| SC_STATUS i sc_service_start(
| SC_STATUS *st at us_vect or,
i sc_svc_handl e *svc_handl e,
i sc_resv_handl e *reserved,
unsi gned short spb_l ength,

char *spb);
Parameter Type Description
status_vector ~ ISC_STATUS * Pointer to the error status vector
sv¢_handle isc_svc_handle * Pointer to a long value containing the handle of the service
structure
reserved isc_resv_handle * Reserved for future use; should be NULL
spb_length unsigned short ~ Length in bytes of the service parameter buffer
spb char * Pointer to a service parameter buffer containing flags and

optional arguments instructing the Services Manager to
perform specified tasks

Use isc_service_start() to initiate a task execution by the Services Manager. You must
have an active connection to a running Services Manager, made using
isc_service_attach() (see page 376).

There are components in the InterBase Express™ package for Delphi and C++Builder
that provide a visual interface to the Services Manager. See the Developer’s Guide.

There are several examples of using isc_service_start() with C/C++ in “Invoking
service tasks with isc_service_start()” on page 204.

isc_service_start() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_service_attach(), isc_service_detach(), isc_service_query()

INTERBASE 6

isc_sqglcode()

isc_sqlcode()

Translates an InterBase error code in the error status vector to an SQL error code number.

Syniax |1 SC_LONG i sc_sql code (| SC_STATUS *status_vector);

Parameter Type Description

status_vector ISC_STATUS * Pointer to the error status vector

Description isc_sqlcode() searches status_vector for a reported SQL error, and if it finds it, translates
the InterBase error code number into an appropriate SQL error code. Typically, this call
is used to populate a program variable (usually called SQZCODE for portability among
SQL implementations) with an SQL error number for use in an SQL error-handling
routine.

Example The following code illustrates how isc_sglcode() might be called in a DSQL application:

#i ncl ude <i base. h>
| ong SQLCODE;
| SC_STATUS status_vector[20];

if (status_vector[0] == 1 && status_vector[1])
{
SQLCODE = isc_sql code(status_vector);
isc_print_sqlerror(SQCODE, status_vector);
}

Return Value 1f successful, isc_sqlcode() returns the first valid SQL error code decoded from the
InterBase status vector.

If no valid SQL error code is found, isc_sqlcode() returns —999.

See Also isc_interprete(), isc_print_sqlerror(), isc_print_status(), isc_sql_interprete()

API GUIDE 381

CHAPTER 13 API FUNCTION REFERENCE

isc_sql_interprete()

Syniax

Description

Example

Builds an SQL error message string and stores it in a user-defined buffer.

voi d isc_sql _interprete(
short SQ.CODE,
char *buffer,
short buffer_Ilength);

Parameter Type Description
SQLCODE short Variable containing an SQLCODE value
buffer char* Application buffer into which to store an SQL error message

buffer_length short Length, in bytes, of buffer

Given an SQLCODE value less than zero, isc_sql_interprete() builds a corresponding SQL
error message string, and stores it in a user-defined buffer. The size of the buffer, in
bytes, must also be passed to this function.

To display an SQL error message corresponding to an SQLCODE value, use
isc_print_sqlerror() instead of this call.
The following code fragment illustrates a call to isc_sql_interprete():

#i ncl ude <i base. h>
| ong SQLCODE;
char err_buf[256];

if (status_vector[0] == 1 && status_vector[1])

{

SQLCODE = isc_sql code(status_vector);

isc_sqgl _interprete(SQCODE, err_buf, sizeof(err_buff));
}

Return Value None.

See Also

382

isc_interprete(), isc_print_sqlerror(), isc_print_status(), isc_sqlcode()

INTERBASE 6

isc_start_multiple()

isc_start_multiple()

Begins a new transaction against multiple databases.

Syniax | SC_STATUS isc_start_nultiple(
| SC_STATUS *st at us_vect or,
isc_tr_handle *trans_handl e,
short db_handl e_count,
voi d *teb_vector_address);

Parameter Type Description
status_vector ISC_STATUS * Pointer to the error status vector
trans_handle isc_tr_handle* Pointerto a transaction handle whose value has been

set by a previous isc_start_transaction() call;
trans_handle returns an error if NULL

db_handle_count short Number of database handles passed in this call via
transaction existence buffers (TEBs)

teb_vector_address void * Pointer to the TEB

Description Call isc_start_multiple() if you:

® Are using a language that does not support a variable number of arguments in a function
call.

® Do not know how many databases you want to attach to when coding the start
transaction function.

isc_start_multiple() passes information about each target database to InterBase. That
information is stored in an array of transaction existence blocks (TEBs) pointed to by the
teb_vector parameter.

teb_vector is a pointer to a byte array that consists of consecutive TEBs, one TEB for each
database to connect to. Each TEB consists of three items: a pointer to the database handle
for a database against which the transaction should run; the length, in bytes, of the
transaction parameter buffer (TPB) for the database, and a pointer to the TPB. The items
in a TEB correspond to the items passed directly as parameters in calls to
isc_start_transaction(). C programmers should use isc_start_transaction() instead of
isc_start_multiple() whenever possible because it does not require setting up TEBs.

For more information about establishing TEBs and calling isc_start_mulitiple(), see
“Calling isc_start_multiple()” on page 71 of Chapter 5, “Working with
Transactions.”

API GUIDE 383

CHAPTER 13 API FUNCTION REFERENCE

Example The following program starts a multiple-database transaction:

#i ncl ude <i base. h>

typedef struct { /* Define the | SC TEB structure. */
i nt *dbb_ptr;
| ongt pb_I en;
char*tpb_ptr;

} | SC TEB;

| SC_ TEB teb_vec[2]; /* Declare the TEB vector. */

| SC_STATUS isc_status[20]; /* Status vector. */
| ong *db0, *dbl, /* Database handle. */
long *trans; /* Transaction handle. */

static char
isc_tpb_ O[] ={ /* Declare the first transacti on paraneter
buffer. */
isc_tpb_version3, /* InterBase version. */
isc_tpb_wite,/* Read-write access. */
isc_tpb_consistency, /* Serializable. */
isc_tpb_wait, /* Wait on |ock. */
isc_tpb_lock wite, 3, /* Reserving IDS for update. */
1','D,’ S,
isc_tpb_protected},/* Don’t allow other transactions to
wite to the table. */

isc_tpb_1[] = { /* Declare the second transaction.*/
[* Parameter buffer. */

isc_tpb_version3, /* InterBase version. */

isc_tpb_wite,/* Read-write access. */

isc_tpb_consistency, /* Serializable. */

isc_tpb_wait, /* Wait on |ock. */
isc_tpb_lock_ wite, 3, /* Reserving table QZS for update. */
'0,'Z2,'S,
i sc_t pb_protected}; /*Don't allow other transactions to

write to the table. */

main()

{
db0 = dbl = 0;

384 INTERBASE 6

isc_start_multiple()

Return Value

API GUIDE

trans = 0O;
/* If you can't attach to test_0O database, attach to test_1. */

i sc_attach_dat abase(isc_status, 0, "test_0.gdb", &db0, 0,0);
if (isc_status[0] == 1 && isc_status[1])
i sc_attach_dat abase(isc_status, 0, "test_1.gdb", &dbl, 0,0);

if (db0 && dbl)
{ /* Assign database handles, tpb | ength, and
tbp handle to the teb vectors. */
teb_vec[0].dbb_ptr = &dbO0;
teb_vec[O].tpb_len = sizeof (isc_tpb_0);
teb_vec[O].tpb_ptr isc_tpb_O;

teb_vec[1l].dbb_ptr = &dbl;
teb_vec[1l].tpb_len sizeof (isc_tpb_1);
teb_vec[1l].tpb_ptr isc_tpb_1;

if (isc_start_nultiple(isc_status, &rans, 2, teb_vec))
isc_print_status(isc_status);

}

if (trans)
isc_comit_transaction(isc_status, &rans);

if (db0 && !trans)
i sc_det ach_dat abase(i sc_status, &db0);

if (dbl & !(trans && db0))
i sc_det ach_dat abase(i sc_status, &dbl);

if (isc_status[0] == 1 && isc_status[1])
isc_print_status(isc_status);

}

isc_start_multiple() returns the second element of the status vector. Zero indicates

success. A nonzero value indicates an error. For InterBase errors, the first element of the

status vector is set to 1, and the second element is set to an InterBase error code.

385

See Also

CHAPTER 13 API FUNCTION REFERENCE

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_commit_transaction(), isc_prepare_transaction(),
isc_prepare_transaction2(), isc_rollback_transaction(), isc_start_transaction()

For more information about transaction handles, see “Creating transaction handles”
on page 61 of Chapter 5, “Working with Transactions.” For more information about
creating and populating a TPB, see “Creating a transaction parameter buffer” on
page 62 of Chapter 5, “Working with Transactions.” For more information on TEBs,
see “Calling isc_start_multiple()” on page 71 of Chapter 5, “Working with
Transactions.”

isc_start transaction()

Syniax

386

Starts a new transaction against one or more databases.

| SC_STATUS isc_start_transaction(
| SC_STATUS *st at us_vect or,
isc_tr_handle *trans_handl e,
short db_handl e_count,
i sc_db_handl e *db_handl e,
unsi gned short tpb_length,
char *tpb_address,
[isc_db_handl e *db_handl e,
unsi gned short tpb_length,
char *tpb_address ...]);

Parameter Type Description
status_vector ISC_STATUS * Pointer to the error status vector
trans_handle isc_tr_handle* Pointer to a transaction handle whose value has been

set by a previous isc_start_transaction() call;
trans_handle returns an error if NULL

db_handle_count short Number of database handles passed in this call

INTERBASE 6

isc_start_transaction()

Description

Example

API GUIDE

Parameter Type Description

db_handle isc_db_handle * Pointer to a database handle set by a previous call to
isc_attach_database(); the handle identifies the
database against which the events are expected to be
posted

db_handle returns an error in status_vector if it is NULL
tpb_length unsigned short Length of the transaction parameter buffer (TPB)

tpb_address char* Pointer to the TPB

isc_start_transaction() starts a new transaction against one or more databases specified
as database handles.

Note If you have a variable number of databases to update, or are using a language that
does not support a variable number of arguments in a function call, use
isc_start_multiple() instead of isc_start_transaction().

A single transaction can access multiple databases. This function passes information
about each database it accesses and the conditions of access for that database in a
transaction parameter buffer (TPB). The TPB is a variably-sized vector of bytes declared
and populated by the program. It contains information describing intended transaction
behavior such as its access and lock modes.

isc_start_transaction() can start a transaction against up to 16 databases. You must pass
a database handle and a TPB for each referenced database. If you want to use defaults
for the transaction, set {pb_length to zero. In this case, ipb_vector is a NULL pointer.

