
Writing External Functions
A General Guide

by Claudio Valderrama C. Copyright IBPhoenix Publications

There seems to be confusion regarding the engine capabilities and restrictions when writing
general purpose external functions, a.k.a. User Defined Functions (UDFs). This article tries to
show the possibilities available. Rather than provide a complex example function that handles
almost everything, I chose instead to take a pedantic approach with trivial examples.
Combining possibilities for real life requirements is left to the application developer.

Introduction
A user defined function is a routine written in a dynamic library or shared library,
depending on the platform. Of course, the routine must be visible to the process that loads
the library, in this case, the Firebird server. In the server's parlance, the library is
referred to as a module and the routine as an entry point.

1- Basic rules for writing UDFs
There are some basic rules for writing UDF's, that I will try to explain briefly. They
should be obvious in most cases.

Calling convention
For those who wondered but never dared to ask, a calling convention specifies

 whether parameters are pushed left-to-right in the stack, or vice versa

 whether the caller or the callee is responsible to reset the stack after the callee
returns

 the decoration rules (how the linker uses the function's signature to create the binary
name).

The basic requirement for the entry point that exposes a function is that it should adhere
to the so-called C calling convention that is supported by several compiled languages.

Writing External Functions—A General Guide Page 2 of 107

The C calling convention is just one set of rules; Pascal uses another convention and
Windows's stdcall is another convention again.

For C itself, there is nothing to do. For C++, the extern "C" directive should be used. For
Delphi, the function declaration should append cdecl and the function should be listed in
the exports section.

Thread safety
For Delphi, the main unit should set the global variable System.IsMultiThread to True, in
order to have a thread safe memory manager.

Globals
Do not use global variables. The engine may execute UDFs in parallel. You can use global
constants, of course.

Dynamic memory management
You can use your preferred allocation and deallocation method for dynamic memory.
However, this memory should be confined within the function, for its exclusive use
(allocated and deallocated by the UDF). Never pass to the engine a chunk of memory
created with a facility specific to the language—for example, C++'s new operator. The
ib_util file defines the ib_util_malloc function for that purpose and you should use it.
More about this when the FREE_IT keyword is explained.

SQL declaration syntax
When declaring external functions in your SQL DDL, there are two alternative syntaxes.
The first declares all the input parameters with their respective attributes, then proceeds
to declare the returned value with its respective attributes:

DECLARE EXTERNAL FUNCTION sql_name

[{ <datatype> | CSTRING (int) [CHARACTER SET charset_name]} [{BY DESCRIPTOR |

BY SCALAR_ARRAY | NULL}]] [, ...]

RETURNS { <datatype> | CSTRING (int) [CHARACTER SET charset_name]} [{BY VALUE

| BY DESCRIPTOR}] [FREE_IT]

ENTRY_POINT '<entryname>'

MODULE_NAME '<modulename>';

The second syntax declares all the input parameters with their respective attributes, then
proceeds to designate one of those parameters as an output parameter (by its position,
starting at one). It causes the engine to provide storage to the UDF, which only has to fill
it:

Writing External Functions—A General Guide Page 3 of 107

DECLARE EXTERNAL FUNCTION sql_name[{ <datatype> | CSTRING (int) [CHARACTER SET

charset_name]} [{BY DESCRIPTOR |

BY SCALAR_ARRAY | NULL}]] [, ...]

RETURNS PARAMETER int

ENTRY_POINT '<entryname>'

MODULE_NAME '<modulename>';

In practice, this allows up to 10 input parameters in the first syntax plus the returned
value and up to nine input parameters plus one output parameter in the second syntax.

Here, for simplicity, the [, ...] part means that more parameters can be declared, repeating
the same previous syntax. Unfortunately, the syntax is harder to describe than to use.
Most people do not realize all the possible combinations, and a few of them are invalid or
nonsense, anyway. Typically, people are used to passing input parameters by reference
and returning a result by value.

Character sets and collations
UDFs have no notion of collations. They do support character sets, although almost all
functions found in the distributed libraries assume ASCII and work with no notion of
character sets at all.

Data types
UDFs can receive and return data types native to the engine. For strings, they cab also
use a C-compatible, null terminated string named CSTRING.

Parameter-passing protocol
There are different protocols for providing information to the UDF about parameters. The
reserved word following the BY keyword in the declaration is the mechanism for defining
the protocols and will be explained soon.

You must assume that the input parameters cannot be modified, even if they are passed
BY VALUE, unless they are scalars like integers received BY VALUE. This is easily
expressed in C++ or Delphi, that can declare constant parameters. Do not use BY VALUE
in Delphi, however—see section 2.

2—Mechanisms
Now that we are set up with the most common rules for declaring UDFs and it is
established that the C calling convention should be used, we can examine the detail of
each part of the allowed syntaxes—the mechanism—the specification of how each
parameter is provided to the UDF.

Writing External Functions—A General Guide Page 4 of 107

Pascal people are accustomed to passing parameters by value and by reference. C
programmers are used to passing parameters by value and by pointer, since some types
(built-in arrays, for example) are passed always by pointer. C++ programmers can pass
parameters by value, by pointer and by reference. In C++, a reference can exist without
being a parameter, but this is beyond our scope.

The concept of mechanism in the engine is not too different, since the same keywords are
used, along with others that have proprietary origins. Let's examine them.

BY VALUE
As expected, this is a copy of the data inside the engine. If the UDF was going to change it
(not recommended, see section 1), there would not be any effect on the engine's internal
data. There would be small risk with scalar types, since their size is known beforehand.

However, if the UDF modifies a string parameter, it is writing in space allocated by the
engine, exactly to the input parameter. If the usage leads the UDF to overwrite the
original parameter with a longer string, typically disaster happens.

As a general rule, avoid modifying input params of types other than integers and floating
point values. Ten years ago, it was observed that this mechanism was unreliable for input
parameters, because it led to incompatible, non-portable code. For this to work always, the
engine would have to mimic the layout of parameters exactly as a specific compiler would
do and of course, the engine has no control on which compiler the application developer
will use.

BY VALUE was popular with GDML, the original, proprietary InterBase language, a
mixture of declarative and procedural language elements. Since compatibility problems
had been observed already in 1994, BY VALUE for input parameters was not allowed in
SQL DDL and is deprecated.

For example, in 16 bits, the Borland and the MS compilers offered different
representations of the float data type and now it is known that BY VALUE does not work
in 64 bits ports made recently. Reserve it for the return value (section 4).

Clearly, a value can not be null and null is not a value so, with parameters received or
returned by value, there is no way to signal "unknown value" or SQL NULL.

BY REFERENCE
This is the default mechanism for both input and output parameters and for the UDF's
result value in SQL DDL. As a curiosity, being the default, it cannot be declared explicitly.
In practice, it means by pointer. C programmers will feel at home with it.

Even though Pascal can use pointer parameters, it was required to use a "type" to define
the pointer based on the built-in or custom data type before using it for parameters,

Writing External Functions—A General Guide Page 5 of 107

making pointer-based parameter declaration in functions cumbersome. But the reference
is a hidden pointer, so declaring parameters by reference will do the trick for Delphi.

Do not use "const" in Delphi, since the compiler has the freedom to chose whether to pass
the constant parameter by value or by reference. C++ programmers can receive
parameters passed by reference from the engine exactly as C does, receiving pointers or
using native C++ references. Using either pointers to constant data or constant references
is recommended to avoid coding mistakes.

Although the passing of parameters by pointer may be seen as natural way to pair the
null pointer with SQL NULL, it was not done for unknown reasons. Simply put, although
this method could do so, it does not tell the developer when a parameter is SQL NULL:
the parameter will be zero for numeric values and the empty string for CHAR, VARCHAR
and CSTRING. Since there is no concept of zero DATE or zero TIMESTAMP, values
received in those cases may be surprising. The TIME type has the concept of zero, of
course.

BY DESCRIPTOR
This is a proprietary mechanism, known internally as VMS descriptor. To avoid name
clashes, ibase.h defines the descriptor with the name paramdsc and accompanies it with
some symbolic constants to explain the data types. In the parameter, the UDF will receive
a pointer to an internal structure known as descriptor, carrying information about the
data type, the subtype, the precision, the character set and collation, the scale, a pointer
to the data itself and some flags that may include SQL NULL signaling. Some of this
information overlaps, depending on the data type, since members of this structure are
reused for different purposes.

This is not a copy of the parameter but a pointer to the internal structure being used by
the engine. You must treat it as constant information always, unless it is the output
parameter! Unless treated carefully, it may be a dangerous practice. We will see later that
with this mechanism, the engine does not bother to check that the UDF's declared type for
the param is the same as the value that will be passed. Use it only if you know what
you're doing.

It was allowed since ancient times in GDML, but it never materialised in DDL in Borland
builds, perhaps to avoid tech support nightmares. It was included in DDL. starting with
Firebird 1.

The Firebird native UDF library named fbudf is an example of working with descriptors.
More information can be found at
http://www.cvalde.net/document/using_descriptors_with_udfs.htm and by reading the
source of the library, located in the extlib/fbudf directory inside Firebird CVS.

Writing External Functions—A General Guide Page 6 of 107

BY BLOB
This is another proprietary mechanism, known also as ISC descriptor and blob struct. It
cannot be declared explicitly since it is used automatically each time a parameter of type
BLOB is declared, unless the declaration includes BY DESCRIPTOR.

If the parameter was received in the internal descriptor (previous case), then the user
would have to invoke the API from inside the UDF to manipulate the blob. Then, a
compromise was found, a new structure (a wrapper) was developed that is used only to
communicate with the UDF. Until Firebird 1, when it was included in ibase.h with the
name blobcallback, it was only described in the documentation.

