
Firebird Conference 2012, Luxembourg 1

Optimizer:Optimizer:
Issues and SolutionsIssues and Solutions

Dmitry Yemanov
mailto:dimitr@firebirdsql.org

Firebird Project
http://www.firebirdsql.org/

mailto:dimitr@firebirdsql.org
http://www.firebirdsql.org/

Firebird Conference 2012, Luxembourg 2

HistoryHistory

 Legacy optimizer

● Cost-based calculations for inner joins
● Heuristics for everything else
● Totally wrong for partial matches and non-equality

comparisons
● Ineffective for complex joins
● Often unable to use an index in sub-queries

Firebird Conference 2012, Luxembourg 3

Optimizer “v2”: Firebird 2 and ODS 11Optimizer “v2”: Firebird 2 and ODS 11

 New statistics

● Per-segment index selectivity

 New features

● Exact cardinality calculation for small tables
● Actual selectivity depends on the predicate
● Brand new cost calculation for retrievals
● More efficient cost calculation for chained joins
● Predicate “pushing” for aggregates, unions and

derived tables

Firebird Conference 2012, Luxembourg 4

Remaining issuesRemaining issues

 Insufficient statistics

● For big tables, cardinality is estimated based on
data page count and record compression ratio

● Index tree depth and index key compression ratio
are hardcoded

● No difference between selectivities for NULLs and
non-NULLs

● Uniform value distribution is supposed
● Selectivities for non-indexed columns are lacking

Firebird Conference 2012, Luxembourg 5

Remaining issuesRemaining issues

 Procedures, aggregates and unions in joins

● Lack of cost estimations
● Predefined join order
● Problems with correlated procedures
● Other complex derived tables and CTEs

can be also affected

Firebird Conference 2012, Luxembourg 6

Remaining issuesRemaining issues

 Example 1

select e.emp_no, e.salary
from employee e
join (select first 10
 ex.dept_no, sum(ex.salary)
 from employee ex
 group by 1
 order by 1 desc) ea
 on e.dept_no = ea.dept_no

 Example 2

select *
from table1 t1
 cross join proc1(t1.id)

Firebird Conference 2012, Luxembourg 7

Remaining issuesRemaining issues

 Chained joins

● Hard to estimate the cost properly
● “Hints” could be used to vary the join order
● No cost based choice between nested loop join

and merge join

Firebird Conference 2012, Luxembourg 8

Remaining issuesRemaining issues

 Example

select *
from customer, orders, lineitem,
 supplier, nation, region
where
 c_custkey = o_custkey
 and l_orderkey = o_orderkey
 and l_suppkey = s_suppkey
 and c_nationkey = s_nationkey
 and s_nationkey = n_nationkey
 and n_regionkey = r_regionkey
 and r_name = 'ASIA'
 and o_orderdate >= date '1994-01-01'
 and o_orderdate < date '1995-01-01'

Firebird Conference 2012, Luxembourg 9

Remaining issuesRemaining issues

 Outer joins

● No cost estimations at all
● Single execution path: nested loop join

 Example

select *
from employee e
left join department d
 on e.dept_no = some_func(d.dept_no)

Firebird Conference 2012, Luxembourg 10

Remaining issuesRemaining issues

 Sub-queries

● Uncorrelated (invariant)
● Non-indexed correlations
● Implicitly correlated

 IN predicate

● The correlation is injected by the engine
● Consider IN vs EXISTS
● NOT IN <> NOT EXISTS !!!