The following program includes a call to the start transaction function:

#i ncl ude <i base. h>

| ong
isc_status[20], /* Status vector. */
db, / Database handle. */
trans, / Transaction handle. */

static char
isc_tpb_ O[] = {
isc_tpb_version3, /* InterBase version. */
isc_tpb_wite,/* Read-write access. */
i sc_tpb_consistency, /* Consistency-node transaction. */
isc_tpb_wait, /* Wait on |ock. */
isc_tpb_lock wite, 3, /* Reserving IDS table for update. */

387

Return Value

388

See Also

CHAPTER 13 API FUNCTION REFERENCE

"t,"p, s,
isc_tpb_protected};/* Don’t allow other transactions to
write against this table. */
mai n()
{
db = trans = 0O;
i sc_attach_dat abase(isc_status, 0, "test.gdb", &db, 0,0);

if (db)
{
isc_start_transaction(
isc_status, &rans, 1, &db,
si zeof (i sc_tpb_0), isc_tpb_0);
if (isc_status[0] == 1 && isc_status[1])
isc_print_status(isc_status);
}
if (trans)

isc_comit_transaction(isc_status, &rans);

if (db & !'trans)
i sc_det ach_dat abase(i sc_status, &db);

if (status_vector[0] == 1 && status_vector[1])
isc_print_status(isc_status);

}

isc_start_transaction() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

isc_commit_transaction(), isc_prepare_transaction(),
isc_prepare_transaction2(), isc_rollback_transaction(), isc_start_multiple()

For more information about transaction handles, see “Creating transaction handles”
on page 61 of Chapter 5, “Working with Transactions.” For more information about
creating and populating a TPB, see “Creating a transaction parameter buffer” on
page 62 of Chapter 5, “Working with Transactions.”

INTERBASE 6

isc_transaction_info()

isc_transaction_info()

Syniax

Description

TABLE 13.21

API GUIDE

Returns information about the specified named transaction.

| SC_STATUS i sc_transaction_i nfo(
| SC_STATUS *st at us_vect or,
isc_tr_handle *trans_handl e,
short itemlist_buffer_length,
char *itemlist_buffer,
short result_buffer_Ilength,
char *result_buffer);

Parameter Type Description
status_vector ISC_STATUS * Pointer to the error status vector
trans_handle isc_tr_handle * Pointer to a transaction handle whose value has been

set by a previous isc_start_transaction() call;
trans_handle returns an error if NULL

item_list_buffer_length short Number of bytes in the item-list buffer
item_list_buffer char * Pointer to the item-list buffer
result_buffer_length short Number of bytes in the result buffer
result_buffer char * Pointer to the result buffer

isc_transaction_info() returns information necessary for keeping track of transaction
IDs. This call is used internally by isc_prepare_transaction(). You should not need to
use it in your own applications.

You can explicitly retrieve information about the transaction ID by including the
following constant in the item-list buffer, where the transaction items about which you
want information are listed:

Item Purpose Size of next value Value

isc_info_tra_id Determine the transaction ID 2 bytes transaction ID

Transaction information request item

isc_transaction_info() uses two buffers defined in the calling program: the item-list
buffer, which lists transaction items about which you want information, and a result
buffer, where the information requested is reported.

389

TABLE 13.22

Example

390

CHAPTER 13 API FUNCTION REFERENCE

To define the item-list buffer, include the parameters item_list_buffer_length and
item_list_buffer_address. The item-list buffer is a regular byte vector with no structure.

To define the result buffer, include the parameters result_buffer_length and
result_buffer_address. These parameters specify the length and address of a buffer where
the InterBase engine will place the return values from the function call.

The values returned to the result buffer are unaligned clusters of generic binary numbers.
Furthermore, all numbers are represented in a generic format, with the least significant
byte first, and the most significant byte last. Signed numbers have the sign in the last byte.
Convert the numbers to a datatype native to your system before interpreting them.

In your call, include the item specifying the transaction ID, isc_info_tra_id. InterBase
returns the transaction ID in the result buffer. In addition to the information InterBase
returns in response to a request, InterBase can also return one or more of the following
status messages to the result buffer. Each status message is one unsigned byte in length:

Item Description

isc_info_end End of the messages

isc_info_truncated Result buffer is too small to hold any more requested information
isc_info_error Requested information is unavailable; check the status vector for an

error code and message

Status message return items

The function return value indicates only that InterBase accepted the request for
information. It does not mean that it understood the request or that it supplied all of the
requested information. Your application must interpret the contents of the result buffer
for details about the transaction.

The following code fragment gets information about a transaction:

static char /* Declare itemlist buffer. */
tra_itenms[] =
{isc_info_tra_id};
/* Declare result buffer. */
CHAR tra_info[32];

i sc_transaction_info(status_vector,
& r_handl e,
sizeof (tra_itens), /* Length of itemlist buffer. */
&ra_items, [* Address of itemlist buffer. */
sizeof (tra_info), /* Length of result buffer. */

INTERBASE 6

isc_vax_integer()

& ra_info); /* Address of result buffer. */
if (status_vector[0] == 1 && status_vector[1])
{
isc_print_status(status_vector);
return(l);
}

Return Value isc_transaction_info() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_start_transaction()

isc_vax_integen)
Reverses the byte order of an integer.

Syntax 1 SC_LONG i sc_vax_i nteger (
char *buffer,
short |ength);

Parameter Type Description
buffer char * Pointer to the integer to convert
length short Length, in bytes, of the integer to convert

Valid lengths are 1, 2, and 4 bytes

Description isc_vax_integer() reverses the byte order of an integer, specified in buffer, and returns
the newly ordered value.

A typical use for this function is to convert integer values passed into a database
parameter buffer to a format where the least significant byte must be first and the most
significant byte last. In InterBase, integer values must be represented in input parameter
buffers (for example, the DPB) and are returned in result buffers in a generic format
where the least significant byte is first, and the most significant byte last.
isc_vax_integer() is used to convert integers to and from this format.

API GUIDE 391

CHAPTER 13 API FUNCTION REFERENCE

Example The following code fragment converts a 2-byte value, stored in a character buffer that is
the result buffer returned by a function such as isc_database_info():

#i ncl ude <i base. h>
char *p;

for(p = res_buffer; *p I=isc_info_end;)

{
/* Read itemtype of next cluster in the result buffer. */
item = *p++;
/* Read |l ength of next value in result buffer, and convert. */
I en = isc_vax_integer(p, 2);
p += len;
/* Now process the actual value, len bytes in size. */

}

Return Value isc_vax_integer() always returns a byte-reversed long integer value.

See Also isc_attach_database(), isc_database_info()

isc_version()

Returns database implementation and version information.

Syntax int isc_version(
i sc_db_handl e *db_handl e,
i sc_cal | back function_nane,
voi d *user_arg);

Parameter Type Description

db_handle isc_db_handle * -+ Pointer to a database handle set by a previous call to
isc_attach_database()

= db_handle returns an error in status_vector if it is NULL

function_name isc_callback « Pointer to a function to call with the relevant information
« Passing a NULL pointer in C programs calls printf()

user_arg void * An application-specified parameter to pass as the first of
two arguments to function_name

392 INTERBASE 6

isc_version()

Description isc_uversion() determines the database implementation and on-disk structure (ODS)
version numbers for the database specified by db_handle. 1t passes this information in
two separate calls to the callback function pointed to by function_name.

JSunction_name should point to an application function that takes two arguments: a void
pointer, user_arg, and a char pointer. Applications can pass any kind of parameter
desired in user_arg.

isc_version() makes two calls to function_name. First it determines the database
implementation number, builds a string containing the information, and calls
Sfunction_name with user_arg, and a pointer to the string containing the implementation
number in the following format:

<i npl enent ati on>(<cl ass>), version "<version>"
where:

= jmplementation is a text string, such as “InterBase/NT”.
® class is a text string specifying the implementation class, such as “access method”.
® persion is a version identification string, such as “4.0”.

The callback function specified by function_name is free to do with this information
what it pleases.

After the callback function returns control to isc_version(), isc_version() builds a new
string containing the ODS major and minor version numbers, then calls function_name
a second time with user_arg, and a pointer to the string containing the ODS version
number in the following format:

on di sk structure versi on <ods_nmj or_nun®. <ods_m nor_nun»
where:

® ods_major_num is the major ODS number. Databases with different major version
numbers have different physical layouts on disk and are incompatible with one another.
A database engine can only access databases with a particular ODS major number.

® ods_minor_num is the minor ODS number. Differences in the minor ODS number, but
not the major one indicate a non-structural change that still permits access by any
database engine that recognizes the major version number.

Tip If a NULL pointer is passed for function_name, isc_version() sets function_name to
point to the C printf() function.

Examples The following code fragment calls isc_version() with a NULL callback function:

#i ncl ude <i base. h>

int ret;

API GUIDE 393

CHAPTER 13 API FUNCTION REFERENCE

ret = isc_version(&bl, NULL, "\t%\n");
Return Value If successful, isc_version() returns 0. Otherwise, it returns a nonzero value.

See Also isc_database_info()

isc_wait_for_event()
Waits synchronously until one of a specified group of events is posted.

Note The isc_wait_for_event() function was called gds_§event_wait() in InterBase 3.3.
It is therefore the only function that can’t be translated from 3.3 nomenclature to all later
versions by replacing gds_§ with isc_.

Syniax | SC_STATUS isc_wait_for_event (
| SC_STATUS *st at us_vect or,
i sc_db_handl e *db_handl e,
short | ength,
char *event _buffer,
char *result_buffer);

Parameter Type Description
status_vector ~ ISC_STATUS * Pointer to the error status vector
db_handle isc_db_handle * + Pointer to a database handle set by a previous call to

isc_attach_database(); the handle identifies the database
against which the events are expected to be posted

« db_handle returns an error in status_vector if it is NULL

length short Length of the event parameter buffers, returned by the
isc_event_block() call which allocated them

event_buffer char * Pointer to the event parameter buffer that specifies the
current counts of the events to be waited on; this buffer
should have been initially allocated and filled in by a call to
isc_event_block()

result_buffer char * Pointer to the event parameter buffer to be filled in with
updated event counts as a result of this function call; this
buffer should have been initially allocated by a call to
isc_event_block()

394 INTERBASE 6

isc_wait_for_event()

Description

Example

API GUIDE

isc_wait_for_event() is used to wait synchronously until one of a specified group of
events is posted. Control is not returned to the calling application until one of the
specified events occurs.

Events to wait on are specified in event_buffer, which should have been initially allocated
and filled in by a previous call to isc_event_block().

When one of these events is posted, isc_wait_for_event() fills in result_buffer with data
that exactly corresponds to that in the initial buffer, except that the event counts will be
the updated ones. Control then returns from isc_wait_for_event(Q) to the calling
application. The application should then call isc_event_counts() to determine which
event was posted.

Note To request asynchronous notification of event postings, use isc_que_events()
instead of isc_wait_for_event(). You must use asynchronous notifications in Microsoft
Windows applications, or wherever a process must not stop processing.

The following program fragment illustrates a call to isc_wait_for_event() to wait for a
posting of any of the events named “DEC”, “HP”, or “SUN".

#i ncl ude <i base. h>
#define nunber of stocks 3;

char *event buffer, *result_buffer;
short | ength;

I ength = (short)isc_event_bl ock(
&event _buffer,
&result _buffer,
nunber _of stocks,
"DEC', "HP", "SUN');

isc_wait_for_event(
status_vector,
&dat abase_handl e,
I ength, /* Returned fromisc_event_block(). */
event buffer,
result_buffer);
if (status_vector[0] == 1 && status_vector[1])

isc_print_status(status_vector); /* Display error nessage. */
return(l);

395

CHAPTER 13 API FUNCTION REFERENCE

/* Call isc_event_counts() to conpare event counts in the buffers and
thus determ ne which event(s) were posted. */

Return Value isc_wait_for_event() returns the second element of the status vector. Zero indicates
success. A nonzero value indicates an error. For InterBase errors, the first element of the
status vector is set to 1, and the second element is set to an InterBase error code.

To check for an InterBase error, examine the first two elements of the status vector
directly. For more information about examining the status vector, see Chapter 10,
“Handling Error Conditions.”