The engine opens the blob—or creates a blob if the parameter is declared as the output
parameter—and assigns some internal information to the wrapper's date members. It
sets the internal blob descriptor as the "handle" member in the wrapper. To its
procedural pointers it assigns the addresses of three call-safe routines, which will allow
reentrancy in the engine's code by handling the details transparently. These functions
allow the UDF to read a segment, to write a segment and, for stream blobs, to seek into
the blob.

It is important that the UDF does not mess with the handle member or disaster may
happen. It should be used only for passing to the call-safe functions that need a handle to
operate.

For unknown reasons, Borland decided that if the input blob was null, a blob with no
contents would be opened, but then it becomes impossible to distinguish between a blob
with zero length and a null parameter. If the function returns a blob, again the engine
provides the wrapper structure by creating a blob. If the UDF does not write in it, it will
have zero length, but there is no way to signal SQL NULL to the engine.

Starting Firebird 1.5, if the UDF makes the blob handle null UDF when there are no more
calls to the helper methods to get/set segments and seek, the engine will understand it
should behave as if the UDF returned SQL NULL instead of a meaningful blob.

The blob is only opened or created. It is up to the developer to read the segments or to put
information by writing segments. It is an efficient mechanism if only the basic information
about the blob is needed, since the wrapper will indicate the number of segments, the size
of the biggest segment and the total size of the blob for input blobs.

It should be noted that input blobs only can be read and the output blob only can be
written. Failure to observe the rule will cause the engine to stop the UDF execution.

Writing External Functions—A General Guide Page 7 of 107

BY SCALAR_ARRAY
This is a thoroughly native mechanism that makes sense only if the input will be an array
column. Unlike other types, you cannot return an array from the UDF. This is a
mechanism for input parameters only.

Firebird arrays
Although many people do not use them, the engine allows both simple and multi-
dimensional arrays to be defined, of almost any type allowed by the engine. It was allowed
in GDML but never in DDL, perhaps because it was considered irrelevant by Borland.
From Firebird 2, it is allowed in DDL.

Arrays are based on a special type of blob, known as streamed blob, as opposed to
segmented blobs, that are the ones that DDL can declare. If you want to create a blob of
type stream, you will have to use the API.

When an array is defined as part of a table's field set, the engine silently creates the
streamed blob. To put values into it, the application developer uses again the API, since
SQL and PSQL lack support to work with arrays, other than including individual
elements of an array in a query. Through the API, the array is described using SDL (Slice
Description Language) and the run-time internal structure is known as Internal Array
Descriptor (previously known as Array Description Slice or ADS).

Passing arrays to a UDF
Since you can declare up to an array of 16 dimensions with a big range (number of
elements) per dimension, you may cause the engine to use a lot of memory (since it loads
all the array at once). Therefore, you should use this feature only when you really need to
or, at least, use it knowing its effects.

To pass the values to the UDF, the engine retrieves the whole array in a single chunk in
memory and then loads it into a simpler structure, known as Scalar Array Descriptor. If
the type of the stored array does not match the type declared by the UDF, the engine
performs conversion on each element, converting and copying one value after another into
a new binary string. (If you are curious, peruse get_scalar_array() inside jrd/fun.epp).

For example, an array of integers would be converted on the fly to an array of strings if
the UDF wants to receive a scalar array of varchar. In the event that the array is SQL
NULL, the UDF will receive a zeroed structure—a term meaning that the structure is
overwritten with ASCII(0) as if it was a string with length equal to the size of the
structure. In practical terms, it implies that a scalar descriptor will have its member
named sad_desc (of type paramdsc) with its member named dsc_address set to zero.

Writing External Functions—A General Guide Page 8 of 107

BY REFERENCE WITH NULL SIGNALING
This mechanism was introduced in Firebird 2 to reap one benefit of the descriptor
mechanism without being involved with internal details of the engine and other problems
that come from the excess of flexibility allowed by passing parameters by descriptor.

Since REFERENCE (sing.) is not a keyword and introducing new reserved words always
comes with the risk of swamping some application developer, the decision was simply to
append NULL to the data type to signal that it can be NULL. Therefore, if a UDF
requests SQL NULL signaling for a parameter, it should be prepared to receive the null
pointer if the engine is handling NULL.

This new mechanism allows the information to be enhanced without changing the
behavior of the old BY REFERENCE mechanism, since it would crash almost any UDF
written before the change. Do not use neither Delphi references nor C++ references here:
they work on the assumption that a valid parameter has been provided, so they would
dereference it behind the scenes to be treated like a value. With a null pointer, the code
will cause disaster before the first line of code written by the developer inside the UDF:
the so-called null pointer exception invariably causes an AV in Windows, segmentation
fault in Unices, etc.

For example, when C++ declares a constant reference and the caller uses a constant of
another type, the compiler creates a temporary of the correct data type and copies the
original input in the temporary. Here, however, the UDF is code separated from the
engine; it cannot adapt the engine's code magically to its own needs.

3—Input Parameters
We have seen that input parameters are by default passed as pointers and that they can
be received as descriptors, too. Only arrays have to be passed by scalar array, otherwise
the user will have to deal with the internal storage format, in a fashion similar to the
function get_scalar_array() inside fun.epp in the FB source code. Now we will look at how
different types are handled.

Scalar types
For C, these are float, double, short, long and int64 and their equivalent in other
languages. We can add date and time (long integers). In 32 bit platforms, the engine maps
float and double to their native representations, short to SMALLINT, int and long to INT
and int64 to BIGINT or NUMERIC(18, 0).

These types are straightforward to deal with. If you are using a pointer, you should
dereference it to get the value. If you are using a parameter by reference in Pascal or C++,

Writing External Functions—A General Guide Page 9 of 107

you're done, unless you requested SQL NULL signaling, because you will need pointers to
detect null.

String types
The native string types are CHAR and VARCHAR.

 CHAR is represented by a pointer to char, without a length indicator and without a
null terminator. Therefore, handling it in UDFs is error-prone, as the developer has to
rely on the UDF declaration to hard-code the maximum length in the code. If the DDL
declaration falls out of sync with what the UDF code expects, disaster will happen.

 VARCHAR is represented by a pointer to char without null terminator, but prepended
by a length indicator. The exact layout is depicted in ibase.h with the paramvary
structure: when the UDF requests a VARCHAR parameter, a pointer to paramvary is
received.

After that, getting the value is simple: take the length from vary_length and from the
vary_string data member, you have "length" bytes to read. This length is expressed in
bytes, so it may be confusing for character sets that do not use one byte per character.

Do not try to map this type to the Pascal string type, since paramdsc uses
two bytes for the length, the original Pascal uses one byte and the new
Delphi string specification is an implementation detail.

Both CHAR and VARCHAR specify the maximum size of the field in the UDF declaration.
If the size is not provided, one is assumed. The vary_string member is of type UCHAR,
that maps to unsigned char in C/C++ and to byte in Pascal, where it may be cumbersome
to deal with.

 CSTRING

The C string type (a simple array of bytes without length indicator and with a null
terminator) has been used to pass string parameters by reference between different
systems. It is no surprise it was chosen as an alternative. CSTRING cannot occur outside
a UDF declaration: it is not a type accepted to declare domains, table columns or
procedure parameters: it is allowed only to declare UDF parameters and/or the result
value.

It seems more efficient because, unlike original Pascal strings, C strings are not copied
from caller to callee. However, the engine does not use this type internally, so it has to
convert a CHAR or VARCHAR to this representation in temporary storage.

CSTRING is thus simple to handle but not very efficient. For Pascal, a PChar declaration
does the trick and bytes are read until the null ASCII value (ASCII(0)) is found. The UDF
declaration has to specify a length for the parameter. This length, in turn, is the same as
strlen() would return: it does not count the null terminator.

Writing External Functions—A General Guide Page 10 of 107

Other types
 The timestamp type (ISC_TIMESTAMP in ibase.h) is a structure comprising a date

part and a time part. When receiving parameters by reference, a pointer to this
structure is passed.

 For blobs and arrays, the contents are not provided. For blobs, it is the wrapper
structure by default.

Since arrays are blobs, if a blob field receives an array it will be able to do nothing
useful with it, since it will be only an internal handle. For array parameters, the UDF
receives the scalar array descriptor, followed by the data that belongs to the full array
in all its dimensions.

 There are other declared internal types in Firebird, like packed, byte and quad that do
not map to SQL types.

4—Return value
The return value is declared when the first syntax to declare a function is used:

RETURNS { <datatype> | CSTRING (int) [CHARACTER SET charset_name]} [{BY VALUE

| BY DESCRIPTOR}] [FREE_IT]

In this context, the engine will call the UDF like a regular function:
return_value = udf(<argument_list>);

 The default is to return the value BY REFERENCE, and recall that it cannot be
specified explicitly. Returning by reference allows the UDF to signal SQL NULL by
returning a null pointer to the engine.

This explains why there is no explicit mechanism to return NULL, since it has worked
always the same. Input parameters, on the other hand, even when passed by
reference, did not signal NULL to the UDF.

 The second mechanism, BY VALUE, is easy to use for scalar types. It should be
obvious that there is no way to signal SQL NULL and that it cannot be used for string
data types.

 The third mechanism, introduced experimentally in Firebird 1, is the possibility to
return a descriptor (paramdsc) to provide a small degree of flexibility when handling
values of a type different but compatible with the type declared by the UDF.