Firebird Conference 2012, Luxembourg 11

Remaining issuesRemaining issues

 Example 1

select e.emp_no, e.salary
from employee e
left join (select avg(ex.salary) avgval
 from employee ex) ea
 on e.salary > ea.avgval

 Example 2

select *
from employee e
where e.dept in
 (select d.dept_id
 from departments d
 where d.flag = 'X')

Firebird Conference 2012, Luxembourg 12

Remaining issuesRemaining issues

 Performance of sorting

● Sort record: sort key, dbkey, txn id, other fields
● Favoring sequential reads over random reads
● Fixed size, hence unpacked fields
● Sorting levels: internal buffer → temp cache → disk
● Wider record means more I/O in the temp space

Firebird Conference 2012, Luxembourg 13

Remaining issuesRemaining issues

 Slow example

select t1.int_field, t1.varchar300_field
from table1 t1
order by t1.int_field

 Fast example

select t1.int_field, t2.varchar300_field
from (select t1.int_field, t1.id
 from table1 t1
 order by t1.int_field) t1
join table1 t2 on t1.id+0 = t2.id

Firebird Conference 2012, Luxembourg 14

Optimizer “v3”: Firebird 3 and ODS 12Optimizer “v3”: Firebird 3 and ODS 12

 New statistics

● Table: number of pages, number of rows
● Index: depth, number of leaf pages,

number of nodes, clustering factor
● Column: number of NULLs,

selectivity for non-NULL values
● Value distribution histograms
● Complete or sampled

Firebird Conference 2012, Luxembourg 15

Optimizer “v3”: Firebird 3 and ODS 12Optimizer “v3”: Firebird 3 and ODS 12

 Alternative approach to external sorting

● Read and process only sort keys and dbkeys
● While fetching, read the rows again via dbkey
● Take the necessary fields from there
● Consider the extra costs
● Decide based on the available statistics

Firebird Conference 2012, Luxembourg 16

Optimizer “v3”: Firebird 3 and ODS 12Optimizer “v3”: Firebird 3 and ODS 12

 Materialized sub-queries

● Underlying stream is sequentially read and cached
inside a record buffer

● Both sequential and random access are supported
● Storage is provided by the temporary space

manager and is dynamically balanced between
memory and disk

● CPU vs storage I/O

Firebird Conference 2012, Luxembourg 17

Optimizer “v3”: Firebird 3 and ODS 12Optimizer “v3”: Firebird 3 and ODS 12

 Hash joins

● Larger input stream becomes an outer one,
smaller input stream becomes an inner one

● Inner stream is read in advance row by row, hash
value is calculated for the join keys, row is stored in
the buffer corresponding to the given hash group

● Outer stream is read sequentially, hash value is
calculated for the join keys and probed against the
hash table

● For a positive match, collisions are compared by
the binary comparison of the join keys

Firebird Conference 2012, Luxembourg 18

Optimizer “v3”: Firebird 3 and ODS 12Optimizer “v3”: Firebird 3 and ODS 12

 Hash aggregation

● Every distinct grouping key has a corresponding
entry in the hash table

● Every aggregate function has its counter there
● Backing sort is not needed
● Efficient for non-selective grouping keys
● Not much suitable for the FIRST <n> clause

Firebird Conference 2012, Luxembourg 19

Optimizer “v3”: Firebird 3 and ODS 12Optimizer “v3”: Firebird 3 and ODS 12

 Optimizer hints

● OPTIMIZE FOR { ALL | FIRST } ROWS
● ORDER plan is preferred over SORT as much a

possible, including inverted join orders
● Nested loop joins are preferred to hash joins and

especially merge joins
● SORT plan is executed using the

“sort faster, fetch slower” approach
● Other optimizations are possible

Firebird Conference 2012, Luxembourg 20

Optimizer “v3”: Firebird 3 and ODS 12Optimizer “v3”: Firebird 3 and ODS 12

 Optimizer improvements

● Estimate cardinality and cost through
the whole data access path

● Choose between nested loop joins and hash/merge
joins based on cost

● Materialize invariant sub-queries and
non-indexed slave streams

● Consider hash/merge joins for outer joins
● Detect constant “always true” or “always false”

predicates and skip unnecessary retrievals

Firebird Conference 2012, Luxembourg 21

Questions?Questions?

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21