See Also isc_event_block(), isc_que_events()

396 INTERBASE 6

API GUIDE

APPENDIX

InterBase Document
Conventions

This appendix covers the following topics:
® The InterBase 6 documentation set
® The printing conventions used to display information in text

® The printing conventions used to display information in syntax, code, and examples

397

APPENDIX A INTERBASE DOCUMENT CONVENTIONS

The InterBase documentation set

The InterBase documentation set is an integrated package designed for all levels of users.
It consists of six full-length printed books plus the Installation Guide. Each of these
books is also provided in Adobe Acrobat PDF format and is accessible on line. If Adobe
Acrobat is not already installed on your system, you can find it on the InterBase
distribution CD-ROM or at http//www.adobe.com/prodindex/acrobat/readstep.html. Acrobat is
available for Windows NT, Windows 95, and most flavors of UNIX.

Book Description

Operations Guide Provides an introduction to InterBase and an explanation of tools and
procedures for performing administrative tasks on databases and
database servers; also includes full reference on InterBase utilities,
including isql, gbak, gfix, and others

Data Definition Guide ~ Explains how to create, alter, and delete database objects using the SQL
language

Developer’s Guide Provides both reference and task-oriented material for users of the
Borland RAD tools (Delphi, C++ Builder, and JBuilder); includes chapters
on writing UDFs, driver configuration, developing embedded installation
applications, and using the new InterBase Data Access Components

Language Reference Describes the SQL language syntax and usage; includes references for
procedure and trigger language, InterBase keywords, functions in the
InterBase UDF library, error codes, character sets, and the system tables

Embedded SQL Guide (formerly called the Programmer’s Guide) Describes how to write
embedded SQL database applications in a host language, precompiled
through gpre

API Guide Explains how to write database applications using the InterBase API

TABLEA.1 Books in the InterBase 6 documentation set

398 INTERBASE 6

PRINTING CONVENTIONS

Printing conventions

The InterBase documentation set uses various typographic conventions to identify objects

and syntactic elements.

The following table lists typographic conventions used in text, and provides examples of

their use:
Conventio
n Purpose Example
UPPERCASE SQL keywords, SQL functions, and names of ~ « the SELECT statement retrieves data from the CITY column
all database objects such as tables, columns, in the CITIES table
indexes, and stored procedures + can be used in CHAR, VARCHAR, and BLOB text columns
« the CAST() function
italic New terms, emphasized words, all elements «isc_decode_date()
from host languages, and all user-supplied « the host variable, segment_length
items « contains six variables, or data members
bold File names, menu picks, and all commands + gbak, isql, gsec. gfix

that are entered at a system prompt,
including their switches, arguments, and
parameters

- specify the gpre -sqlda old switch

« a script, ib_udf.sql, in the examples subdirectory

+ the employee.gdb database; the employee database
« the Session | Advanced Settings command

TABLEA.2 Text conventions

API GUIDE

399

APPENDIX A INTERBASE DOCUMENT CONVENTIONS

Syntax conventions

The following table lists the conventions used in syntax statements and sample code, and
provides examples of their use:

Convention Purpose Example
UPPERCASE Keywords that must be typed exactlyas *SET TERM !}
they appear when used *ADD [CONSTRAINT] CHECK

italic User-supplied parameters that cannot be *CREATE TRIGGER narne FOR t abl e;
broken into smaller units *ALTER EXCEPTION nane' nessage'

<j talic> Parametersin angle brackets can be WHILE (<condition>) DO <compound_statement>
broken into smaller syntactic units; the
expansion syntax for these parameters
follows the current syntax statement

[1] Optional syntax: you do not need to *CREATE [UNIQUE][ASCENDING | DESCENDING]
include anything that is enclosed in J[FILTER [FROM subt ype] TO subt ype]
square brackets; when elements within
these brackets are separated by the pipe
symbol (), you can choose only one

{1} You must include one and only one of the {INTO | USING}
enclosed options, which are separated by
the pipe symbol (|)

You can choose only one of a group whose SELECT [DISTINCT | ALL]
elements are separated by this pipe
symbol

You can repeat the clause enclosedin (<col> [,<col>...])
brackets with the “...” symbol as many
times as necessary

TABLEA3 Syntax conventions

400 INTERBASE 6

API GUIDE

APPENDIX

Data Structures

This appendix documents the data structures, compile-time constants, parameter buffers,
and information buffers utilized in InterBase API applications.

This information also appears throughout the rest of this APT Guide, but is consolidated
here as a convenience. See other sections of this manual for more information.

All the structures and compile-time constants mentioned are defined in the ibase.h header
file. Items are documented alphabetically, as follows:

® Array descriptor

®= Blob descriptor

® Blob information item-list buffer and result buffer

® Blob parameter buffer

® Database information request buffer and result buffer
® Database parameter buffer

® SQL datatype macro constants

® Status vector

® Transaction parameter buffer

® XSQLDA and XSQLVAR structures

401

APPENDIX B DATA STRUCTURES

Array descriptor

An array descriptor ISC_ARRAY_DESC is a structure defined in the ibase.h header file as:

typedef struct {

unsi gned char array_desc_dtype;

char array_desc_scal €;

unsi gned short array_desc_| ength;

char array_desc_field_nane [32];

char array_desc_rel ation_nane [32];

short array_desc_di nmensi ons;

short array_desc_fl ags;

| SC_ARRAY_BOUND array_desc_bounds [16];
} 1 SC_ARRAY_DESC;

ISC_ARRAY_BOUND is defined as:

typedef struct {
short array_bound_l ower; /* |ower bound */
short array_bound_upper; /* upper bound */
} 1 SC_ARRAY_BOUND;

Field Description

array_desc_dtype Datatype (see below)
array_desc_scale Scale for numeric datatypes
array_desc_length Length in bytes of each array element

array_desc_field_name NULL-terminated column name
array_desc_relation_name NULL-terminated relation name
array_desc_dimensions Number of array dimensions

array_desc_flags Specifies whether array is to be accessed in row- major or column-major
order
+ 0: row-major
+ 1: column-major

array_desc_bounds Lower and upper bounds for each dimension

TABLEB.1 Array descriptor fields

402 INTERBASE 6

DATATYPES FOR ARRAY DESCRIPTORS

Datatypes for array descriptors

The array_desc_dtype field of an array descriptor must be expressed as one of the

datatypes in the following table:

array_desc_dtype

value Corresponding InterBase datatype
blr_text CHAR

blr_text2 CHAR

blr_short SMALLINT

blr_long INTEGER

blr_quad ISC_QUAD structure
blr_float FLOAT

blr_double DOUBLE PRECISION
blr_sql_date DATE

blr_sql_time TIME
blr_timestamp TIMESTAMP
blr_varying VARCHAR
blr_varying2 VARCHAR

blr_blob_id
blr_cstring

blr_cstring2

ISC_QUAD structure
NULL-terminated string

NULL-terminated string

TABLEB2 Datatypes for array descriptors

Blob descriptor

A Blob descriptor is defined as:

typedef struct {

short bl ob_desc_subt ype;
short bl ob_desc_charset;

API GUIDE

403

APPENDIX B DATA STRUCTURES

short bl ob_desc_segment _si ze;

unsi gned char bl ob_desc_field_nane [32];

unsi gned char bl ob_desc_rel ati on_nane [32];
} 1 SC _BLOB_DESC;

Field Description

blob_desc_subtype Type of Blob data
0: unstructured
1: TEXT

negative integer between —1and —32678: user-defined subtype
blob_desc_charset Character set (see below)
blob_desc_segment_size Segment size
blob_desc_field_name NULL-terminated column name

blob_desc_relation_name NULL-terminated table name

TABLEB3 Blob descriptor fields

Character sets

InterBase supports a number of character sets. For a list of the character sets supported,
and the character set value that must be entered in the blob_desc_charset field of a Blob
descriptor, see the Data Definition Guide.

Blob information buffers

The isc_blob_info() call enables an application to query for Blob information such as the
total number of segments in the Blob, or the length of the longest segment.

isc_blob_info() requires two application-provided buffers, an item-list buffer, where the
application specifies the information it needs, and a result buffer, where InterBase returns
the requested information. An application populates the item-list buffer with information
prior to calling isc_blob_info(). InterBase returns information in the result buffer. If
InterBase attempts to pass back more information than can fit in the result buffer, it puts
the value, isc_info_truncated, defined in ibase.h, in the final byte of the result buffer.

404 INTERBASE 6

BLOB DESCRIPTOR

» Item-list buffer

The item-list buffer is a byte vector into which is placed a sequence of byte values, one
per requested item of information. Each byte is an item type, specifying the kind of
information desired. Compile-time constants for all item types are defined in ibase.h:

#define isc_info_blob_num segnents
#define isc_info_bl ob_nmax_segnent
#define isc_info_blob_total |ength
#define isc_info_blob_type

~N o O b

» Result buffer

The result buffer is a byte vector in which InterBase returns a series of clusters of
information, one per item requested. Each cluster consists of three parts:

1. A one-byte item type. Each is the same as one of the item types in the item-list
buffer.

2. A 2-byte number specifying the number of bytes that follow in the remainder
of the cluster.

3. Awvalue, stored in a variable number of bytes, whose interpretation depends
on the item type.

A calling program is responsible for interpreting the contents of the result buffer and for
deciphering each cluster as appropriate.

The clusters returned to the result buffer are not aligned. Furthermore, all numbers are
represented in a generic format, with the least significant byte first, and the most
significant byte last. Signed numbers have the sign in the last byte. Convert the numbers
to a datatype native to your system, if necessary, before interpreting them. The API call,
isc_vax_integer(), can be used to perform the conversion.

API GUIDE 405

406

TABLEB.4

TABLEB.S

APPENDIX B DATA STRUCTURES

Blob buffer items

The following table lists items about which information can be requested and returned,
and the values reported:

Request and return item Return value
isc_info_blob_num_segments Total number of segments
isc_info_blob_max_segment Length of the longest segment
isc_info_blob_total_length Total size, in bytes, of Blob
isc_info_blob_type Type of Blob (0: segmented, or 1: stream)

Blob information items and return values

In addition to the information InterBase returns in response to a request, InterBase can
also return one or more of the following status messages to the result buffer. Each status
message is one unsigned byte in length:

Item Description

isc_info_end End of the messages

isc_info_truncated Result buffer is too small to hold any more requested information
isc_info_error Requested information is unavailable. Check the status vector for an

error code and message

Status message return items

Blob parameter buffer

A Blob Parameter Buffer (BPB) is an application-defined byte vector, passed as an
argument to isc_open_blob2() or isc_create_blob2(), that specifies Blob attributes
required for filtering Blob data.

A BPB consists of the following parts:

1. A byte specifying the version of the parameter buffer, always the
compile-time constant, isc_bpb_version1.

2. A contiguous series of one or more clusters of bytes, each describing a single
parameter.

Each cluster consists of the following parts:

INTERBASE 6

DATABASE INFORMATION REQUEST BUFFER AND RESULT BUFFER

TABLEB.6

1. A one-byte parameter type. There are compile-time constants defined for all
the parameter types (for example, isc_bpb_target_type).

2. A one-byte number specifying the number of bytes that follow in the
remainder of the cluster.

3. A variable number of bytes, whose interpretation depends on the parameter
type.

All numbers in the Blob parameter buffer must be represented in a generic format, with
the least significant byte first, and the most significant byte last. Signed numbers should
have the sign in the last byte. The API function isc_vax_integer() can be used to reverse
the byte order of a number. For more information about isc_vax_integer(), see
“isc_vax_integer()” on page 391 of Chapter 13, “API Function Reference.”

The following table lists the parameter types and their meaning. For lists of the possible
subtypes and character sets, see “Blob descriptor” on page 403.

