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Introduction

● Big demand from users to speed up most time 
consuming regular maintenance operations:
● Backup
● Restore
● Sweep

● Initial implementation based on Firebird 2.5 Classic
● Firebird 2.5 Super Server is not suitable

● Front ported to the v3 codebase
● Including Super Server, of course

● Available in HQbird 2020 (for Firebird 2.5 and 3.0)
● Will be included into Firebird 4+
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Introduction

● The good parallel implementation should, at least
● Evenly distribute workload between workers
● Avoid or minimize possible contentions for shared 

resources (disk, memory, internal locking)
● Minimize necessary coordination between workers and 

task manager
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Sweep

● How sweep works
● Read each table in database
● Cleanup unneeded record versions 
● Move OIT marker on success
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Sweep

● What can be run in parallel ?
● Each parallel worker could handle (read and cleanup) 

separate table
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Sweep

● What if there is few big tables and many small tables ?
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Table 2Worker 2
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time



Berlin 2019 Berlin 2019     Firebird 4    Firebird 48

Sweep

● What if there is few big tables and many small tables ?
● Big table could be handled by few parallel workers

Table 1

Table 2Worker 2
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Table 4
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Table 6
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Sweep

● How to divide big table between few workers to minimize 
contention and coordination ?
● Every worker could handle one data page and then ask 

for a next (not handled) one
– Almost fair distribution of workload
– No contention for the same data pages
– Some contention for the same pointer page
– Coordinate with manager very often
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Sweep

● How to divide big table between few workers to minimize 
contention and coordination ?
● Every worker could handle few data pages and then ask 

for a next (not handled) few pages
– How much ?
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Sweep

● How to divide big table between few workers to minimize 
contention and coordination ?
● Every worker handle data pages from the same pointer 

page and then ask for a next (not handled) pointer page
– Workload distribution still fair enough
– No contention for the same data pages
– No contention for the same pointer page
– Coordinate with manager not too often
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Sweep

● Implementation details
● Single attachment can’t be handled by concurrent threads 

simultaneously
● Every worker have its own private attachment and 

transaction
● Internal pool of worker attachments

– Per database and per server process
– Limited by value of new configuration setting

MaxParallelWorkers
– Created automatically when required
– Works in the same server process
– Closed automatically when last connection to the database 

is gone
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Sweep

● Usage
● gfix -sweep -parallel 4 <database>

– Run sweep using 4 parallel attachments
● 1 user attachment and 3 additional worker attachments

● New DPB tag 
isc_dpb_parallel_workers
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Sweep

● Usage
● Auto-sweep also could run in parallel mode

– New configuration setting ParallelWorkers
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Sweep

● Test results
● Big database

Test environment 1

Firebird version 2.5.9 HQBird

OS CentOS 6.7

Server ProLiant DL380 Gen9

CPU 2 x Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz

Cores per socket 8

Logical CPU’s 32

RAM 96 GB

HDD 4xHDD SAS 15k RAID 10

Database 510 GB
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Sweep

● Test results
● Big database
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Backup

● How backup works
● Read system tables and store user metadata in backup 

file
● Read user tables and store records in backup file
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Backup

● What can be run in parallel ?
● Parallel workers could read database independently, but 

backup file should be written in correct order
– Serialize workers when backup file is written

Read

ReadWorker 2

Worker 1

Read

Read

Worker 3

Worker 4

Read

Read

Read

Read

Write

Sync

time
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Backup

● What can be run in parallel ?
● Parallel workers could read database independently, but 

backup file should be written in correct order
– Move all write activity into another dedicated thread

Read

ReadReader 2

Reader 1

Read

Read

Reader 3

Reader 4

Read

Read

Read

Read

Writer Sync Sync

Write

Sync

time



Berlin 2019 Berlin 2019     Firebird 4    Firebird 420

Backup

● What can be run in parallel ?
● Read and store metadata

– Could be done but
● It will significantly complicate code
● Amount of metadata usually much less than size of user data
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Backup

● What can be run in parallel ?
● Read and store user data

– Handle different tables by parallel workers
● Backup file will contain mix of records from different tables
● Requires change in backup file structure to allow restore to 

handle such file
● “Big table” problem as in sweep case
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Backup

● What can be run in parallel ?
● Read and store user data

– Parallel workers should handle different parts of the same 
table

– Requires a way to split table by parts
● Ideally parts of the equal size
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Backup

● How to split table for few parallel workers ?
● Use ranges of primary\unique key values

– Not every table could have primary\unique key
– Unknown in advance whole range of key values
– Uneven distribution of key values
– How to make ranges for character keys ?
– How to make ranges for composite (multi-segment) keys ?
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Backup

● How to split table by few parallel workers ?
● Use ranges of data pages

– gbak works “outside” of the engine, it can’t address data 
pages directly

● Use ranges of RDB$DB_KEY values
– Engine supports equality comparison only for 

RDB$DB_KEY
– Application (gbak) have no idea what data page is 

addressed by given RDB$DB_KEY value
– Need some support from the engine side
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Backup

● Use ranges of RDB$DB_KEY values
● New built-in function MAKE_DBKEY

– MAKE_DBKEY(relation_id, recnum)
● Returns dbkey for record recnum

– MAKE_DBKEY(relation_id, recnum, dpnum)
● Returns dbkey for recnum at data page dpnum

– MAKE_DBKEY(relation_id, recnum, dpnum, ppnum)
● Returns dbkey for recnum at data page dpnum at pointer 

page ppnum
● Engine now supports all kind of comparisons with 

RDB$DB_KEY (<, <=, >, >=, =, !=)
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Backup