For example, a UDF that returns INT by value may actually return the equivalent to
SMALLINT (short in C) with no harm, but a UDF that needs to signal NULL will
want to return by reference. Since the received pointer will always be treated as a

Writing External Functions—A General Guide Page 11 of 107

pointer to INT, dereferencing the pointer to another type as if it were a pointer to INT
is likely to cause a trashed result in the best case. Returning by descriptor allows you
to tell the engine that really a SMALLINT was returned, so it can retrieve the value
properly.

If the UDF does not want to build and return a string of a type native to the engine, it
can elect to return a CSTRING—the built-in string found in the C language—and the
engine will convert it to a native type.

 There is no way to return an array from a UDF.

FREE_IT
To express exactly the combinations of the syntax that are allowed, the DDL syntax would
have to be described in more cumbersome ways. Therefore, the previous syntax does not
reflect that fact that FREE_IT can only be used when the parameter is returned by
reference or by descriptor.

In Windows, at least, it is of paramount importance that both a library and the process
that loaded it see the same heap, otherwise the deallocation will be invalid and will cause
misfunction.

FREE_IT was invented by Borland as a way to allow the UDF to create the return value
dynamically, but obviously it should be deallocated somewhere. Since, by the time
deallocation is possible, it is no longer the UDF but the engine's code that is running,
FREE_IT tells the engine to free the memory.

A small utility function was created, named ib_util_malloc() that maps to C's malloc()
routine. When the UDF wants to create dynamically the memory that will be returned to
the engine, it should invoke ib_util_malloc instead of C++'s new operator or Pascal's
GetMem function and the returned parameter should be specified with the FREE_IT
attribute.

If the parameter is returned by reference, deallocating it with free() inside the
engine is straightforward. If the parameter is returned by descriptor, however, we
have two elements that were created dynamically: the descriptor and the data.
Firebird 1 only freed the data, making it useless for most needs. Firebird 2
deallocates both the descriptor and the data.

FREE_IT has been the subject of much discussion. Different people have stated that it
does not work and that the memory leak is inevitable. This is an urban legend. There is no
memory leak if the basic principles are followed, coupling ib_util_malloc with FREE_IT
and assuming the engine has been built properly.

Further, if you plan to use FREE_IT with descriptors in Firebird 2, remember you have to
use the same ib_util_malloc to allocate the descriptor itself.

Writing External Functions—A General Guide Page 12 of 107

5—Output parameter
The output parameter is declared when the second syntax to declare a function is used:

RETURNS PARAMETER int

In this context, the engine will call the UDF like a function with no return parameter,
known in C as function with void return type and in Pascal as a procedure:

udf(<argument_list>);

In this case, one parameter in the argument list has been designated the output
parameter. The position ranges from one to ten. This is the original way to return the
result from the UDF and it could have been used even with languages with no concept of
dynamic allocation, since the parameter is created by the engine.

It is important to restate that the UDF does not need to do anything to create the output
parameter. It gets created by the engine, with the rest of the arguments. If the UDF
declared that parameter as a descriptor, the descriptor is passed and its dsc_address
member will point to the allocated memory in accordance with the UDF declaration.

For example, if the declaration says that the UDF has 5 arguments and the third one is
the output parameter by descriptor, being type varchar(20), the third argument will be a
pointer to a paramdsc and the dsc_address member will point in turn to a paramvary
struct, whose vary_string member points to memory addressing sufficient to contain 20
characters—more than 20 bytes if a MBCS charset was specified.

If the declaration says that the last argument is the output parameter and it is of type
cstring(50), then the UDF will receive a pointer to a character (the starting address of the
C string) with enough size for 50 characters plus the null terminator. After analyzing the
output parameter, the engine may deallocate it when necessary, in the same way it treats
the input parameters.

FREE_IT v/s PARAMETER n.
Since the original syntax seems to be easier, one has to wonder why Borland needed to
invent a modifier to the existing mechanism, known as FREE_IT. The output parameter
and the result value have somewhat different usages and they can be combined in the
same library. Obviously, they cannot be combined in the same UDF, because you declare
either an output parameter or a result value.

PARAMETER frees the application developer from having to remember to use the
auxiliary function ib_util_malloc() when returning dynamically created memory to the
engine.

Writing External Functions—A General Guide Page 13 of 107

Secondly, if the declaration of the UDF that allocates and returns dynamic memory does
not include the FREE_IT keyword, a memory leak would be implicit with each call to the
function.

Thirdly, PARAMETER avoids the risk of some incompatibility in malloc() usage because
the engine was built with one compiler and the UDF with another.

Why PARAMETER is not ideal
At first sight it seems the ideal method. But there are good reasons why it is not.

For example, it suffers from a problem with the declaration. Suppose the UDF was built
on the assumption that the output parameter is cstring(50). This means we have 51 bytes
available (the UDF has to put the C null terminator at the end) or 51 characters for
MBCS charsets. Since this is an output parameter, at most the data is initialized to zero.
There is no way to know the length from inside the function.

The UDF works knowing it has 51 characters available. Later, the declaration is changed
to be only CSTRING(30), then we have only 31 characters available to write out result. If
the UDF is not amended, we'll have a classic buffer overrun with variable outcome: the
engine may continue running trashed, other parameters may be altered or the engine may
crash in an unrelated section of code.

Also, if the parameter was specified as VARCHAR(12000), the engine will always make
space for 12001 characters in that parameter. This may be a waste of dynamic memory if,
in most cases, the UDF will return three characters. (Another question is whether this
concern is valid, now that memory modules are relatively cheap).

With FREE_IT, the application developer, the UDF creator, allocates exactly what the
result needs and returns it to the engine. In the event the declaration specifies a shorter
string than the returned one, when copying the value to its internal format, the engine
will realize that there is not enough space and will stop the request with an error
message. We have seen that returning a pointer to a smaller scalar value than the
declared type by reference (for example, SMALLINT instead of INT64) causes wrong
results.

You might say that the solution is to return result by value. This is valid for scalar types,
but it does not detect overflow in case the UDF declared SMALLINT by value and the
code returns a value that does not fit in a short. Also, you cannot return NULL to the
engine.

6—Observations
Now that we have explored the syntax in detail, we need to make some general
recommendations, based on what we now understand of the possibilities supported by the
engine internally.

Writing External Functions—A General Guide Page 14 of 107

 The preferred mechanism for UDF's that return numeric results is by value. Scalar
values can be copied directly, unlike strings, where different programming languages
have different behavior. Of course, this precludes the possibility of signalling SQL
NULL to the engine.

 The new mechanism "reference with null signaling" in Firebird 2, enabled by
appending NULL to the declared parameter type, minimizes the need to resort to low
level descriptors. People can revamp their UDF's to detect the null pointer and react
acccordingly, without making more code changes, then change the UDF declaration
through DDL.

 The support for PARAMETER n is incomplete. For example, only strings are proven to
work with it. In Firebird 1, timestamp was included, but remained beset by an ancient
bug (not fixed until Firebird 2) when the output parameter is not the latest.

 When you decide to receive descriptors, be prepared for the worst. The engine may
send a null pointer, a paramdsc with the dsc_address set to null or a paramdsc with
the null indicator in the dsc_flags to indicate SQL NULL and it will not respect your
declared parameters types at all.

When using references, the engine uses predefined logic to try to match the
parameters with the UDF found by name. If there is not a match, an error is produced
and the UDF is not called. With descriptors, you could specify int64 for a parameter
and the engine will accept it, even if the invocation passes a string in that position.
Therefore, you should always test the type of the parameter when it is not null. Only
an output parameter is guaranteed to meet the declared type if specified by descriptor.

 Do not make assumptions about the engine's internals, unless you will state clearly
that your library was created for a specific server version and architecture. Remember
that a classic mistake is to return the address of a local variable when returning
results by reference. Since the address becomes invalid once the function returns,
disaster will happen. If you need this, allocate the variable dynamically with
ib_util_malloc and declare the UDF with FREE_IT.

 Do not assume that ib_util_malloc maps to malloc. This was done only in an internal,
built-in UDF but, unless you want to be checking the code of each new server version,
stick to the published function, so if it is mapped to something else (for example, the
engine uses memory pools), the UDF will work without modifications.

 Never free (deallocate) parameters provided by the engine. It is the engine that
determines the lifetime of those parameters, not your UDF.

 Avoid API calls from inside a UDF. You may lock the engine or cause unpredictable
results. For example, the blobcallback structure offers special methods to callback into
the engine to read or write a blob. UDF's that attempt connections are walking on the
edge of a skyscraper. Of course, utility routines that have nothing to do with database
data may be called, like the API calls to convert between the internal representation

Writing External Functions—A General Guide Page 15 of 107

of date/time and the time_t structure in C. See fbudf for an example of those functions.

 If you need to fiddle with some internal data, experiment for yourself by writing
internal UDF's that are made part of the engine code; see the related article, How to
Write an Internal UDF Function.

 Allocating data that will be used only inside the UDF with ib_util_malloc is a futile
exercise. This function is meant to share dynamic memory with the engine and leave
the engine to deallocate it. Therefore, there is no public deallocation routine. If you get
rid of it with C's free(), you are assuming that ib_util_malloc maps to malloc(), that
may be no longer the case in some future engine release.

Therefore, for dynamic memory that you allocate, use and dispose inside your UDF,
prefer the native allocation routine, "new" in C++ and "new" or "GetMem" in Pascal,
depending on your needs. Just be coherent: C++ new and delete should be paired
(remember special delete[] for arrays), C malloc and free should be paired, Pascal
GetMem and FreeMem should be paired and Pascal new and dispose should be paired.
Both C++'s new/delete/delete[] and Pascal's new/dispose execute additional
housekeeping beyond just retrieving from or returning memory to the heap.