Parameter type Description
isc_bpb_target_type Target subtype
isc_bpb_source_type Source subtype
isc_bpb_target_interp Target character set
isc_bpb_source_interp Source character set

Blob parameter buffer parameter types

Database information request buffer and result buffer

API GUIDE

The isc_database_info() call enables an application to query for information about an
attached database.

isc_database_info() requires two application-provided buffers, a request buffer, where
the application specifies the information it needs, and a result buffer, where InterBase
returns the requested information. An application populates the request buffer with
information prior to calling isc_database_info(). InterBase returns information in the
result buffer. If InterBase attempts to pass back more information than can fit in the result
buffer, it puts the value, isc_info_truncated, defined in ibase.h, in the final byte of the
result buffer.

407

APPENDIX B DATA STRUCTURES

Request buffer

The request buffer is a byte vector into which is placed a sequence of byte values, one
per requested item of information. Each byte is an item type, specifying the kind of
information desired. Compile-time constants for all item types are defined in ibase.h and
shown below.

Result buffer

The result buffer is a byte vector in which InterBase returns a series of clusters of
information, one per item requested. Each cluster consists of three parts:

1. A one-byte item return type. These are the same as the item types specified
in the request buffer.

2. A two-byte number specifying the number of bytes that follow in the
remainder of the cluster.

3. A wvalue, stored in a variable number of bytes, whose interpretation (as a
number or as a string of characters, for example) depends on the item return

type.

A calling program is responsible for interpreting the contents of the result buffer and for
deciphering each cluster as appropriate. In many cases, the value simply contains a
number or a string (sequence of characters). But in other cases, the value is a number of
bytes whose interpretation depends on the item return type.

The clusters returned to the result buffer are not aligned. Furthermore, all numbers are
represented in a generic format, with the least significant byte first, and the most
significant byte last. Signed numbers have the sign in the last byte. Convert the numbers
to a datatype native to your system, if necessary, before interpreting them. The API call,
isc_vax_integer(), can be used to perform the conversion.

408 INTERBASE 6

DATABASE INFORMATION REQUEST BUFFER AND RESULT BUFFER

In addition to the information InterBase returns in response to a request, InterBase can
also return one or more of the following status messages to the result buffer. Each status
message is one unsigned byte in length:

Item Description

isc_info_end End of the messages
isc_info_truncated Result buffer is too small to hold any more requested information

isc_info_error Requested information is unavailable; check the status vector for an error
code and message

TABLEB7 Status message return items

Request buffer items and result buffer values

The following sections show the request buffer items and result buffer contents for the
following categories of database information:

® Database characteristics
® Environmental characteristics
® Performance statistics

® Database operation counts

API GUIDE 409

410

TABLEB.8

APPENDIX B DATA STRUCTURES

» Database characteristics

Several items are provided for determining database characteristics, such as its size and
major and minor ODS version numbers. The following table lists the request buffer items
that can be passed, and the information returned in the result buffer for each item type:

Request buffer item Result buffer contents
isc_info_allocation Number of database pages allocated
isc_info_base_level Database version (level) number:

1 byte containing the number 1
1 byte containing the version number

isc_info_db_id Database file name and site name:
+ 1 byte containing the number 2
+ 1 byte containing the length, d, of the database file name in bytes
+ A string of d bytes, containing the database file name
+ 1 byte containing the length, /, of the site name in bytes
« A string of / bytes, containing the site name

isc_info_implementation Database implementation number:
+ 1 byte containing a 1
+ 1 byte containing the implementation number
+ 1 byte containing a “class” number, either 1 or 12

Database information items for database characteristics

INTERBASE 6

DATABASE INFORMATION REQUEST BUFFER AND RESULT BUFFER

TABLEB.8

API GUIDE

Request buffer item Result buffer contents

isc_info_no_reserve Oor1
+ 0 indicates space is reserved on each database page for holding
backup versions of modified records [Default]
« Tindicates no space is reserved for such records

isc_info_ods_minor_version On-disk structure (ODS) minor version number; an increase in a
minor version number indicates a non-structural change, one that
still allows the database to be accessed by database engines with
the same major version number but possibly different minor
version numbers

isc_info_ods_version 0DS major version number

« Databases with different major version numbers have different
physical layouts; a database engine can only access databases
with a particular ODS major version number

+ Trying to attach to a database with a different ODS number
results in an error

isc_info_page_size Number of bytes per page of the attached database; use with
isc_info_allocation to determine the size of the database

isc_info_version Version identification string of the database implementation:
+ 1 byte containing the number 1
+ 1 byte specifying the length, n, of the following string
* n bytes containing the version identification string

Database information items for database characteristics (continued)

411

412

TABLEBY

APPENDIX B DATA STRUCTURES

» Environmental characteristics

Several items are provided for determining environmental characteristics, such as the
amount of memory currently in use, or the number of database cache buffers currently
allocated. These items are described in the following table:

Request buffer item Result buffer contents

isc_info_current_memory Amount of server memory (in bytes) currently in use

isc_info_forced_writes Number specifying the mode in which database writes are performed
(0 for asynchronous, 1 for synchronous)

isc_info_max_memory Maximum amount of memory (in bytes) used at one time since the first
process attached to the database

isc_info_num_buffers Number of memory buffers currently allocated

isc_info_sweep_interval Number of transactions that are committed between “sweeps” to

remove database record versions that are no longer needed

isc_info_user_names NetWare only. Names of all the users currently attached to the
database; for each such user, the result buffer will contain an
isc_info_user_names byte followed by a 1-byte length specifying the
number of bytes in the user name, followed by the user name

Database information items for environmental characteristics

Not all environmental information items are available on all platforms.

» Performance statistics

There are four items providing performance statistics for a database. These statistics
accumulate for a database from the moment it is first attached by any process until the
last remaining process detaches from the database. A program requesting this
information, therefore, sees information pertaining to its own attachment and all other
attachments.

For example, the value returned for isc_info_reads is the number of reads since the
current database was first attached: it is an aggregate of all reads done by all attached
processes, rather than the number of reads done for the calling program since it attached
to the database.

INTERBASE 6

DATABASE INFORMATION REQUEST BUFFER AND RESULT BUFFER

TABLEB.10

API GUIDE

The items providing performance statistics are summarized in the following table:

Request buffer item Result buffer contents

isc_info_fetches Number of reads from the memory buffer cache
isc_info_marks Number of writes to the memory buffer cache
isc_info_reads Number of page reads

isc_info_writes Number of page writes

Database information items for performance statistics

» Database operation counts

Several information items are provided for determining the number of various database
operations performed by the currently attached calling program. These values are
calculated on a per-table basis.

When any of these information items is requested, InterBase returns to the result buffer:
1. 1 byte specifying the item type (for example, isc_info_insert_count).
2. 2 bytes telling how many bytes compose the subsequent value pairs.

3. A pair of values for each table in the database on which the requested type
of operation has occurred since the database was last attached.

Each pair consists of:
- 2 bytes specifying the table ID.
- 4 bytes listing the number of operations (for example, inserts) done on that table.

To determine an actual table name from a table ID, query the RDB$RELATION system table.

413

414

TABLEB.

APPENDIX B DATA STRUCTURES

The following table describes the items which return count values for operations on the
database:

Request buffer item Result buffer contents

isc_info_backout_count Number of removals of a version of a record
isc_info_delete_count Number of database deletes since the database was last attached
isc_info_expunge_count Number of removals of a record and all of its ancestors, for records

whose deletions have been committed

insert_count Number of inserts into the database since the database was last
attached
purge_count Number of removals of old versions of fully mature records

(records that are committed, so that older ancestor versions are
no longer needed)

read_idx_count Number of reads done via an index since the database was last
attached

read_seq_count Number of sequential sequential table scans (row reads) done on
each table since the database was last attached

update_count Number of database updates since the database was last
attached

Database information items for operation counts

A Database Parameter Buffer (DPB) is an application-defined byte vector, passed as an
argument to isc_attach_database(), that specifies desired database characteristics.

A DPB consists of the following parts:

1. A byte specifying the version of the parameter buffer, always the
compile-time constant, isc_dpb_version1.

2. A contiguous series of one or more clusters of bytes, each describing a single
parameter.

Each cluster consists of the following parts:

1. A one-byte parameter type. There are compile-time constants defined for all
the parameter types (for example, isc_dpb_num_buffers).

2. A one-byte number specifying the number of bytes that follow in the
remainder of the cluster.

INTERBASE 6

DATABASE INFORMATION REQUEST BUFFER AND RESULT BUFFER

TABLEB.12

API GUIDE

3. A variable number of bytes, whose interpretation (as a number or as a string
of characters, for example) depends on the parameter type.

The following table lists DPB items by purpose:

User Validation

Item

User name

Password

Encrypted password

System database administrator’s user name
Authorization key for a software license

Database encryption key

isc_dpb_user_name
isc_dpb_password
isc_dpb_password_enc
isc_dpb_sys_user_name
isc_dpb_license

isc_dpb_encrypt_key

Environmental control

Number of cache buffers

dbkey context scope

isc_dpb_num_buffers

isc_dpb_dbkey_scope

System management

Force writes to the database to be done asynchronously or

synchronously

Specify whether or not to reserve a small amount of space on
each database page for holding backup versions of records when

modifications are made.

Specify whether or not the database should be marked as

damaged

Perform consistency checking of internal structures

isc_dpb_force_write

isc_dpb_no_reserve

isc_dpb_damaged

isc_dpb_verify

Shadow control

Activate the database shadow, an optional, duplicate, in-sync

copy of the database

Delete the database shadow

isc_dpb_activate_shadow

isc_dpb_delete_shadow

DPB parameters

415

APPENDIX B DATA STRUCTURES

User Validation Item

Replay logging system control

Activate a replay logging system to keep track of all database calls isc_dpb_begin_log

Deactivate the replay logging system isc_dpb_quit_log

Character set and message file specification

Language-specific message file isc_dpb_Ilc_messages

Character set to be utilized isc_dpb_lIc_ctype

TABLEB.12 DPB parameters (continued)

The following table lists DPB parameters in alphabetical order. For each parameter, it lists
its purpose, the length, in bytes, of any values passed with the parameter, and the value

to pass:

Parameter Purpose Length

Value

isc_dpb_activate_shadow Directive to activate the database shadow, 1 (Ignored)
which is an optional, duplicate, in-sync copy
of the database

isc_dpb_damaged Number signifying whether or not the 1
database should be marked as damaged;
1=mark as damaged, 0 = do not mark as
damaged

isc_dpb_dbkey_scope Scope of dbkey context; 0 limits scope to the 1
current transaction, 1 extends scope to the
database session.

isc_dpb_delete_shadow Directive to delete a database shadow thatis 1 (Ignored)
no longer needed

isc_dpb_encrypt_key String encryption key, up to 255 characters Number of bytes
in string

isc_dpb_force_write Specifies whether database writes are 1
synchronous or asynchronous;
0 = asynchronous, 1 = synchronous

0 (Ignored)

Oor1

Oor1

0 (Ignored)

String containing
key

Oor1

TABLEB.13 Alphabetical list of DPB parameters

416

INTERBASE 6

DATABASE INFORMATION REQUEST BUFFER AND RESULT BUFFER

Parameter Purpose Length Value
isc_dpb_Ic_ctype String specifying the character set to be Number of bytes String containing
utilized in string character set
name
isc_dpb_Ic_messages String specifying a language-specific Number of bytes String containing
message file in string message file name
isc_dpb_license String authorization key for a software Number of bytes String containing
license in string key
isc_dpb_no_reserve Specifies whether or not a small amount of 1 Oor1
space on each database page is reserved for
holding backup versions of records when
modifications are made; keep backup
versions on the same page as the primary
record to optimize update activity
0 (default) = reserve space
1= do not reserve space
isc_dpb_num_buffers Number of database cache buffers to 1 Number of
allocate for use with the database buffers to allocate
Default =75
isc_dpb_password String password, up to 255 characters Number of bytes String containing
in string password
isc_dpb_password_enc String encrypted password, up to 255 Number of bytes String containing
characters in string password
isc_dpb_sys_user_name String system DBA name, up to 255 Number of bytes String containing
characters in string SYSDBA name
isc_dpb_user_name String user name, up to 255 characters Number of bytes String containing
in string user name

TABLEB.13

Alphabetical list of DPB parameters (continued)

Some parameters, such as isc_dpb_delete_shadow, are directives that do not require
additional parameters. Even so, you must still provide length and value bytes for these
parameters. Set length to 1, and value to 0. InterBase ignores these parameter values, but
they are required to maintain the format of the DPB.