● How to split table for few parallel workers ?
● Every worker handle records from the data pages from 

the same pointer page and then ask for a next (not 
handled) pointer page

SELECT * FROM TABLE
 WHERE RDB$DB_KEY >= MAKE_DBKEY(:relId, 0, 0, :ppNum)
   AND RDB$DB_KEY  < MAKE_DBKEY(:relId, 0, 0, :ppNum + 1)
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Backup

● Backup consistency
● gbak uses snapshot transaction to read user data in 

consistent way
● Every worker uses own attachment and transaction
● All worker attachments should read the same data 

despite of other activity in database
● Need shared database snapshot
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Backup

● Shared database snapshot
● First introduced in Firebird 4 beta

– Based on new database snapshots architecture using 
commits order 

● Re-implemented for Firebird 2.5 and Firebird 3 specially 
to support parallel backup

● Follows the same interface as of Firebird 4



Berlin 2019 Berlin 2019     Firebird 4    Firebird 429

Backup

● Usage
● gbak -b -parallel 4 <database> <backup>
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Backup

● Test results
● Big database
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Backup

● Test results
● Medium database

Test environment 2

Firebird version 2.5.9 HQBird, 3.0.5 HQBird

OS CentOS 6.7

Server ProLiant DL380 Gen9

CPU 2 x Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz

Cores per socket 6

Logical CPU’s 24

RAM 32 GB

HDD 4xHDD SAS 10k RAID 10

Database 42 GB
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Backup

● Test results
● Medium database
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Restore

● How restore works
● Create new database
● Read metadata and populate system tables
● Read data and populate user tables
● Activate (build) indices
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Restore

● What can be run in parallel ?
● Create new database

– no 
● Read metadata and populate system tables

– not practical
● Read data and populate user tables

– yes
– probably, requires changes in backup format
– not now, sorry

● Activate (build) indices
– yes, exactly
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Restore

● How indices are build at restore
● Index metadata is created with table metadata

– Indices are created with DEFERRED_ACTIVE flag
● Indices are activated (build) after all user data is 

committed
● Index is actually build at transaction commit
● Every index is activated in separate transaction
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Index build

● Index build steps
● Read table data

– Remove unneeded record versions (garbage collect)
– Put index keys into the sorter

● Build index b-tree using already sorted data
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Index build

● What can be run in parallel ?
● Read table and sort index keys

– Yes
● Build index B-tree

– Non-trivial task: prefix compression of index keys
– Not now, maybe later
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Index build

● What can be run in parallel ?
● Read table and sort data
● Every worker handle records of data pages from the 

same pointer page and then ask for a next (not handled) 
pointer page

● Every worker have its own attachment, transaction and 
sorter

● On the “B-tree build” step data from all sorters are 
merged into common sorted stream
● By single thread
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Index build

● What can be run in parallel ?

Read and sort

Read and sortWorker 2

Worker 1

Read and sort

Read and sort

Worker 3

Worker 4

Read and sort

Read and sort

Read and sort

Read and sort

time

Build B-tree
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Restore

● Restore with parallel index build

Worker 2

Worker 1

Worker 3

Worker 4

time

gbak: opened file … .fbk
gbak: created database ...
gbak: restoring ...
gbak: committing metadata

gbak: restoring index …
gbak: restoring data for table …
gbak: committing metadata

gbak: activating and creating deferred index …
gbak: activating and creating deferred index …

gbak: finishing, closing, and going home
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Restore

● What can be improved next ?
● Parallel load of user data into database

– Backup file format could be changed
● Create few indices simultaneously at one table scan

– Temporary space usage could be significantly increased
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Restore

● Usage
● gbak -c -parallel 4 <backup> <database>
● Any application

– DPB tag isc_dpb_parallel_workers 
● instruct engine how many parallel workers could be 

used for some tasks
● currently index creation and auto-sweep supports such 

parallel handling
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Index build

● Usage
● Regular CREATE INDEX and ALTER INDEX ACTIVE 

statements also could build index with parallel workers
– Configuration setting ParallelWorkers
– DPB tag isc_dpb_parallel_workers 



Berlin 2019 Berlin 2019     Firebird 4    Firebird 444

Restore

● Test results
● Big database

1 2 4 8 16 24 32 48 64
0

100

200

300

400

500

600

700

579

492

393
356 343

381 366 372 372

Restore time, Firebird 2.5 SC

Workers

T
im

e
, m

in



Berlin 2019 Berlin 2019     Firebird 4    Firebird 445

Restore

● Test results
● Medium database
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Restore

● Test results
● Medium database
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Restore

● Test results
● Medium database
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All together

● Firebird now could run tasks using multiply 
workers/threads

● Some tasks used parallelism built into engine
● Sweep
● Index build, gbak -restore

● Some tasks used parallelism “outside” of the engine
● gbak -backup

● This list will be enhanced
● Validation, Statistics
● Query execution
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All together

● firebird.conf, per database settings
● MaxParallelWorkers

– Set maximum number of parallel workers per Firebird 
process

● ParallelWorkers

– Set default number of parallel workers used to run some 
task

● DPB tag
● isc_dpb_parallel_workers

– Set number of parallel workers used to run some task by 
current attachment (overrides ParallelWorkers setting)



Questions ?Questions ?

Firebird official web site

Firebird tracker

THANK YOU FOR ATTENTIONTHANK YOU FOR ATTENTION

hvlad@users.sf.net

http://www.firebirdsql.org/
http://tracker.firebirdsql.org/
mailto:hvlad@users.sf.net?subject=6th%20Firebird%20Developers%20Day
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