7—Problems
Unfortunately, part of people's confusion seems to arise studying example UDF's, since
the documentation has been ever lacking in this regard. Incredibly, the ibase.h file, meant
to contain the declarations an application developer might need, never included the
declaration for the blob wrapper structure (blobcallback since Firebird 1) and did not
mention descriptors (paramdsc) even though they were available before Borland took
ownership the InterBase server. The only mention of the blob wrapper was done in some
official document, but missing the last safe-callback function to seek in blobs.

The rationale behind this oversight was probably because it was useful only for stream
type blobs and SQL declarations could not generate this blob type, except indirectly by
defining an array column. At the time of Firebird 2, the structure to handle input arrays
(scalar_array_desc) still did not appear in a public header.

FreeUDFLib
For years, people have looked at FreeUDFLib as the working example to write external
functions. However, its author, Greg Deatz, merged different approaches and made it
possible to work the code more than one way, selectably, by means of conditional
compilation.

FreeUDFLib can be considered a superb work, given the lack of decent documentation.
However, Greg paid a lot of attention to functionality, at the cost of the main aspect that

Writing External Functions—A General Guide Page 16 of 107

helps a newcomer: simplicity. It is almost impossible to separate the helper functions and
complex logic from the bare-bones functionality an application developer needs to write a
basic UDF.

Further, he decided to use optional thread-local storage (TLS), a technique discouraged in
libraries by both Borland and Microsoft. All threads share the same data, but TLS
attaches some data to a thread for later recovery (when the thread is scheduled to run, the
data can be recovered). Your UDF does not need to keep data between invocations, unless
it is a very strange UDF meant to aggregate data, using some obscure technique.

Greg's use of TLS was an attempt to minimize allocations and deallocations and to be able
to free memory allocated in the UDF without resorting to FREE_IT. The assumption is
that the engine unloads the library only when the server process is terminated, a time
when no data processing is happening. Since your UDF will be invoked for each row in a
recordset, each invocation may be considered independent and you do not need to keep
information between invocations—your external function does not need TLS.

UCHAR
The dsc_address member in paramdsc is defined as a pointer UCHAR and the vary_string
member in paramvary is defined as an array of one UCHAR element. This is only a stub,
because the array can have many more elements, according to the length of the data being
handled.

The type UCHAR (unsigned char) is alien to Pascal developers, since Pascal's byte is not
considered a character type, but a numeric type. Pascal only knows about Char and its
WideChar counterpart, whereas C handles char, unsigned char and signed char plus the
wide char alternative.

For the same reason, the place where paramdsc demands a signed char has been mapped
to Pascal's ShortInt, which provides the same range (-128..128). The conversion of the
data structures to Pascal was done considering the ranges of the data types, but this
forces Pascal code to do some convolutions. Further, Pascal is has a very strict separation
between integers, characters and booleans that makes for longer code than in C++.

Overflow
When you designate one of the parameters as the output parameter, you should resign to
the fact that you will have to hard-code the maximum length that you can use without
overwriting memory, because the engine does not tell you about that. Even in a
paramvary, the vary_length comes initialized to zero. Therefore, if you want to be
independent of the DDL changes, you have two options:

 Request the output parameter by descriptor, then the dsc_length data member of
paramdsc will tell you the length available. You have to reserve two bytes for the
length in VARCHAR and one byte for the terminator in CSTRING. Also, to work with

Writing External Functions—A General Guide Page 17 of 107

the length and data of VARCHAR in a portable way, you have to cast dsc_address to
paramvary.

Remember, varchar by descriptor is the only case when you have two lengths, one in
the descriptor and another in the varying structure. The length in the varying
structure is two bytes less than the former. It only makes sense to adjust dsc_length
for strings. It is internally predefined for the other types (like scalars).

 Alternatively, avoid output parameters altogether and, instead, allocate the returned
value dynamically with ib_util_malloc and use the FREE_IT keyword in the
declaration to inform the engine that it should deallocate the returned result once it
has read it.

Exception handling
Your favorite resource protection block (C structured exception handling, C++ auto_ptr,
Delphi try/finally, etc.) is unreliable if you have a call to an engine function inside the
protected block.

1. Any exception that crosses the boundary between the owning process and the DLL is
going to be a problem.

2. The engine code knows nothing about your UDF structure. Even though the current
engine is writen in C++, your UDF may be written for another compiler, in another
language, etc.

For example, an attempt to call the put_segment method on an input blob is an error
condition that will be handled by the engine, stopping the UDF execution. The
execution never returns to the UDF to perform any kind of cleanup.

Even though C++ has automatic destructors, experience shows that if an invalid
operation is attempted on a blob, the destructor of an object created before the
callback is not called. The same problem is likely to occur with the automatic cleanup
of the Delphi native string. The best your technique can do is save you when the
problem is in your UDF code. When the engine is involved and is the one that finds
the exception, resources simply leak.

Since the most common resource a UDF may need is memory from the heap, a
solution may be found in future releases, but for now, there is no improvement here.

"Disaster will happen"
In several places, the expression "disaster will happen" has been used. The engine wraps
the UDF call in a protection block. If the UDF produces an AV (Windows) or segmentation
fault (UNIX), SIGBUS (Unix), a numeric overflow or a division by zero among other

Writing External Functions—A General Guide Page 18 of 107

failures, the protection block will catch it and will cause the Firebird server to shut itself
down. Others, like stack overflow, will cause the UDF to stop and the server will try to
continue running.

At any event, since the UDF is in a library and will be executed in the context of the
loader process (in this case, the server), any critical fault produced inside the UDF is seen
by the operating system as a fault produced in the server process. This will kill one
instance in Classic, but in Superserver, one thread executing a flawed UDF is enough to
shut down the whole server. Therefore, you should test your external functions with a
local server to avoid stopping everyone else !

8—The phoenix library
The phoenix library is not a set of essential enterprise functions. It is rather a bunch of
basic external functions that explain how the different techniques for handling UDF
parameters work. Some of those functions may be generally useful whereas others are
mere logic demonstrations.

In C++, most of the work is done. We only had to declare the aforementioned
scalar_array_desc to get the library working.

In contrast, in Pascal, some of the declarations are missing or outdated or inaccurate. In
particular, old ports of ibase.h to Pascal may not have what we need. Most Pascal
programmers will find the style used awkward or atypical. Having worked with Pascal
(and later, Delphi) and C++ for near 15 years, we wanted to avoid bugs in the porting of
the library to Pascal. The translation is almost literal and the mapping of data types is as
accurate as possible. Smoothing the Pascal code is left as an excercise.

The file ibase_custom.pas
or how to put a phoenix in a henhouse

There should be a way to work with other languages than C/C++ in the engine. With some
tricks, maybe we could can make UDFs in COBOL, but let's stick to Pascal for now.

Instead fixing one of the not up-to-date Pascal headers for the phoenix library, we made a
new version that contains only what we need. We called it ibase_custom.pas but, if you
like, you could name it firebird_custom.pas...

The interface section
The interface part contains

 The typical Firebird license

 Accurate mappings of Firebird data types to Pascal. They may be harder to use than
other mappings, but they represent very well the range and usage of the given data

Writing External Functions—A General Guide Page 19 of 107

types. Since Pascal cannot handle things like ^type as a parameter declaration, we
define the pointer types here and prepend a P to the type pointed to, so we can use
Ptype in our parameter declaration (example: PUChar).

The API types have to remain abstract where possible, isolating the developer from
platform differences (for example, SLONG has to be 32-bit signed integer everywhere
to be mapped correctly to the INT data type in SQL, also known as INTEGER).

type

 SCHAR = shortint;

 UCHAR = byte;

 SSHORT = smallint;

 USHORT = Word;

 SLONG = LongInt;

 ULONG = LongWord;

 PUchar = ^UCHAR;

 The blobcallback record, together with its get/put/seek methods, again with data types
based on the previous mapping. It is important to remember that those methods
should use the C calling convention, too:

blobcallback = record

 blob_get_segment: function(hnd: Pointer; buffer: PUchar;

 buf_size: USHORT;

 var result_len: USHORT): SSHORT; cdecl;

 blob_handle: Pointer;

 blob_number_segments: SLONG;

 blob_max_segment: SLONG;

 blob_total_length: SLONG;

 blob_put_segment: procedure(hnd: Pointer; buffer: PUchar;

 buf_size: USHORT); cdecl;

 blob_lseek: function(hnd: Pointer; mode: USHORT;

 offset: SLONG): SLONG; cdecl;

end;

Pblobcallback = ^blobcallback;

 Some enumerations that may be not usable directly as parameters without a cast (due
to restrictions in the mix between enumerated types and integers) but which serve as
documentation for the constants they represent:

 // This enum applies to parameter "mode" in blob_lseek

 blob_lseek_mode = (blb_seek_relative = 1, blb_seek_from_tail = 2);

Writing External Functions—A General Guide Page 20 of 107

 // This enum applies to the value returned by blob_get_segment

 blob_get_result = (

 blb_got_fragment = -1, blb_got_eof = 0, blb_got_full_segment = 1);

 The VMS descriptor, known internally as "dsc" and named here paramdsc. It contains

♦ the data type (documented with constants after the record)

♦ the scale (typically negative for numeric and decimal, that are handled as integral
types with the scale being the power of ten)

♦ the length (with a maximum of 64K-1 that represents the maximum row size,
although it is in practice near 100 bytes smaller)

♦ the sub_type (represents the blob's subtype and for string types, it is the charset
plus the collation, encoded)

♦ the flags (described as constants, the most important one being DSC_null)

♦ the address, that represents the pointer to the data. The address is of type pointer
to unsigned character, so it needs to be cast to other types when needed. It could
have been the generic Pointer (the Pascal equivalent to void*) but a good
percentage of usage is as pointer to bytes, so the internal declaration was
preserved.