API GUIDE

417

APPENDIX B DATA STRUCTURES

SQL datatype macro constants

InterBase defines a set of macro constants to represent SQL datatypes and NULL status
information in an XSQLVAR. An application should use these macro constants to specify
the datatype of parameters and to determine the datatypes of select-list items in an SQL
statement. The following table lists each SQL datatype, its corresponding macro constant
expression, C datatype or InterBase typedef, and whether or not the sglind field is used
to indicate a parameter or variable that contains NULL or unknown data:

418

TABLEB.14

C datatype or sqlind
SQL datatype ~ Macro expression typedef used?
Array SQL_ARRAY ISC_QUAD No
Array SQL_ARRAY + 1 ISC_QUAD Yes
Blob SQL_BLOB ISC_QUAD No
Blob SQL_BLOB +1 ISC_QUAD Yes
CHAR SQL_TEXT char[] No
CHAR SQL_TEXT +1 char[] Yes
DATE SQL_DATE ISC_DATE No
DATE SQL_DATE +1 ISC_DATE Yes
DECIMAL SQL_SHORT, SQL_LONG, SQL_DOUBLE, int, long, double, or No
or SQL_INT64 ISC_INT64
DECIMAL SQL_SHORT +1,SQL_LONG + 1, int, long,double, or Yes
SQL_DOUBLE +1,0r SQL_INT64+1 |5 |nTes
DOUBLE PRECISON SQL_DOUBLE double No
DOUBLE PRECISION SQL_DOUBLE +1 double Yes
INTEGER SQL_LONG long No
INTEGER SQL_LONG +1 long Yes
FLOAT SQL_FLOAT float No
FLOAT SQL_FLOAT +1 float Yes

SQL datatypes, macro expressions, and C datatypes

INTERBASE 6

SQL DATATYPE MACRO CONSTANTS

TABLE B.14

API GUIDE

Cdatatype or sqlind
SQL datatype Macro expression typedef used?
NUMERIC SQL_SHORT, SQL_LONG, SQL_DOUBLE, int, long, double, or No
NUMERIC SQL_SHORT + 1,SQL_LONG + 1, int, |ong, double, or Yes
SMALLINT SQL_SHORT short No
SMALLINT SQL_SHORT +1 short Yes
TIME SQL_TIME ISC_TIME No
TIME SQL_TIME +1 ISC_TIME Yes
TIMESTAMP SQL_TIMESTAMP ISC_TIMESTAMP No
TIMESTAMP SQL_TIMESTAMP+ 1 ISC_TIMESTAMP Yes
VARCHAR SQL_VARYING First 2 bytes: short No

containing the length of

the character string.

Remaining bytes: char[]
VARCHAR SQL_VARYING + 1 First 2 bytes: short Yes

containing the length of
the character string.
Remaining bytes: char([]

SQL datatypes, macro expressions, and C datatypes (continued)

DECIMAL and NUMERIC datatypes are stored internally as SMALLINT, INTEGER, DOUBLE
PRECISION, or 64-bit integer datatypes. To specify the correct macro expression to provide
for a DECIMAL or NUMERIC column, use isql to examine the column definition in the table
to see how InterBase is storing column data, then choose a corresponding macro
expression.

The datatype information for a parameter or select-list item is contained in the sqltype
field of the XSQIVAR structure. The value contained in sqltype provides two pieces of
information:

® The datatype of the parameter or select-list item.

® Whether sqlind is used to indicate NULL values. If sqlind is used, its value specifies
whether the parameter or select-list item is NULL (-1), or not NULL (0).

419

APPENDIX B DATA STRUCTURES

For example, if sqltype equals SQL_TEXT, the parameter or select-list item is a CHAR that
does not use sqlind to check for a NULL value (because, in theory, NULL values are not

allowed for it). If sqltype equals SQL_TEXT + 1, then sglind can be checked to see if the
parameter or select-list item is NULL.

The C language expression, sqltype & 1, provides a useful test of whether a parameter or
select-list item can contain a NULL. The expression evaluates to 0 if the parameter or
select-list item cannot contain a NULL, and 1 if the parameter or select-list item can
contain a NULL.

Status vector

Most API functions return status information that indicates success or failure. Status
information is reported in an error status vector, declared in applications as an array of
twenty long integers, using the following syntax:

#i ncl ude <i base. h>

| SC_STATUS st atus_vector[20];

If you plan to write your own routines instead of the InterBase error-handling routines to
read and react to the contents of the status vector, you need to know how to interpret it.

InterBase stores error information in the status vector in clusters of two or three longs.
The first cluster in the status vector always indicates the primary cause of the error.
Subsequent clusters may contain supporting information about the error, for example,
strings or numbers for display in an associated error message. The actual number of
clusters used to report supporting information varies from error to error.

In many cases, additional errors may be reported in the status vector. Additional errors

are reported immediately following the first error and its supporting information, if any.
The first cluster for each additional error message identifies the error. Subsequent clusters
may contain supporting information about the error.

Meaning of the first long in a cluster

420

The first long in any cluster is a numeric descriptor. By examining the numeric descriptor
for a cluster, you can always determine the:

® Total number of longs in the cluster.
® Kind of information reported in the remainder of the cluster.

= Starting location of the next cluster in the status vector.

INTERBASE 6

MEANING OF THE FIRST LONG IN A CLUSTER

The following table lists possible values for the first long in any cluster in the status
vector. Note that the first cluster in the status vector can only contain values of 0, 1, or
greater than 4:

Longword

Value incluster Meaning

0 — End of error information in the status vector

1 2 Second long is an InterBase error code

2 2 Second long is the address of string used as a replaceable parameter in a
generic InterBase error message

3 3 Second long is the length, in bytes, of a variable length string provided by the
operating system (most often this string is a file name); third long is the
address of the string

4 2 Second long is a number used as a replaceable parameter in a generic
InterBase error message

5 2 Second long is the address of an error message string requiring no further
processing before display

6 2 Second long is a VAX/VMS error code

7 2 Second long is a UNIX error code

8 2 Second long is an Apollo Domain error code

9 2 Second long is an MS-DOS or 05/2 error code

10 2 Second long is an HP MPE/XL error code

1 2 Second long is an HP MPE/XL IPC error code

12 2 Second long is a NeXT/Mach error code

NOTE As InterBase is adapted to run on other hardware and software platforms, additional numeric
descriptors for specific platform and operating system error codes may be added to the end of this list.

TABLEB.15 Interpretation of status vector clusters

API GUIDE 421

APPENDIX B DATA STRUCTURES

The following table lists the ibase.h #define equivalents of each numeric descriptor:

Value #define Value #define

0 isc_arg_end 8 isc_arg_domain

1 isc_arg_gds 9 isc_arg_dos

2 isc_arg_string 10 isc_arg_mpexl

3 isc_arg_cstring 1 isc_arg_mpexl_ipc
4 isc_arg_number 15 isc_arg_next_mach
5 is¢_arg_interpreted 16 isc_arg_netware

6 isc_arg_vms 17 isc_arg_win32

7 isc_arg_unix

TABLEB.16 #defines for status vector numeric descriptors

Transaction parameter buffer

The transaction parameter buffer (TPB) is an optional, application-defined byte vector,
passed as an argument to isc_start_transaction(), that sets up a transaction’s attributes,
its operating characteristics, such as whether the transaction has read and write access to
tables, or read-only access, and whether or not other simultaneously active transactions
can share table access with the transaction. Each transaction may have its own TPB, or
transactions that share operating characteristics can use the same TPB.

If a TPB is not created for a transaction, a NULL pointer must be passed to
isc_start_transaction() in its place. A default set of attributes is automatically assigned to
such transactions.

422 INTERBASE 6

TRANSACTION PARAMETER BUFFER

TABLEB.17

API GUIDE

A TPB is declared in a C program as a char array of one-byte elements. Each element is
a parameter that describes a single transaction attribute. The first element in every TPB
must be the isc_tpb_version3 constant. The following table lists available TPB constants,
describes their purposes, and indicates which constants are assigned as a default set of
attributes when a NULL TPB pointer is passed to isc_start_transaction():

Parameter

Description

isc_tpb_version3
isc_tpb_ consistency

isc_tpb_concurrency

isc_tpb_shared

isc_tpb_protected

isc_tpb_wait

isc_tpb_nowait

isc_tpb_read

isc_tpb_write

isc_tpb_lock_read

isc_tpb_lock_write

InterBase version 3 transaction
Table-locking transaction model

High throughput, high concurrency transaction with acceptable consistency;
use of this parameter takes full advantage of the InterBase multi-generational
transaction model [Default]

Concurrent, shared access of a specified table among all transactions.; use in
conjunction with isc_tpb_lock_read and isc_tpb_lock_write to establish the
lock option [Default]

Concurrent, restricted access of a specified table; use in conjunction with
isc_tpb_lock_read and isc_tpb_lock_write to establish the lock option

Lock resolution specifies that the transaction is to wait until locked resources
are released before retrying an operation [Default]

Lock resolution specifies that the transaction is not to wait for locks to be
released, but instead, a lock conflict error should be returned immediately

Access mode of read-only that allows a transaction only to select data from
tables

Access mode of read-write that allows a transaction to select, insert, update,
and delete table data [Default]

Read-only access of a specified table; use in conjunction with isc_tpb_shared,
isc_tpb_protected, and isc_tpb_exclusive to establish the lock option

Read-write access of a specified table; use in conjunction with isc_tpb_shared,
isc_tpb_protected, and isc_tpb_exclusive to establish the lock option [Default]

TPB constants

423

APPENDIX B DATA STRUCTURES

Parameter Description

isc_tpb_read_committed High throughput, high concurrency transaction that can read changes
committed by other concurrent transactions; use of this parameter takes full
advantage of the InterBase multi-generational transaction model

isc_tpb_rec_version Enables an isc_tpb_read_committed transaction to read the most recently
committed version of a record even if other, uncommitted versions are
pending.

isc_tpb_no_rec_version Enables an isc_tpb_read_committed transaction to read only the latest
committed version of a record

If an uncommitted version of a record is pending and is¢_tpb_wait is also
specified, then the transaction waits for the pending record to be committed
orrolled back before proceeding; otherwise, a lock conflict error is reported at
once

TABLEB.17 TPB constants (continued)

TPB parameters specify the following classes of information:

® Transaction version number is used internally by the InterBase engine. It is always be
the first attribute specified in the TPB, and must always be set to isc_tpb_version3.

