

Firebird and Security

Pavel Císař
IBPhoenix

Firebird Conference, Hamburg 2007

Security problem domains

● Secure access to server and database

● Data security at database level

● Server exploits

Basic concepts
● All security is based on user identity
● Identity is represented by (login) name
● Identity is server-wide
● Identity is a gateway into system
● Identities may have various rights granted or

revoked for operations in system
 Only some operations are reserved for super user
 Only some existing database objects are protected

● Security stands and fall with identification and
login procedure

Secure access to server and
database

● InterBase was designed for work on secure systems
with trust relationships.

● Users and user groups are defined at OS level,
database server uses these OS identities.

● This concept is still present in Firebird, but it was
available only on Linux/UNIX. Starting from v2.1 it’s
also available on Windows (but with differences) and
it was disabled for POSIX in v1.5.3.

● Security database (isc4.gdb) was added when version
4 was ported to Windows as weak replacement for
weak (or absent) built-in OS security.

Physical access to database
and server files

● Server must have read/write access to all
database files.

● Server must have read access to all his files,
along with executable rights for executables,
and write access to some files (lock file etc.)

● User or any other user-space program do not
need (and should not have) the physical
access to these files at all.

● Using Embedded Firebird makes things more
complicated.

Physical access to database
and server files II.

● Server should always run under it‘s own OS
identity separate from user‘s identity in OS.

● Never run the Firebird server under
identities with administrative OS rights.

● Security problems:
 Windows 95/98/ME and NT/2000/XP in

application mode
 Embedded server or local connection method used

with Classic server (Linux/UNIX).
 GSTAT needs physical access to database files.

User identity
● User identity could be taken from OS

 Client node must be defined as trusted host in
/etc/host.equiv or /etc/gds_host.equiv on POSIX

 Firebird login name and password must not be
provided

 Users with root privileges will get SYSDBA rights
 This method does not use security database

● User identity is verified against security2.fdb
● Never mix both methods to access databases

Security database
● In main server installation directory

 isc4.gdb for Firebird 1.0
 security.fdb for Firebird 1.5
 security2.fdb for Firebird 2.0

● Tables owned by SYSDBA
 USERS (RDB$USERS in 2.0): many fields, but only next are

important:
● USER_NAME(128): login name, only first 31 characters are

significant
● PASSWD(32/64): password, encoded, only first 8 characters are

significant
● FIRST_NAME, MIDDLE_NAME, LAST_NAME: user‘s real name

Super User

● SYSDBA identity
or anyone with root/admin privileges

● Always have all rights to everything

Other users
● It‘s possible to define any number of

additional users with unique identities
● Any known user can attach to any database

at server
● Only super user can define new users
● Users can‘t change their security information

User groups and roles

● Two similar but distinct variants for
assigning rights to users by membership in
group:
 OS user groups
 SQL roles

User groups
● Available only for user identities taken from

POSIX OS
● Rights assigned to user are inclusive with rights

assigned to all groups where user is a member
● Group membership is managed by OS tools

SQL Roles
● Defined for database with CREATE ROLE

name SQL statement
● Role is not an user group (user is not a

member, but has rights to use a role)
● User can specify one role on database login
● User and role names must be different

Database level security I.
● Rights are based on „ownership“
● Object‘s owner and super user can grant rights on given object

to other users, roles, views, procedures and triggers, including
right to grant these rights to others

● Only existing databases, roles, user tables, user views and user
stored procedures and triggers are protected, all other
database objects are free targets (including metadata)

● Anyone can create new database objects of any type
● User identity is applied on views, procedures and triggers

work. These objects can also have their own privileges to other
objects.

Database level security II.
● Table/view privileges:

 Select
 Update (can specify columns)
 Delete
 Insert
 References (can specify columns)
 All (shortcut for all above)

● Stored procedure privileges:
 Execute

● Role privileges:
 Use role (role itself is a privilege to use it)

Database level security III.