♦ Since the scale may go between -128 and 127, the only type that matches C's
signed char is shortint, aliased SCHAR for the same reason.

paramdsc = record

 dsc_dtype: UCHAR;

 dsc_scale: SCHAR;

 dsc_length: USHORT;

 dsc_sub_type: SSHORT;

 dsc_flags: USHORT;

 dsc_address: PUchar;

end;

Pparamdsc = ^paramdsc;

const

// values for dsc_dtype

 dtype_unknown = 0;

 dtype_text = 1;

 dtype_cstring = 2;

 dtype_varying = 3;

 dtype_packed = 6;

Writing External Functions—A General Guide Page 21 of 107

 dtype_byte = 7;

 dtype_short = 8;

 dtype_long = 9;

 dtype_quad = 10;

 dtype_real = 11;

 dtype_double = 12;

 dtype_d_float = 13;

 dtype_sql_date = 14;

 dtype_sql_time = 15;

 dtype_timestamp = 16;

 dtype_blob = 17;

 dtype_array = 18;

 dtype_int64 = 19;

 DTYPE_TYPE_MA = 20;

// values for dsc_flags

 DSC_null : USHORT = 1;

 DSC_no_subtype: USHORT = 2; // dsc has no sub type specified

 DSC_nullable : USHORT = 4; // not stored. instead, is derived from

 // metadata primarily to flag SQLDA (in DSQL)

 The varying record, known internally as "vary" and named here paramvary. Use only
for CHARACTER VARYING, also known as VARCHAR. It contains the length,
followed by the data. The data is declared as an array instead of a pointer because the
data immediately follows the length: they are contiguous.

Do not activate range checking in Delphi if you plan to traverse the array with an
integer variable used as an index: at run-time, there will be as many elements in the
array as vary_length dictates and, if the length is zero, there will be an unused
position. The array with one position is a trick to indicate that there is an array here.

Records need to be declared with known sizes. With range checking activated, the only
way to bypass the run-time checks is by taking a pointer to the first element and
advancing the pointer to read more elements. Typically, Pascal programmers are more
used to handling arrays with an index.

type

 paramvary = record

 vary_length: USHORT;

 vary_string: array[0..0] of UCHAR;

Writing External Functions—A General Guide Page 22 of 107

 end;

 PParamvary = ^paramvary;

 The sad_repeat record is defined inside scalar_array_desc in C but, in Pascal, this is
not possible because nested records are taken as elements, not as definitions. We need
to use sad_repeat variables, so they have to be defined beforehand. It contains simply
the lower and upper range of a dimension in an array. Not surprisngly, the total
number of elements in a dimension is the difference of the two values plus one.

// This structure is not defined in ibase.h.

// Cannot do nested typedefs in Delphi.

// Therefore, sad_repeat is defined ahead.

 sad_repeat = record

 sad_lower: SLONG;

 sad_upper: SLONG;

 end;

 The scalar_array_desc record, not present in ibase.h even in the native version for C.
It starts with a descriptor. Only one descriptor is needed because all elements have
the same type. See paramdsc, described previously, for more information. Follows the
number of dimensions and the array of sad_rpt records, specified with one element at
compile time.

 scalar_array_desc = record

 sad_desc: paramdsc;

 sad_dimensions: SLONG;

 sad_rpt: array[0..0] of sad_repeat;

 end;

 Pscalar_array_desc = ^scalar_array_desc;

 The mapping of the declaration of ib_util_malloc, found in ib_utils.h, that returns a
generic pointer.

With Pascal's linker, there will not necessarily be clash if another file declares it. Here
we elected to have a second function return a pointer to char, since it is the most used
case. We are importing the function twice with different names. Again, remember, it
should follow the C calling convention.

function ib_util_malloc(size: Integer): Pointer; cdecl;

 external 'ib_util.dll';

function ib_util_malloc2(size: Integer): PChar; cdecl;

 external 'ib_util.dll' name 'ib_util_malloc';

You might wonder about the return type. Well, in a 16-bit world, the classic Borland C++
compiler, predecessor of BCB, allowed you to select different memory models with

Writing External Functions—A General Guide Page 23 of 107

different pointer sizes. But in a flat 32-bit world, all native pointers have the same size, so
changing from an untyped pointer to a typed pointer is only a convenience. No harm will
happen. (Microsoft provides size optimizations for pointers to a member of a class in C++,
but they are different from pointers to objects).

* * * * * * *

We do not call the external API, so we do not need any more declarations. Arrays are
defined starting from zero to ease to port from C++. Our implementation is empty because
we are only handling declarations. We did not get into objects, so there are no class
methods to write here. Also, we avoid global variables as recommended, so there is
nothing to put in the initialization section.

The project file
Our Delphi project file is straightforward: it includes the library keyword to mark the code
as a DLL instead of an EXE, the usage clause (including our two units), the exports clause
to make the entry points visible. In the executable part of the project file we simply set
the IsMultiThread global variable to true, to tell Delphi we need a thread-safe allocator.

library phoenix;

uses

 main in 'main.pas',

 ibase_custom in 'ibase_custom.pas';

{$R *.res}

exports

 p_sumchar1,

 p_sumchar2,

 p_sumchar3,

 p_lastchar1,

 p_lastchar2,

 p_lastchar3,

 p_reverse1,

 p_reverse2,

 p_reverse3,

 p_defragment_blob,

 p_generate_blob,

 p_sample_blob,

 p_intersperse,

 p_array2text;

Writing External Functions—A General Guide Page 24 of 107

begin

 IsMultiThread := true

end.

The C++ and Pascal units
We are going to compare the code written in C++ and in Delphi. We'll examine first the
declarations and then we will start looking at each function.

In the C++ header for the main file, we can find after the license:
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32__)

#define PHOENIX_API __declspec(dllexport)

#else

#define PHOENIX_API

#endif

This is done because, in Windows, functions must be explicitly exported to be visible and
usable from other libraries or programs. Since this code may be compiled in other
platforms where all functions in a library are exported by default, the __declspec keyword
is protected by a preprocessor macro, PHOENIX_API that needs to be defined only in
Windows.

In contrast, we did not do that for the Delphi version, since it was attempted only on
Windows. Whether Kylix may be able to compile and generate a useful library is territory
for people with technical curiosity.

After that, we find the native declaration of the scalar array descriptor, the same one that
is found inside the engine. Why did not we make a separate unit like in Delphi? Because
this is the only declaration we are missing and all the rest is taken from the ibase.h
header of Firebird 2. We can observe the nested declaration and usage of sad_repeat in
one step:

// This structure is not defined in ibase.h.

struct scalar_array_desc

{

 paramdsc sad_desc;

 SLONG sad_dimensions;

 struct sad_repeat

 {

 SLONG sad_lower;

 SLONG sad_upper;

 } sad_rpt[1];

Writing External Functions—A General Guide Page 25 of 107

};

We'll finish with the declaration of the functions. The PHOENIX_API as described works
as the exporting clause for Win32 and is mapped to nothing in other platforms.

C++ declarations
The C++ compiler automatically defines __cplusplus for a C++ project. Hence, if it is not
defined, it may be that this header is being imported by a C program that does not
understand the extern "C" directive, used by C++ as the equivalent of Pascal's cdecl,
namely, to use C calling convention and linkage.

#ifdef __cplusplus

extern "C"

{

#endif

 PHOENIX_API int p_sumchar1(const char* s);

 PHOENIX_API int p_sumchar2(const paramvary* v);

 PHOENIX_API int p_sumchar3(const char* s);

 PHOENIX_API char* p_lastchar1(const char* s);

 PHOENIX_API char* p_lastchar2(const paramvary* v);

 PHOENIX_API char* p_lastchar3(const char* s);

 PHOENIX_API void p_reverse1(const char* const s, char* dest);

 PHOENIX_API void p_reverse2(const char* const s, paramvary* dest);

 PHOENIX_API void p_reverse3(const char* s, char* dest);

 PHOENIX_API void p_defragment_blob(const blobcallback* input,

 blobcallback* output,

 const SLONG& input_seg_size);

 PHOENIX_API void p_generate_blob(blobcallback* output,

 const SLONG& input_start_size,

 const SLONG& input_num_seg);

 PHOENIX_API paramvary* p_sample_blob(const blobcallback* input,

 const SLONG& input_len);

 PHOENIX_API paramdsc* p_intersperse(const paramdsc* p1,

 const paramdsc* p2);

 PHOENIX_API void p_array2text(const scalar_array_desc* const input,

 paramdsc* const pout);

Writing External Functions—A General Guide Page 26 of 107

#ifdef __cplusplus

}

#endif

You can see that the structures are received by pointer because it is straightforward in
C++. We used const to mark input parameters as immutable from our perspective. This
will prevent us from making a mistake.

However, the SLONG parameters were received as references. This is the equivalent of
"var" in Pascal in a parameter, but const can be applied to it to indicate this is a variable
received by reference, that we do not want to be able to change. In Pascal, this is not
possible because const is equivalent to a C++ reference. However, we avoided using const
in Pascal, since the behaviour of const may be to pass by value or by reference, depending
on the compiler's rules.