® Access mode describes the actions that can be performed by the functions associated with
the transaction. Valid access modes are:

isc_tpb_read
isc_tpb_write

® [solation level describes the view of the database given a transaction as it relates to
actions performed by other simultaneously occurring transactions. Valid isolation levels
are:

isc_tpb_concurrency

isc_tpb_consistency

isc_tpb_read_committed, isc_tpb_rec_uversion
isc_tpb_read_committed, isc_tpb_no_rec_version

® Lock resolution describes how a transaction should react if a lock conflict occurs. Valid
lock resolutions are:

isc_lpb_wait

isc_tpb_nowait

424 INTERBASE 6

XSQLDA AND XSQLVAR

® Table reservation optionally describes an access method and lock resolution for a
specified table that the transaction accesses. When table reservation is used, tables are
reserved for the specified access when the transaction is started, rather than when the
transaction actually accesses the table. Valid reservations are:

isc_tpb_shared, isc_tpb_lock_write
isc_tpb_shared, isc_tpb_lock_read
isc_tpb_protected, isc_tpb_lock_write
isc_tpb_protected, isc_tpb_lock_read

XSQLDA and XSQLVAR

All DSQL applications must declare one or more extended SQL descriptor areas
(XSQLDAS).

The XSQLDA is a host-language data structure that DSQL uses to transport data to or from
a database when processing an SQL statement string. There are two types of XSQLDAs:
input descriptors and output descriptors. Both input and output descriptors are
implemented using the XSQLDA structure.

Syniax

One field in the XSQLDA, sqlvar, is an XSQLVAR structure. The sqlvar is especially important
because one XSQILVAR must be defined for each input parameter or column returned.

Applications do not declare instances of the XSQIVAR ahead of time, but must, instead,
dynamically allocate storage for the proper number of XSQLVAR structures required for
each DSQL statement before it is executed, then deallocate it, as appropriate, after
statement execution.

API GUIDE 425

APPENDIX B DATA STRUCTURES

The following figure illustrates the relationship between the XSQLDA and the XSQLVAR.

Single instance of XSQLDA[1[]

short version

char sqldaid[8]
ISC_LONG sqldabc
short sqin

short sqld

Array of n instances of XSQLVAR

15tinstance nth instance
short sqltype short sqltype
short sqlscale short sqlscale
short sqlsubtype short sqlsubtype
short sgllen short sgllen

char *sqldata

short *sqlind e
short sginame_length

char sqlname[32]

short relname_length

char relname[32]

short ownname_length

char ownname[32]

short aliasname_length

char aliasname[32]

char *sqldata

short *sqlind

short sqiname_length
char sqiname[32]

short relname_length
char relname[32]

short ownname_length
char ownname[32]
short aliasname_length

char aliasname[32]

An input XSQLDA consists of a single XSQLDA structure, and one XSQLVAR structure for each
input parameter. An output XSQLDA also consists of one XSQLDA structure and one XSQLVAR
structure for each data item returned by the statement.

426

INTERBASE 6

XSQLDA AND XSQLVAR

TABLEB.18

API GUIDE

The isc_dsql_prepareQ, isc_dsql_describe(), and isc_dsql_describe_bind() statements
can be used to determine the proper number of XSQLVAR structures to allocate, and the
XSQLDA_LENGTH macro can be used to allocate the proper amount of space.

XsQLDA field descriptions

The following table describes the fields that comprise the XSQLDA structure:

Field definition Description

short version Indicates the version of the XSQLDA structure; set by an application
The current version is defined in ibase.h as SQLDA_VERSIONT

char sqldaid[8] Reserved for future use

ISC_LONG sqldabc

short sqin

short sqld

XSQLVAR sqlvar

Reserved for future use

Indicates the number of elements in the sqlvar array; the application should set this
field whenever it allocates storage for a descriptor

Indicates the number of parameters for an input XSQLDA, or the number of select-list
items for an output XSQLDA; set by InterBase during an isc_dsql_prepare,
isc_dsql_describe(), or isc_dsql_describe_bind()

For an input descriptor, an sqld of 0 indicates that the SQL statement has no
parameters; for an output descriptor, an sqg/d of 0 indicates that the SQL statement
is not a SELECT statement

The array of XSQLVAR structures; the number of elements in the array is specified in
the sqin field

XSQLDA field descriptions

427

428

TABLEB.19

APPENDIX B DATA STRUCTURES

XSQLVAR field descriptions

The following table describes the fields that comprise the XSQIVAR structure:

Field definition Description

short sqltype Indicates the SQL datatype of parameters or select-listitems; set by InterBase
during isc_dsql_prepare, isc_dsql_describe(), or isc_dsql_describe_bind()

short sqlscale Provides scale, specified as a negative number, for exact numeric datatypes
(DECIMAL, NUMERIC); set by InterBase during isc_dsql_prepare,
isc_dsql_describe(), or isc_dsql_describe_bind()

short sqlsubtype Specifies the subtype for Blob data; set by InterBase duringisc_dsql_prepare,
isc_dsql_describe(), or isc_dsql_describe_bind()

short sqllen Indicates the maximum size, in bytes, of data in the sqldata field; set by
InterBase during isc_dsql_prepare, isc_dsql_describe(), or
isc_dsql_describe_bind()

char *sqldata For input descriptors, specifies either the address of a select-listitem ora
parameter; set by the application
For output descriptors, contains a value for a select-list item; set by InterBase

short *sqlind On input, specifies the address of an indicator variable; set by an application

short sqiname_length

char sqiname[32]

short relname_length

On output, specifies the address of column indicator value for a select-list
item following a FETCH

Avalue of 0 indicates that the column is not NULL; a value of —1 indicates the
column is NULL; set by InterBase

Specifies the length, in bytes, of the data in field, sqginame; set by InterBase
during isc_dsql_prepare() or isc_dsql_describe()

Contains the name of the column. Not NULL (\0) terminated; set by InterBase
during isc_dsql_prepare() or isc_dsql_describe()

Specifies the length, in bytes, of the data in field, relname; set by InterBase
during isc_dsql_prepare() or isc_dsql_describe()

XSQLVAR field descriptions

INTERBASE 6

XSQLDA AND XSQLVAR

Field definition Description

char relname[32] Contains the name of the table; not NULL (\0) terminated, set by InterBase
during isc_dsql_prepare() or isc_dsql_describe()

short ownname_Jlength Specifies the length, in bytes, of the data in field, ownname; set by InterBase
during isc_dsql_prepare() or isc_dsql_describe()

char ownname[32] Contains the name of the table owner; not NULL (\0) terminated, set by
InterBase during isc_dsql_prepare() or isc_dsql_describe()

short aliasname_length Specifies the length, in bytes, of the data in field, aliasname; set by InterBase
during isc_dsql_prepare() or isc_dsql_describe()

char aliasname(32] Contains the alias name of the column or the column name if no alias exists;
not NULL (\0) terminated, set by InterBase during isc_dsql_prepare() or
isc_dsql_describe()

TABLEB.19 XSQLVAR field descriptions (continued)

API GUIDE 429

APPENDIX B DATA STRUCTURES

430 INTERBASE 6

Index

A
access mode parameter 65, 67
accessing
arrays 153-166
arrays, DSQL applications 256
actions See events
addresses
error messages 181, 182
numeric data 95
aggregate functions
and arrays 153
ALIGN macro 95
allocating memory 90
animation 119
API calls, referencing/dereferencing 24, 25
API functions 23-30
arrays 150
BLOB data 118, 141
categories, summarized 243-251
conversions 167
database 42
DSQL 79
error handling 29, 171
DSQL applications 176-178
events 187
example programs 40
informational 51, 131, 196
processing SQL statements 83-85
XSQLDAs and 85, 89
prototypes 36
transactions 60
applications
See also DSQL applications
BLOB data and 119, 123, 128, 131
allocating 288, 290
type checking 137
compiling See compiling
error handling 381, 382
linking See linking

API GUIDE

monitoring performance 298
programming 23-30

recovering data 364

Windows See Windows applications

arguments See parameters
array buffers 158, 161
array columns 153, 163

associating with arrays 165
selecting 154, 156

size, setting 263

writing data to 160-166, 266

array descriptors 151-153

creating 157, 160

datatypes 261

flags, setting 260, 263, 274
initializing 273

populating 152-153, 157, 260
setting fields directly 152

array elements 150

size, setting 260

array IDs 160, 255

declaring 164
fetching 158
initializing 164

array slices 154-159

changing one slice 161
creating data buffers 161
defined 150

reading one slice 158
writing data to 160-166

arrays 153-166

See also error status array

API functions 150

associating with array columns 165

column-major order, specifying 260, 263,
274

creating 151, 164

dropping 166

DSQL applications and 83, 256

multi-dimensional 150, 151
dimensions, range 150
nested 150
overview 150-151
processing 28
reading data 154-159
creating data buffers 158
retrieving data 151, 154, 156, 254
selected rows 158
row-major order, specifying 260, 263, 274
subscripts 150
subsets
retrieving 151
writing to 151
updating 160-166
asynchronous events 189, 192
canceling notification 197, 289
requesting notification 369
asynchronous traps 192-193
creating 193
attaching to a database 32
attaching to databases 49-51, 80, 276
See also connecting to databases
DPBs and 44
optional entries 24
releasing system resources 305
retrieving information about 51-57, 297
temporarily 306
Windows clients 32, 34
automatic recovery functions 364

B

binary data 119
binary file types, supported 119
binary large objects See BLOB
bitmapped images 119
BLOB (defined) 118
BLOB API functions 118, 141
BLOB columns

creating 128-130

writing data to 123, 134

BLOB filters and 142

BLOB data 117, 120-131

changing 126

creating 288, 294

deleting 130
DSQL applications and 83, 120, 122-124,
127
fetching 124
filtering 142-147, 279
processing 27, 287, 290
reading 121-126, 134
BLOB filters and 142
retrieving information about 131-134, 282
defaults 279
selecting 121-124
status messagess 132
storing 120, 128, 290
support 119
translating 136, 294
updating 126, 127-128, 367
BLOB datatype
arrays and 150
NULL values 123, 126, 130
user-defined 119
BLOB descriptors 28, 134-135
populating 135, 279
structure, defined 134
BLOB filter function
action macro definitions 141
defining 137
input/output fields 139
BLOB filters 28, 134, 136-147
control structure, defined 139
external 136, 136-142
declaring 137
writing 137-142
invoking 142
NetWare servers and 136
opening BLOBs 146, 288, 360
specifying 294
user-defined 136
BLOB handles 129
allocating 287
BLOB IDs 120
creating 129
declaring 129
resetting 126
BLOB parameter buffers 142-146
generating 281

INTERBASE 6

numeric formats 145

parameter types 145
BLOB segments 135

allocating 129

defined 120

reading 353

retrieving 125

size 284

writing 367
BLOB subtypes 119

filtering 360

retrieving 279, 284

setting 286
Borland C/C++ See C language
BPBs See BLOB parameter buffers
buffers 158, 161

BLOB filters 142

capturing error messages 174, 177

database attachments 44, 51
reinitializing event 196
transactions 62

byte order, reversing 170

C
C language
converting dates 168-170
directives 24, 27, 29
error handling 180
event notification 190
predefined constants
item types (BLOBs) 131
predefined macros 90
action messages (BLOBs) 141
datatypes (XSQLDAs) 90-95
informational (SQL) 113
time structures 168
CAD files 119
changes
undoing 375
See also rollbacks
character sets
BLOB data and 135, 143
retrieving current 279, 284
setting 286
character strings