Rights are managed by GRANT and REVOKE
SQL statements. Because they are well
known and documented, I‘ll concentrate only
on special, not so well known and documented
facts about these statements

Facts about GRANT statement
● Granted privileges are stored in

RDB$USER_PRIVILEGES system table
● Privileges are internally identified by distinct

combination of:
 User name
 Privilege name (SELECT, UPDATE, INSERT, DELETE,

REFERENCES, EXECUTE)
 Table/View/Procedure name
 Column name (could be empty)

● GRANTing UPDATE and REFERENCES privileges with
and without columns are two distinct privileges stored
separately, and may result in unwanted side effects

Privileges on Views
● To create a View, user needs the SELECT privilege

on selected tables. This privilege could be revoked
after view is created

● To use a View, user needs appropriate privileges on
View, and also User, View‘s owner or View itself must
have appropriate privileges on base tables

● When View‘s owner is not SYSDBA, he/she must
possess privileges to base tables with GRANT
OPTION to grant privileges on View to other users

● Views could be used to restrict user‘s access to base
tables beyond limits of standard privileges

Facts about REVOKE
statement

● REVOKE will never tell you what he really performed
● Only user who granted the privilege or super user

can revoke it
● REVOKE executed by user only revoke privileges

granted by this user. The same privileges granted by
other user will remain in effect

● REVOKE executed by SYSDBA revoke all specified
privileges regardless who granted them

● Privileges granted to PUBLIC could be revoked only
from PUBLIC, not individual users

Building Secure System

If it‘s ever possible...

Basic server and db security I.
● Use Firebird 2.x
● Forbid physical access to database

 Someone can steal or damage it
 Do not allow even the read access
 Shadow files are database as well

● Hide the database location
 Unknown databases cannot be used in attack
 Server-side database aliases
 Encrypted in client software

● Restrict database location(s)

Basic server and db security
II.

● Forbid any access to your backup files
 Most easy route to have your data stolen

● Forbid any access to server software files
 Someone may replace your system with Trojan

horse, damage it or change your configuration
 No one should have right to change executable or

configuration files (including Firebird itself)
except entrusted administrators

Basic server and db security
III.

● Use separate OS identity to run the server
 Never use any identity with administrative

privileges
● Set only necessary system rights to server‘s

identity
 Damaged or compromised server may cause more

damage to other systems as well

Server and db access security
I.

● Let in only authorized users
 You can‘t stop malicious users once they are in
 Do not mix trusted and security db authentication

methods
● Protect your SYSDBA account

 As well known and powerful account, it‘s a natural
target for attacks

 (At least) change your SYSDBA password
 You can block SYSDBA account at database level

with SYSDBA role

Blocking SYSDBA account for
a database with SYSDBA role

● You can‘t create SYSDBA role with CREATE ROLE statement,
so you need to work with system tables directly

● First, create new user account that would grant you access to
remove the SYSDBA role (for example LOCKSMITH)

● Execute next commands:
INSERT INTO RDB$ROLES
(RDB$ROLE_NAME, RDB$OWNER_NAME)
VALUES (‘SYSDBA’, ‘LOCKSMITH’);
COMMIT;

● Now you can‘t attach to this database as SYSDBA
● To restore SYSDBA access, log in as LOCKSMITH and

execute:
DROP ROLE SYSDBA;

Server and db access security
II.

● Secure user accounts
 If possible, use only internal user accounts known

only to your applications (Firebird‘s password
protection is still weak, so anyone can use brute-
force to get in with knowledge of user name).

 Use Trusted Authentication

Server and db access security
III.

● Secure your network
 Allow network access only from trusted nodes
 Change the TCP/IP port number for

communication between clients and server if your
network is open to Internet

 Use encryption at network level for
communication over insecure network (paper
about how to use the open source ZeBeDe product
is on Firebird Project or IBPhoenix sites)

Last defence at database level
I.

● Whenever possible, tighten up user privileges
to individual database objects

● Never give your users any privilege to grant
their privileges or roles to other users

● Protect system tables from direct access

Protecting system tables from
direct access

● It‘s not possible to revoke rights on system tables directly, you
must grant these right first:
 GRANT ALL ON <RDB_table_name> TO PUBLIC
 From this point onward, access to system table is controlled by

normal SQL rights instead internal defaults
● Now you can revoke any right from public with REVOKE

statement or grant it with GRANT
● Revocation of SELECT right from PUBLIC may cause troubles

with client applications
● This doesn't last the backup/restore, so you must renew your

settings after restore
● This only protects system tables from direct changes with DML

statements, but doesn't protect from regular changes with valid
DDL statements.

Last defence at database level
II.

● Restrict use of UDF‘s and external tables
 UDF‘s together with external tables are a mass-

destruction weapon that may be used by any
attached user to nuke your system

 Use OS rights or Firebird configuration options to
restrict locations for UDF‘s and external tables
only to controlled areas

 Restrict user‘s access to these storage areas
 Firebird should never posses privileges to access

user-controlled or system disk storage

That‘s all (for now)

http://www.ibphoenix.com
We have answers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