Explicit passing behaviour

Here, we want to determine explicitly whether we are receiving pointers or references: one
mismatch in the engine's interpretation of the DDL declarations for each function's
parameter and we'll get garbage. Our rules are:

- strings are always passed by pointer

- scalars may be received by reference if we did not ask for NULL signaling

- scalars must be received by pointer if we did ask for NULL signaling

- blobs and arrays are received by pointer (although they could be received by reference
because the engine never sends the null pointer for them)

- output parameters can be received by reference because the engine always provides
storage for them

- descriptors are received by pointer just in case the engine sends a null pointer because
it found the literal SQL NULL.

Receiving structures/records by pointer is not a problem. Both C++ and Pascal handle
them well.

The problem is handling scalars by pointers. InC/C++, at least, a pointer is inter-operable
with other integral data types. Hence, if the programmer fails to dereference it, the value
of the pointer itself—a memory location—would be used instead of the pointer's
contents—the memory pointed to by the pointer—and the compiler will not chime in.

We found that Delphi does not complain either, when the clause ^variable is used instead
of variable^ to dereference a pointer. Apparently, the former way is a dumb clause
without effect and we only got a warning because the compiler said the variable was not
being used. Therefore, for scalars we prefer references, unless we have to detect NULL,
which forces us to use pointers.

Writing External Functions—A General Guide Page 27 of 107

Pascal declarations
Since in Pascal, both the header and the body (the cpp) reside in the same file, we post
here the first part of main.pas for comparison. This is what you will find after the license.
We are including our custom version of ibase.h here:

unit main;

interface

uses ibase_custom;

function p_sumchar1(s: PChar): Integer; cdecl;

function p_sumchar2(var v: paramvary): Integer; cdecl;

function p_sumchar3(s: PChar): Integer; cdecl;

function p_lastchar1(s: PChar): PChar; cdecl;

function p_lastchar2(v: Pparamvary): PChar; cdecl;

function p_lastchar3(s: PChar): PChar; cdecl;

procedure p_reverse1(s, dest: PChar); cdecl;

procedure p_reverse2(s: PChar; dest: Pparamvary); cdecl;

procedure p_reverse3(s, dest: PChar); cdecl;

procedure p_defragment_blob(input, output: Pblobcallback;

 var input_seg_size: SLONG); cdecl;

procedure p_generate_blob(output: Pblobcallback; var input_start_size: SLONG;

 var input_num_seg: SLONG); cdecl;

function p_sample_blob(input: Pblobcallback; var input_len: SLONG):

Pparamvary; cdecl;

function p_intersperse(p1: Pparamdsc; p2: Pparamdsc): Pparamdsc; cdecl;

procedure p_array2text(input: Pscalar_array_desc; pout: Pparamdsc); cdecl;

Given the preceding comments, it is not surprising that our first observation is that C++
functions that return something are mapped to Pascal functions and C++ functions whose
return type is void (nothing returned) are mapped to Pascal procedures.

Secondly, we have to use custom typedefs to overcome an ancient Pascal limitation. We
cannot write

function p_sumchar1(s: ^Char): Integer; cdecl;

because the compiler does not accept a declaration of a pointer to type in an argument.
This is the reason why ibase_custom.pas did declare those needed types and we use them
now:

Writing External Functions—A General Guide Page 28 of 107

function p_sumchar1(s: PChar): Integer; cdecl;

Third, no function should forget to include the cdecl clause after its declaration or Delphi
will use its own calling convention, generally known as fastcall, that tries to maximize
CPU register usage to pass parameters. We have to tell Delphi to use the C calling
convention. Doing otherwise will result in garbage being received from the engine or
returned to it. There is the dangerous possibility of trashing the stack, too.

C++
#include "ibase.h"

#include "ib_util.h"

#include "main.h"

namespace

{

 const int CHAR_LEN = 30; // This constant must match

 // the DDL declaration CHAR(30).

 const int MAXSEG = 65535; // 64K - 1, the limit for a blob segment

 const int MAXROW = MAXSEG - 100; // Approx the max row size

 const int VARCHAR_PREFIX = sizeof(paramvary().vary_length);

 char* ib_util_malloc2(const long size)

 {

 return static_cast<char*>(ib_util_malloc(size));

 }

 const int SLONG2TEXT = 11; // -2147483648

}

Pascal
implementation

{$IFDEF GUI_MSG}

uses Dialogs, SysUtils;

{$ENDIF}

const

 CHAR_LEN: Integer = 30; // This constant must match the DDL declaration

 // CHAR(30).

 MAXSEG = 65535; // 64K - 1, the limit for a blob segment

Writing External Functions—A General Guide Page 29 of 107

 MAXROW: Integer = MAXSEG - 100; // Approx the max row size

 pvary_size: Pparamvary = nil;

 VARCHAR_PREFIX: Integer = sizeof(pvary_size^.vary_length);

 SLONG2TEXT = 11; // -2147483648

In C++, we wrapped the private declarations in the unnamed namespace. By definition,
the unnamed (or anonymous) namespace is only visible to the translation unit where it
appears.

The same effect is achieved inDelphi doing those declarations in the implementation
section. As stated previously, ib_util_malloc2 is only a convenience to avoid converting the
result from malloc into a pointer to character. In C++ all constants were defined as typed
constants. In Pascal, we cannot do that: only untyped constants are true constants, that
can be used in array definitions, for example.

The only other notable difference is C++'s
const int VARCHAR_PREFIX = sizeof(paramvary().vary_length);

versus Pascal's
const

 pvary_size: Pparamvary = nil;

 VARCHAR_PREFIX: Integer = sizeof(pvary_size^.vary_length);

In C++, a class can be "instantiated" on the fly; that is, you can invoke the constructor
without assigning the result to a variable, creating an unnamed object whose lifetime
spans only the statement where it appears. You can see that paramvary does not have a
constructor, but the compiler provides one automatically.

We could not find an equivalent technique in Delphi, so we created a pointer of the desired
type and got the size of vary_length. It can be argued that dereferencing a null pointer is
an error, but here we only request the size. The same trick was used in plain C for
different tasks.

There is an $IFDEF for some extra units in Pascal. The only reason is that Delphi was
unable to debug the DLL it created using fbserver.exe as the host program. Probably it
has to do with the fact that we have the system-wide debugger registered to be MSVC and
when Delphi installs, the registry entry is overwritten. Delphi hangs while trying to debug
sopmthing it does not understand and, since Windows calls the system-wide debugger
when any program crashes, it was a big problem. To avoid it, we changed back to MSVC.

Since we could not debug the Pascal DLL in an interactive way, we had to put messages in
a dialog box to see what was happening, but only if the symbol GUI_MSG is defined.

The value CHAR_LEN is important: in several cases, the function cannot determine the
amount of space available to write a result in an output parameter. The burden is on the
programmer: the declaration of the output parameter must match CHAR_LEN or strange
effects will happen. If the declared length is bigger, garbage may appear at the tail; if the

Writing External Functions—A General Guide Page 30 of 107

declared length is smaller, we would overwrite memory we must not touch and we have a
classical buffer overrun problem. The effects are not obvious in most cases.

Other points to note

1. To make a clear difference between identifiers and literal strings in the declarations,
our script starts with the declaration

set sql dialect 3;

although it is not very critical in our case.

2. Our library was designed to take ASCII. External functions can take other character
sets, as explained in the syntax for declaring UDFs, but the code would have to rely on the
operating system or third party libraries to work with them.

Functions that return scalars by value
Those functions do not have an interest in detecting NULL. They will get an empty string
instead. They do not return NULL, so they return their integer result by value (if they
had to return strings, they are not scalars but arrays, thus they have to be returned by
reference or descriptor).

declare external function p_sumchar1

char(30)

returns int by value

entry_point 'p_sumchar1' module_name 'phoenix';

Here the 30 is important: it matches CHAR_LEN as explained previously. With a CHAR
type, it is impossible to know its length dynamically. We only receive a pointer to the first
character. Since we return by value, there is not much harm if the native integer type in
the library matches exactly the integer type in the engine (SLONG), so we did not bother
to use those special, abstract types defined in ibase.h.

// This is for input = CHAR type

int p_sumchar1(const char* s)

{

 int loop = CHAR_LEN - 1;

 while (loop >= 0) // let's ignore trailing blanks

 {

 if (s[loop] == ' ')

 --loop;

 else

 break;

 }

Writing External Functions—A General Guide Page 31 of 107

 int rc = 0;

 while (loop >= 0)

 rc += s[loop--];

 return rc;

}

First, we go to the last position. We start counting at zero, so the last position is 29. We go
back discarding ASCII blanks until we find something "interesting". At this point, we
continue going back, adding to "rc" the numeric value of the character at position "loop".
Typical of C/C++ code, we handle the post decrement of the variable in the same
statement. The logic guarantees that if the string is purely blanks, we get zero as the
result instead of random garbage. However, embedded blanks, those that are before non-
blank characters, are counted. For example, in

p_sumchar1('Ann Harrison ')

we count only one blank (value 32), but in
p_sumchar1('Firebird ')

no blank is included in the count. For the same reason, the result of
p_sumchar1(' ')

is zero. All the three variations of sumchar behave the same with respect to blanks.

Note to the bored reader

My boss asked me to explain the differences between the C++ version and the Pascal
version, so I need to explain once and for all the effect of pre and post increments and
decrements to Pascal programmers: ++var means increment the variable, then use it
whereas var++ means use the variable, then increment the variable. Same goes for the
decrement. The line above

--loop;

is not much different to
loop--;

since it is the only instruction. It cannot have side effects and for the same reason we
consider the former clearer. But in the second case,

rc += s[loop--];

the order is important. We need to use the place s[loop] before the variable is decremented
or we will skip one character and will read one before the beginning of the string. The
statement can be written as

rc += s[loop];

Writing External Functions—A General Guide Page 32 of 107

--loop;

but almost nobody does that in C++. If you do, remember to put curly braces around the
body of the "while" or you will have only one statement in the cycle (a typical oversight
anybody, no matter how experienced, can make).