API GUIDE

converting
SQL statements to 84, 96
CHARACTER VARYING datatype
DSQL applications and 93

client applications See SQL client applications

Windows clients
client libraries 34
CLOSE 84
closing
databases 74
coercing datatypes (XSQLDAs) 94
column names
storing 152
column-major order
specifying 260, 263, 274
columns
arrays and 150, 154
DSQL applications 312
retrieving information about 312
commits 74, 76, 292
See also transactions
delaying 77
executing 292, 362, 363
retaining context 291
compiling 30
connecting to databases 42-51
See also attaching to databases
constants
item types (BLOBs) 131
converting
dates 168-170
CREATE DATABASE 82
DSQL applications 326
cursors
closing 334
declaring 104, 111
DSQL applications 334, 339
naming 339
opening 339

D

data

binary 119
corrupted 74
fetching 124, 158

DSQL applications 330
losing 74
protecting See security
reading 154-159
recovering 364
retrieving 151, 154, 156, 254
selected rows 158
storing 150, 163, 165
variable-length
processing in XSQLDAs 93, 94
database API functions 42
database handles 42-43
assigning at run time 80
declaring 25, 43
defined 24
initializing 25, 43
multiple databases 80
database pages
retrieving information about 52
database parameter buffers 25, 41
allocating storage space 48
creating 44-47, 351
expanding 351
numeric formats 170
parameters 45, 46
adding at run time 48
databases
See also multiple databases
accessing 41, 80
attaching to 32
changes, undoing 375
closing 74
creating 82
dropping 306
performance statistics 54-55
referencing 24
retrieving information about 52, 55, 392
version numbers 392
temporary 306
datatype coercion (XSQLDAs) 94
datatype macro constants (XSQLDAs) 90-95
datatypes 34, 36
arrays 150, 261
indeterminate 119
DATE data 167

converting 168-170
DECIMAL datatype
DSQL applications and 93
DECLARE CURSOR 84
DECLARE FILTER 137
declaring
array IDs 164
BLOB descriptors 28
BLOB filters 137
BLOB handles 129
BLOB IDs 129
cursors 104, 111
database handles 25, 43
error status vectors 172
extended descriptor areas 85
transaction handles 25, 61
default directories
Windows clients 34
defaults, retrieving
BLOBs 279
DELETE
BLOB data 130
DSQL applications 340
deleting See dropping
DESCRIBE 84
descriptor areas (extended) See XSQLDAs
descriptor fields See array descriptors; BLOB
descriptors
detaching from databases 43, 57
See also disconnecting from databases
directories
Windows clients 34
disconnecting from databases 57, 305
See also detaching from databases
displaying See output
DLLs 40
DOS applications 33
DOS environment variables 33-34
DPBs See database parameter buffers

dropping
arrays 166
databases 58, 306
DSQL

programming methods 96-115
DSQL API functions 79

INTERBASE 6

DSQL applications 27, 79
arrays and 83, 153, 256

BLOB processing 83, 120, 122-124, 127

closing cursors 334
declaring cursors 104, 111
defining cursors 339

error handling 176-178

extended descriptor areas See XSQLDAs

fetching data 330
queries 101-113
retrieving information about 314
SELECT statements 312
SQL statements 83-85
DSQL statements
executing 317, 321, 325, 328
repeatedly 336
handles
allocating 308, 310
freeing 334
input parameters 314
retrieving information about 342
DSQL_close option 334
DSQL_drop option 335
dynamic link libraries See DLLs
dynamic SQL See DSQL

E

environment variables 33-34
environments

PCs 32

retrieving information about 54
EPBs See event parameter buffers
error codes 172, 181

examining status vector 178-182

system 182

translating 176, 381
error messages 172

See also SQL error messages

addresses 181, 182

building 355

displaying 173, 174, 176, 366

DSQL applications 176-178
error status array 29
error status vectors 29

checking 172

API GUIDE

clusters 178
declaring 172
numeric descriptors 179-181
numeric values 182
parsing 178-187
error-handling API functions 29, 171
DSQL applications 176-178
error-handling routines 74, 181
SQL 381, 382
errors 178, 375
run-time 171
transactions 74
event buffer, reinitializing 196
event parameter buffers 188
allocating 347
comparing event counts 349
creating 190
events 187
asynchronous 189, 192
canceling notification 197, 289
requesting notification 369
posting 349
processing 29, 192-193
retrieving 196
synchronous 189, 394
transaction control 189
waiting on 191, 193
example programs 40
EXECUTE 84
EXECUTE IMMEDIATE 84
EXECUTE PROCEDURE
DSQL applications 312, 321, 326

extended SQL descriptor areas See XSQLDAs

external BLOB filters See BLOB filters

F
FETCH 84
fetching data 124, 158
See also retrieving data
DSQL applications 330
FILE structure 42
file types
BLOB data 119
filtering BLOB data 142-147, 279
See also BLOB filters

formatting
error messages 174
function prototypes 36

G
GDS.DLL 40

H
handles See database handles; transaction handles
header files See ibase.h
host names, specifying 34

|

ibase.h 24, 25

BLOB descriptors 28

errors 29

XSQLDA structures 27
include files See ibase.h
indeterminate datatypes 119
information item macros (SQL) 113
informational API functions 51, 131, 196
initializing

array descriptors 273

array IDs 164

BLOB handles 129

BLOB IDs 129

database handles 25, 43

transaction handles 25, 61
input descriptors See XSQLDAs
input fields

BLOB filters 140
input parameters

DSQL statements 314
INSERT

arrays 162, 165

BLOB data 120, 127
ISC_ARRAY_BOUND structure 151
ISC_ARRAY_DESC structure 151
isc_array_get_sliceQ 254
isc_array_lookup_bounds() 152, 157, 161, 259
isc_array_lookup_desc() 152, 263
isc_array_put_sliceQ) 160, 164, 266
isc_array_set_descQ 152, 273
isc_attach_database() 49, 276

Vi

DPBs and 44
isc_blob_default_descQ) 279
isc_blob_gen_bpb() 143, 281
isc_blob_info() 131-134, 282
isc_blob_lookup_desc() 284
isc_blob_set_desc() 286
isc_cancel_blob() 131, 287
isc_cancel_events() 197, 289
isc_close_blob(O) 290
isc_commit_retaining() 75, 291
isc_commit_transaction() 74, 76, 292
isc_create_blob2() 129, 146, 294
ISC_DATABASE environment variable 34
isc_database_info() 51, 56, 297
isc_db_handle type 43
isc_decode_date() 169, 299, 300, 301
isc_detach_database() 57, 305
isc_drop_database() 58, 306
isc_dsql_allocate_statement() 97, 308
isc_dsql_allocate_statement2() 310
isc_dsql_describe() 87, 312
isc_dsql_describe_bind() 314
isc_dsql_exec_immed2() 328
isc_dsql_execute() 97, 317
isc_dsql_execute_immediate() 96, 325
isc_dsql_execute2() 321
isc_dsql_fetchQ 124, 158, 330

SELECT statements and 331
isc_dsql_prepare(Q) 87, 97, 336

isc_dsql_sql_infoQ and 342
isc_dsql_set_cursor_name() 339
isc_dsql_sql_infoQ 113-149, 342
isc_encode_date() 170, 344, 345, 346
isc_event_block() 190, 347
isc_event_counts() 196-197, 349
isc_expand_dpb() 48, 351
ISC_EXPORT keyword 27
isc_get_segment() 125, 353

BLOB filters and 140
isc_info_truncated value 131
isc_interprete(Q) 174, 355
isc_open_blob2() 146, 360
ISC_PASSWORD environment variable 34
isc_prepare_transaction() 76, 362
isc_prepare_transaction2Q) 77, 363

INTERBASE 6

isc_print_sqlerror) 176, 365 Microsoft C/C++ See C language

isc_print_statusQ) 173, 366 Microsoft Windows See Windows
isc_put_segment() 129, 367 monitoring performance 298

BLOB filters and 139 multi-dimensional arrays 150, 151
isc_que_events() 192-195, 369 dimensions, range 150
isc_rollback_transaction() 74, 77, 375 multiple databases
isc_sql_interprete) 177-178, 382 attaching to 80
isc_sqlcode() 176, 381 transactions and 71, 76, 362, 363, 383

isc_start_multiple() 71, 383
isc_start_transaction() vs. 387

isc_start_transaction() 69, 70, 386 N
ISC_STATUS pointer 173 NCHAR VARYING datatype

isc_tr_handle type 61 DSQL applications and 93
isc_transaction_info() 389 nested arrays 150
ISC_USER environment variable 34 NetWare SEIvers
iSC_VaX_integer() 170, 391 BLOB fllters and 136
isc_version) 392 user names, returning 54
isc_wait_for_event) 191-192, 394 network DLLs 40
isolation level parameter 65, 67 NULL pointers 69
restrictive 66 Egii f]t;tl;l:s 90
;:ﬁ_mﬁiﬁ;ﬁtanlt;iBLOBS) 151 arrays and 153, 163, 164, 166
See also isc_blob_info() BLOB columns 123, 126, 130
BLOB handles 287
extended descriptor areas 92, 94

L numbers 170
libraries alignment addresses 95
BLOB filtering routines 136 byte ordering 170
dynamic link See DLLs processing in XSQLDAs 93, 94
limbo transactions 362 NUMERIC datatype
linking 30 DSQL applications and 93
lock resolution parameter 67 numeric values See values

log files 177

(o]
] ODS See on-disk structure
macros on-disk structure
action messages (BLOBs) 141 retrieving information about 53
ALIGN 95 OPEN 84
datatypes (XSQLDAs) 90-95 opening
informational (SQL) 113 BLOBs 146, 288, 360
XSQLDA_LENGTH 90 cursors 339
memory output
allocating 90 error messages 173, 174, 176, 365, 366
retrieving information about 54 output descriptors See XSQLDAs
messages See error messages; status messages output fields

API GUIDE vii

BLOB filters 140

P
parameters 351
DPBs 45, 46, 48
DSQL statements 314
input 314

SQL statements 85, 89, 90, 98, 106
processing with no 96-97, 101-106
transaction parameter buffers (TPBs) 59-72

passwords 24
See also security
overriding 34
supplying at run time 351
Windows clients 32, 34
PC development environments 32
performance statistics 54-55
performance, monitoring 298
pointers
See also cursors
FILE structure 42
transactions 69
PREPARE 84
programming
API applications 23-30
DSQL applications 79, 96-115
error handling See errors
Windows applications 26
protecting data See security

Q
queries 27
See also SQL
arrays and 154
DSQL applications 101-113

R
RDB$TRANSACTIONS 293
reading BLOB data 121-126, 134
BLOB filters and 142
reading data 154-159
recovering data 364
request buffer items 51
request buffers