Unlike some experimental languages that are developed by open source enthusiasts,
neither Pascal nor C++ take indentation into account to decide which statements belong to
a clause (if, while, for, etc.). Indentation is just a visual aid to the programmer and the
compiler cannot warn him/her about mismatches between indentation and curly braces.

Now the Pascal counterpart:
// This is for input = CHAR type

function p_sumchar1(s: PChar): Integer;

var

 loop, rc: Integer;

begin

 loop := CHAR_LEN - 1;

 while loop >= 0 do // let's ignore trailing blanks

 begin

 if s[loop] = ' ' then

 Dec(loop)

 else

 break;

 end;

 rc := 0;

 while loop >= 0 do

 begin

 Inc(rc, Ord(s[loop]));

 Dec(loop)

 end;

 Result := rc

end;

It's almost a copy of the previous function, with some differences. Instead of the native
string, we have to receive the equivalent PChar; and we have to increment the counter rc
by taking the ordinal position of the character to get the ASCII value, then decrement loop
separately afterwards, to match the C++ version. We use Inc to mimic the += operator. We
assign the final value of the counter rc to Result to return a value.

declare external function p_sumchar2

Writing External Functions—A General Guide Page 33 of 107

varchar(50)

returns int by value

entry_point 'p_sumchar2' module_name 'phoenix';

Here we do not care about our agreed length (30) because varchars contain their own
length indicator. The length can be effectively discovered at run time. Also, we do not
waste time ignoring trailing blanks because the VARCHAR type trims them by default.

// This is for input = VARCHAR type

int p_sumchar2(const paramvary* v)

{

 int rc = 0;

 for (int loop = (int) v->vary_length - 1; loop >= 0; --loop)

 rc += v->vary_string[loop];

 return rc;

}

Attention is called to a detail that may cause much grief. The member vary_length is
defined as an unsigned 16-bit quantity. If we have a loop that needs to count from N back
to 1, this would not be a problem. We would stop when the value reaches zero. However,
we have to go from N-1 back to 0, so we stop when the value is -1.

The effect of the old C cast
(int) v->vary_length - 1

is the same as the original C++ cast
int(v->vary_length) - 1

or the ultra explicit new C++ cast
static_cast<int>(v->vary_length) - 1

in the sense that it affects only the first operand, not the whole subtraction. If we do not
do the cast and we receive a string of length zero, since vary_length is unsigned,
subtracting one from it would produce another unsigned that wraps, probably to the
biggest number in the range (64K), causing us to walk totally illegal memory places,
counting garbage.

declare external function p_sumchar3

cstring(50)

returns int by value

entry_point 'p_sumchar3' module_name 'phoenix';

Now the Pascal version:

Writing External Functions—A General Guide Page 34 of 107

// This is for input = VARCHAR type

function p_sumchar2(var v: paramvary): Integer;

var

 loop, rc: Integer;

begin

 rc := 0;

 for loop := Integer(v.vary_length) - 1 downto 0 do

 Inc(rc, v.vary_string[loop]);

 Result := rc

end;

We should remember the engine always passes parameters by pointer and this means by
reference in Pascal. For the parameter, instead, we could have done

var p: PParamvary

using the declaration in ibase_custom.pas. Our reverse loop seems simpler in Pascal than
in C++ thanks to the downto clause. We again take the ordinal position of the final
character to get the numerical value that is assigned to the result of the function.

Again, we do not worry about the length, since this is a C-style string, with the ASCII
NULL (binary zero) terminating the string. However, as explained earlier, the engine
must waste time and space converting from the internal representation to a temporary of
type CSTRING.

Since this is a type that does not exist in storage in the engine, we did not bother to trim
trailing blanks. Implicitly, we'll count them if they come from a CHAR and we'll ignore
them if they come from a VARCHAR.

For example, since literals are of CHAR type,
p_sumchar3(' ')

is 32. We could have done better by going to the end of the string, then start backwards
discarding trailing blanks until we find something "interesting" as p_sumchar1 did, but it
is left as an exercise.

// This is for input = CSTRING type

int p_sumchar3(const char* s)

{

 int rc = 0;

 for (; *s; ++s)

 rc += *s;

 return rc;

}

Writing External Functions—A General Guide Page 35 of 107

We need to iterate until the character we test is the binary zero. This is the end of the
string. We could have used the standard strlen() but we wanted to use only custom code as
much as possible to be able to debug everything.

The Pascal version again uses PChar:

// This is for input = CSTRING type

function p_sumchar3(s: PChar): Integer;

var

 rc: Integer;

begin

 rc := 0;

 while s^ <> #0 do

 begin

 Inc(rc, Ord(s^));

 Inc(s);

 end;

 Result := rc;

end;

It uses an atypical construction to be able to work with ASCII-null terminated strings: it
compares each position against the literal character ASCII-zero (unprintable, first
character in the ASCII table, denoted with #0) and enters the loop as long as this
character is not encountered.
NOTE

In all these three functions, the variable rc can be eliminated in favour of manipulating
Object Pascal's special Result variable directly. To preserve a visual equivalence between
the C++ and Pascal versions of the examples, it was not done here.

Functions that want to take and give NULLs
Those functions take advantage of the new mechanism in Firebird 2 to receive parameters
by reference, but getting the null pointer when the input parameter is SQL NULL.
Therefore, given the result they return (the last character in the input string) they need to
return a string.

Unlike programming languages where there is a distinction between a single character
(scalar) and a string, here anything is a string. Even CHAR(1) or VARCHAR(1) have to be
returned by reference. Since we'll be allocating the result dynamically, we need to use the
keyword FREE_IT to inform the engine it should dispose of the result when it is done with
it.

Writing External Functions—A General Guide Page 36 of 107

Since we always return one character, it can be argued that we can use an output
parameter of known size, but then we lose the ability to signal null to the engine unless
we resort to descriptors. All three versions thus share the common behaviour of not
allocating anything if they detect a null input pointer, and will return the null pointer
immediately to the engine.

Notice we allocate a single character for the result: we stated the result is plain CHAR(1),
so we cannot include terminator as we would with CSTRING.

declare external function p_lastchar1

char(30) null

returns char free_it

entry_point 'p_lastchar1' module_name 'phoenix';

Again, this is the CHAR type, so we need to rely on our hard-coded 30 to find the last
character.

Because of the way the CHAR type works, in most cases we will return the space
character, unless there are no trailing blanks in the input string. If we had trimmed them,
we would not return the actual last character.

// This is for input = CHAR NULL type and output CHAR with FREE_IT

char* p_lastchar1(const char* s)

{

 if (!s)

 return 0;

 char* const dest = ib_util_malloc2(1);

 *dest = s[CHAR_LEN - 1];

 return dest;

}

Our Pascal version makes the distinction between pointers and numeric types more
clearly:

// This is for input = CHAR NULL type and output CHAR with FREE_IT

function p_lastchar1(s: PChar): PChar;

begin

 if s = nil then

 begin

 Result := nil;

 Exit;

Writing External Functions—A General Guide Page 37 of 107

 end;

 Result := ib_util_malloc2(1);

 Result^ := s[CHAR_LEN - 1];

end;

Even though we declare that we will return one character, we need to return a C string.
Since we receive and return pointers, we can test against our familiar "nil" and return it,
too. Of course, to achieve the same effect as a return with a value in C++, in Pascal we
need to set the Result variable and call Exit to return immediately to the caller.

If we want to allocate memory that has to be freed by the engine, it has to be allocated
with the utility function ib_util_malloc, regardless of whether we use C++ or Pascal, or
some other language. Recall that we defined ib_util_malloc2 as a useful synonym that
returns a pointer to char, without putting a cast here.

declare external function p_lastchar2

varchar(50)

returns char free_it

entry_point 'p_lastchar2' module_name 'phoenix';

In the second version we have an anomaly: we return immediately not only if the input is
the null pointer, but also when the length is zero. Unlike CHAR, a VARCHAR can have
zero length. In this case, the last character does not exist, so we return NULL. A hard-
coded limit is unnecessary, since we get the length from the input structure paramvary.

// This is for input = VARCHAR NULL type and output CHAR with FREE_IT

char* p_lastchar2(const paramvary* v)

{

 if (!v || !v->vary_length)

 return 0;

 char* const dest = ib_util_malloc2(1);

 *dest = v->vary_string[v->vary_length - 1];

 return dest;

}

Our Pascal version is:

// This is for input = VARCHAR NULL type and output CHAR with FREE_IT

function p_lastchar2(v: Pparamvary): PChar;

begin

Writing External Functions—A General Guide Page 38 of 107

 if (v = nil) or (v^.vary_length = 0) then

 begin

 Result := nil;

 Exit;

 end;

 Result := ib_util_malloc2(1);

 Result^ := Chr(v^.vary_string[v^.vary_length - 1]);

end;

Here, Pparamvary is used, a choice suggested earlier. We test for the null pointer or the
VARCHAR having length zero to return immediately. Otherwise, a more complex
sentence than its C++ counterpart is necessary. Since vary_string is of type unsigned
character, the compiler would take it as a numeric. Hence, we use Chr() to convert it to
the Char type. That conversion in C++ happens automatically (but only for one element,
not for pointers of UCHAR v/s pointer to char).