Vi

defined 51
resetting BLOB IDs 126
result buffers 51
BLOBs 131-132
defined 51

retrieving data 124, 151, 154, 156, 254

DSQL applications 330

selected rows 158
reversing byte order 170
rollbacks 77, 375

See also transactions
routines

BLOB filters 136, 142

error-handling 74, 181

SQL 381, 382

row-major order, specifying 260, 263, 274

rows
DSQL applications 312
retrieving information about 312
run-time errors 171

S
security
attachment requirements 32
Windows clients 34
SELECT
See also singleton SELECTSs
BLOB data and 120, 121-124
SELECT statements
arrays 153, 154-157
DSQL applications 331
executing 317, 321, 326
preparing 337

retrieving information about 312

singleton SELECTs 329
select-lists 101, 103, 107

See also queries

BLOB data 121

defined 101

processing items 105

retrieving items 104
SET TRANSACTION

DSQL applications 326
signed numbers 170
simultaneous transactions 66, 68

INTERBASE 6

singleton SELECTSs
DSQL applications 329
sound files, supported 119
SQL clients 32
SQL descriptor areas (extended) See XSQLDAs
SQL error messages 176-178
See also SQLCODE variable
building 381, 382
displaying 176, 365
SQL error-handling routines 381, 382
SQL statements
converting to character strings 84, 96
creating 98, 102, 108
DSQL applications and 83-85
parameters, supplying values 89, 90,
98, 106
executing 98, 101, 104, 106, 111, 113
non-query statements and 96-101
processing 98-101, 106-113
with no parameters 96-97, 101-106
retrieving select-list items 104
selecting BLOB data 121-124
SQLCODE variable
DSQL applications 176
return values 365
statements
retrieving 113-149, 342
status information 90, 172
status messages
BLOB data 132
transactions 390
status vectors See error status vectors
storing
BLOB data 120, 128
data 150, 163, 165
string addresses
error messages 181, 182
strings See character strings
subscripts (arrays) 150
sweeping databases
retrieving information about 54
synchronous events 189
requesting notification 394
system crashes 364
system error codes 182

API GUIDE

T
table names
storing 152
tables
accessing 68-69
temporary databases 306
text
BLOB type and 119
text files, supported 119
time structures 168
TPBs See transaction parameter buffers
transaction handles 61-62
assigning at run time 81
declaring 25, 61
defined 25
initializing 25, 61
transaction IDs
tracking 389
transaction parameter buffers 26, 59
constants 63
creating 62-73
default 69
numeric formats 170
transactions 59
access modes 65, 67
accessing tables 68-69
committing 74, 76, 77, 292
executing two-phase commits 292,
362, 363
retaining context 291
ending 73
events and 189
isolation levels 65-67
limbo 362
locking conflicts 67
multiple databases 71, 76, 362, 363, 383
optimizing 75
referencing 25
retrieving information about 389
rolling back 77, 375
simultaneous 66, 68
specifying attributes 62-73
starting 25, 60, 383, 386
status messages 390
transaction existence blocks (TEBs) 71

transaction parameter blocks (TPBs)

traps 192-193
See also events

U
unknown datatypes 119

unknown statements 113, 342
UPDATE
arrays 162-166

BLOB data 120, 127-128

DSQL applications 340
updating

arrays 160-166

BLOB data 126, 127-128, 367
user names 24

overriding 34

retrieving information about 54

supplying at run time 351

Windows clients 32, 34
user-defined BLOB filters 136
user-defined types

BLOB data 119

\'J

value parameters

SQL statements 85
values

See also NULL values

numeric descriptors 182
VARCHAR datatype

DSQL applications and 93, 94

variable-length data, processing 93, 94

vector-graphic files, supported 119
version numbers
databases 52, 392
on-disk structure 53
transaction processing 65
video files, supported 119
video segments 119
views
arrays and 153

w
Windows applications 26

59-72

defining datatypes 34, 36
event notification 191
setting default directories 34

Windows clients

attaching 32, 34

establishing program parameters 33

security 34

writing data

to arrays 160-166, 266
to BLOBs 123, 134
BLOB filters and 142

X

XSQLDA_LENGTH macro 90
XSQLDAs 85-95

See also XSQLVAR structure
address alignment 95
coercing datatypes 94
numbers 94
variable-length data 94
declaring 85
fields 87
input descriptors 85, 87, 89
allocating 90
arrays 162
creating 98, 106
output descriptors 85, 87, 89
allocating 90
creating 101, 107
resizing 337
retrieving NULL values 90, 92
select-list items and 101, 103, 107
arrays 154-155, 158
BLOB data 121
setting NULL values 94
specifying datatypes 90-95
numbers 93
variable-length data 93, 94
structures 27, 85

XSQLVAR structure 89, 100

allocating 87

arrays 156

BLOB data 122, 128
datatypes 92

defined 85

INTERBASE 6

fields 88
setting up select-list items

API GUIDE

103

Xi

Xii INTERBASE 6

	Table of Contents
	List of Tables
	Using the API Guide
	Who should use this guide
	Topics covered in this guide
	Sample database and applications

	Application Requirements
	Requirements for all applications
	Including ibase.h
	Database requirements
	Transaction requirements

	Additional requirements
	Microsoft Windows requirements
	DSQL requirements
	Blob requirements
	Array requirements
	Event requirements
	Error-handling requirements
	Services requirements

	Compiling and linking

	Programming with the�InterBase�API
	Basic procedure for application development
	Supported development environments
	User name and password requirements
	Specifying user name and password
	Using environment variables
	Setting a default database directory
	Setting a user name and password

	Datatypes
	Calling conventions
	Building applications
	Compilers
	Linking
	Include files
	Using Microsoft C++
	Using Borland C/C++
	Setting up the Integrated Development Environment (IDE)
	The module definition file
	Using dynamic link libraries (DLLs)
	Example programs

	Working with Databases
	Connecting to databases
	Creating database handles
	Creating and populating a DPB
	Adding parameters to a DPB
	Attaching to a database

	Requesting information about an attachment
	Requesting buffer items and result buffer values
	isc_database_info() call example

	Disconnecting from databases
	Deleting a database

	Working with Transactions
	Starting transactions
	Creating transaction handles
	Creating a transaction parameter buffer
	Calling isc_start_transaction()
	Calling isc_start_multiple()

	Ending transactions
	Using isc_commit_transaction()
	Using isc_prepare_transaction2()
	Using isc_rollback_transaction()

	Working with Dynamic SQL
	Overview of the DSQL programming process
	DSQL API limitations
	Accessing databases
	Handling transactions
	Creating a database
	Processing Blob data
	Processing array data

	Writing an API application to process SQL statements
	Determining if API calls can process an SQL statement
	Representing an SQL statement as a character string
	Specifying parameters in SQL statement strings

	Understanding the XSQLDA
	XSQLDA field descriptions
	Input descriptors
	Output descriptors
	Using the XSQLDA_LENGTH macro
	SQL datatype macro constants
	Handling varying string datatypes
	Handling NUMERIC and DECIMAL datatypes
	Coercing datatypes
	Aligning numerical data

	DSQL programming methods
	Method 1: Non-query statements without parameters
	Method 2: Non-query statements with parameters
	Method 3: Query statements without parameters
	Method 4: Query statements with parameters

	Determining an unknown statement type at runtime

	Working with Blob Data
	What is a Blob?
	How are Blob data stored?
	Blob subtypes
	Blob database storage

	Blob data operations
	Reading data from a Blob
	Writing data to a Blob
	Deleting a Blob

	Requesting information about an open Blob
	Item-list buffer items and result buffer values
	isc_blob_info() call example

	Blob descriptors
	Populating a Blob descriptor
	Filtering Blob data
	Using your own filters
	Declaring an external Blob filter to the database
	Writing an external Blob filter
	Writing an application that requests filtering

	Working with Array Data
	Introduction to arrays
	Array database storage
	Array descriptors
	Populating an array descriptor

	Accessing array data
	Reading data from an array
	Writing data to an array
	Deleting an array

	Working with Conversions
	Converting date and times from InterBase to C format
	Converting dates from C to InterBase format
	Reversing byte order of numbers with isc_vax_integer()

	Handling Error Conditions
	Setting up an error status vector
	Using information in the status vector
	Checking the status vector for errors
	Displaying InterBase error messages
	Capturing InterBase error messages
	Setting an SQLCODE value on error
	Displaying SQL error messages
	Capturing SQL error messages
	Parsing the status vector

	Working with Events
	Understanding the event mechanism
	Event parameter buffers
	Synchronous event notification
	Asynchronous event notification
	Transaction control of events

	Creating EPBs with isc_event_block(�)
	Waiting on events with isc_wait_for_event()
	Continuous processing with isc_que_events()
	Creating an AST
	A complete isc_que_events() example

	Determining which events occurred with isc_event_counts()
	Canceling interest in asynchronous events with isc_cancel_events()

	Working with Services
	Overview of the Services API
	General information
	Using services parameter buffers
	Attaching to the Services Manager with isc_service_attach(�)
	Detaching from a Services Manager with isc_service_detach(�)

	Invoking service tasks with isc_service_start(�)
	Using request buffers
	Overview of task identifiers
	Backing up and restoring databases
	Setting database properties
	Invoking database maintenance
	Requesting database and server status reports
	Configuring users
	Administering software activation certificates

	Querying the Services Manager
	Blocking and specifying timeout
	Services API query example
	Using result buffers
	Querying server configuration
	Querying security configuration
	Querying service tasks

	Using the Services API with Delphi and C++Builder

	API Function Reference
	Function categories
	Array functions
	Blob functions
	Database functions
	Conversion functions
	DSQL functions
	Error-handling functions
	Event functions
	Information functions
	Security functions
	Services functions
	Transaction control functions

	Using function definitions
	isc_add_user(�)
	isc_array_get_slice()
	isc_array_lookup_bounds()
	isc_array_lookup_desc()
	isc_array_put_slice()
	isc_array_set_desc()
	isc_attach_database()
	isc_blob_default_desc()
	isc_blob_gen_bpb()
	isc_blob_info()
	isc_blob_lookup_desc()
	isc_blob_set_desc()
	isc_cancel_blob()
	isc_cancel_events()
	isc_close_blob()
	isc_commit_retaining()
	isc_commit_transaction()
	isc_create_blob2()
	isc_create_database(�)
	isc_database_info(�)
	isc_decode_sql_date()
	isc_decode_sql_time()
	isc_decode_timestamp()
	isc_delete_user(�)
	isc_detach_database()
	isc_drop_database()
	isc_dsql_allocate_statement()
	isc_dsql_alloc_statement2()
	isc_dsql_describe()
	isc_dsql_describe_bind()
	isc_dsql_execute()
	isc_dsql_execute2()
	isc_dsql_execute_immediate()
	isc_dsql_exec_immed2()
	isc_dsql_fetch()
	isc_dsql_free_statement()
	isc_dsql_prepare()
	isc_dsql_set_cursor_name()
	isc_dsql_sql_info()
	isc_encode_sql_date()
	isc_encode_sql_time()
	isc_encode_timestamp()
	isc_event_block()
	isc_event_counts()
	isc_expand_dpb(�)
	isc_get_segment(�)
	isc_interprete()
	isc_modify_user(�)
	isc_open_blob2()
	isc_prepare_transaction()
	isc_prepare_transaction2()
	isc_print_sqlerror()
	isc_print_status()
	isc_put_segment()
	isc_que_events()
	isc_rollback_retaining(�)
	isc_rollback_transaction()
	isc_service_attach(�)
	isc_service_detach(�)
	isc_service_query(�)
	isc_service_start(�)
	isc_sqlcode(�)
	isc_sql_interprete(�)
	isc_start_multiple()
	isc_start_transaction()
	isc_transaction_info()
	isc_vax_integer()
	isc_version()
	isc_wait_for_event(�)

	InterBase Document Conventions
	The InterBase documentation set
	Printing conventions
	Syntax conventions

	Data Structures
	Array descriptor
	Datatypes for array descriptors
	Blob descriptor
	Character sets
	Blob information buffers
	Blob buffer items
	Blob parameter buffer

	Database information request buffer and result buffer
	Request buffer
	Result buffer
	Request buffer items and result buffer values

	SQL datatype macro constants
	Status vector
	Meaning of the first long in a cluster
	Transaction parameter buffer
	XSQLDA and XSQLVAR
	XSQLDA field descriptions
	XSQLVAR field descriptions

	Index