Of course, our if() condition is slightly different in Pascal. Whereas C++ demands
parentheses around the whole if(), Pascal needs them only to distinguish logical conditions
and avoid having the compiler take the OR as binary OR (bitwise), rather than logical OR.

declare external function p_lastchar3

cstring(50)

returns char free_it

entry_point 'p_lastchar3' module_name 'phoenix';

Again, we test for the null string and, immediately afterwards, test whether the first
character is the C null terminator. If so, the string is empty and we return NULL. We
advance through the string until we get to the null terminator. By then, we are past the
end of the string, so we need to go back one to the last meaningful character. The null
terminator is an artifact that does not have a length indicator.

// This is for input = CSTRING NULL type and output CHAR with FREE_IT

char* p_lastchar3(const char* s)

{

 if (!s || !*s)

 return 0;

 while (*s)

 ++s;

Writing External Functions—A General Guide Page 39 of 107

 char* const dest = ib_util_malloc2(1);

 *dest = *--s;

 return dest;

}

For Pascal programmers, we need to explain the line
*dest = *--s;

This is a prefix decrement, meaning
--s; // go back one position with the pointer

*dest = *s; // assign the last character to the result.

Finally, it is worth explaining why we used the strange form
char* const dest = ib_util_malloc2(1);

Since C++ allows that expression, we use it. We want to avoid, especially in more complex
cases, accidentally changing the value of the pointer "dest", the address of the memory
that was allocated dynamically. We need to pass it to the engine, or it will read garbage.
Worse, a run-time failure may happen when trying to deallocate it, if it is not the same
pointer we got from ib_util_malloc. The statement does not prevent changing the memory
pointed to by the pointer; it only prevents the pointer from being directed to another
memory location by mistake.

Now, the Pascal version:

// This is for input = CSTRING NULL type and output CHAR with FREE_IT

function p_lastchar3(s: PChar): PChar;

begin

 if (s = nil) or (s^ = #0) then

 begin

 Result := nil;

 Exit;

 end;

 while s^ <> #0 do

 Inc(s);

 Result := ib_util_malloc2(1);

 Dec(s);

 Result^ := s^;

end;

Writing External Functions—A General Guide Page 40 of 107

We return nil immediately if the input is nil. Otherwise, we advance the pointer, looking
for the null terminator denoted by #0. We allocate one byte with the engine's utility
function, then decrement the source pointer (since we are interested in the last useful
character, not the unprintable termintor) and assign the result.

Notice lastchar2 and lastchar3, that can test the length or the terminator, returning
NULL if the length is zero. This may seem strange, because zero length is not NULL. It is
done because, with a zero length, the last printable character is non-existent. Returning
#0 would produce failure in printing routines that use it as terminator, truncating output
if that output were concatenated with another string. Since there is no valid character
with length zero, returning unknown in the form of NULL seems better.

Notice also that the three functions of the lastchar family assign the dynamic allocation to
Result, then assign the wanted character to Result^ instead of Result. We are assigning
inside the one-byte string that was allocated. Result[0] could have been used if the
compiler accepted it. Remember, we are dealing with null-terminated strings that start at
position zero.

Functions that work with CSTRING as the input parameter
and use native types as the output parameter
They do not receive NULL and cannot signal NULL.

For those functions, we wanted to demonstrate how to use output parameters, so we left
the complexity of null input out of the examples. We'll get SQL NULL as an empty string.
Even if we got the null pointer, we cannot signal NULL to the engine as a result since
output parameters by reference cannot do that.

It is worth remembering that we cannot know from the engine the size of the output
parameter and thus have to make sure our DDL declaration for the external function
matches the size we use in the function's logic. For simplicity, we chose to receive the
input argument as cstring.

Also, the first parameter is a fixed pointer. Because it will be used for comparisons and
length calculation, it cannot be moved to avoid programming errors.

First version

In this version, the input is a CSTRING of up to 30 bytes and the output is a varchar(30).
We declare it thus:

declare external function p_reverse1

cstring(30),

char(30)

returns parameter 2

entry_point 'p_reverse1' module_name 'phoenix';

Writing External Functions—A General Guide Page 41 of 107

First, we scan the input until we get to the null terminator. We go back one position to the
last character. Then we copy it in reverse order. Since we are going backwards in the
input and forward in the output, the reversing happens naturally. We initialize "n" to our
maximum length to ensure we do not write outside our allowed output space.

There is a catch with CHAR types: they have to padded with blanks. Therefore, if the
input was shorter than the output, we do a final loop to fill the output with trailing
blanks.

// This is for output = CHAR type

void p_reverse1(const char* const s, char* dest)

{

 const char* p = s;

 while (*p)

 ++p;

 --p;

 int n = CHAR_LEN;

 while (p >= s && n)

 {

 *dest++ = *p--;

 --n;

 }

 while (n--)

 *dest++ = ' '; // fill with blanks for CHAR(CHAR_LEN)

}

The line
*dest++ = *p--;

presents two postfix operators, so it has to be decomposed intro three sentences. First, do
the assignment of the contents pointed by the pointers (not the addresses of the pointers)
and then (in any order) increment the destination and decrement the source. The final
loop

 while (n--)

 *dest++ = ' ';

can be decomposed into
 while (n)

 {

 --n;

 *dest = ' ';

Writing External Functions—A General Guide Page 42 of 107

 ++dest;

 }

but do not forget the braces to enclose multiple statements. In precise terms, the
equivalence is not exact, because the test for n-- involves a test and a decrement always
(even if the condition was evaluated as false). The lone --n after the loop is needed to have
exactly the same effect, although the compiler emits a warning given that this last
decrement has no effect.

The Pascal version:

// This is for output = CHAR type

procedure p_reverse1(s, dest: PChar);

var

 p: PChar;

 n: Integer;

begin

 p := s;

 while p^ <> #0 do

 Inc(p);

 Dec(p);

 n := CHAR_LEN;

 while ((p >= s) and (n > 0)) do

 begin

 dest^ := p^;

 Inc(dest);

 Dec(p);

 Dec(n);

 end;

 while n > 0 do

 begin

 Dec(n);

 dest^ := ' '; // fill with blanks for CHAR(CHAR_LEN)

 Inc(dest);

 end;

end;

Writing External Functions—A General Guide Page 43 of 107

It is noticeably longer than the C++ version because it has to do the pointer increment and
decrement separately and preserve the order, as explained previously (a postfix decrement
should be done after the expression where it appeared in the C++ version, and so on).

The logic is the same, however. We find the null terminator in the source, go back one
position to skip it and, while our pointer is inside the valid range (p>=s), we do the copy,
incrementing the destination and descrementing the source.

But we should also check that the output, fixed at CHAR_LEN, does not overflow.
Remember, this number must match the DDL declaration for the functions.

Finally, if there is spare room in the target, we fill it with blanks according to the SQL
CHAR type specification. We do not bother to append a terminator because it is not used
by CHAR or VARCHAR.

Second version
declare external function p_reverse2

cstring(30),

varchar(30)

returns parameter 2

entry_point 'p_reverse2' module_name 'phoenix';

Our second version with the VARCHAR output starts the same. We have to find the C
terminator.

Here we take a difference between the terminator position and the beginning to determine
the length, then decrement the pointer to be at the last character's position. If the length
is bigger than our predefined output length, we truncate the output. Since this is a
VARCHAR, we need to fill vary_length with our output length and then copy the reversed
input into vary_string. We'll use "n" as a sentry to avoid writing more than the allowed
number of bytes in the output parameter.

// This is for output = VARCHAR type

void p_reverse2(const char* const s, paramvary* dest)

{

 const char* p = s;

 while (*p)

 ++p;

 int n = p - s; // ptrdiff_t

 --p;

 if (n > CHAR_LEN)

 n = CHAR_LEN;

Writing External Functions—A General Guide Page 44 of 107

 dest->vary_length = (USHORT) n; // write the length for VARCHAR

 for (UCHAR* to = dest->vary_string; p >= s && n; --n)

 *to++ = *p--;

}

In Pascal:

// This is for output = VARCHAR type

procedure p_reverse2(s: PChar; dest: Pparamvary);

var

 p: PChar;

 n: Integer;

 tostr: PUChar;

begin

 p := s;

 while p^ <> #0 do

 Inc(p);

 n := p - s; // ptrdiff_t

 Dec(p);

 if n > CHAR_LEN then

 n := CHAR_LEN;

 dest^.vary_length := USHORT(n); // write the length for VARCHAR

 tostr := @dest^.vary_string[0];

 while (p >= s) and (n > 0) do

 begin

 tostr^ := Ord(p^);

 Inc(tostr);

 Dec(p);

 Dec(n);

 end;

end;

We first find the end of the C string and calculate the length as the subtraction of
pointers. The comment ptrdiff_t is just a leftover from the C++ version to indicate that, in
C++, that special type is the result of pointer subtraction, being typically a native integer

Writing External Functions—A General Guide Page 45 of 107

in the platform. We go back one character to avoid copying the #0 terminator itself, adjust
the length so it doesn't overflow our output buffer, then we assign the length.

To avoid warnings, we cast to USHORT, the type of vary_length. There's no reasonable
way n can be bigger than 2^31-1, other than in some future, enhanced version of Firebird.

We need an auxiliary, tostr. It has a different name than in the C++ version just because
to is reserved in Pascal. Also, we need to initialize it with the address of vary_string to
start copying bytes.

In the loop, we check that we are inside the range of the source string (p>=s) and that we
still have bytes to copy (n>0). We apply Ord() to the source because, being of type PChar,
its elements are Char. The target is UCHAR: hence, the pointer was defined PUChar,
using the helper definitions from our ibase_custom.pas.

This loop is the same as the C++ version but is longer because the increments and
decrements are done separately, respecting the order. There are other ways to do the loop,
assuming the compiler allows them:

 dest^.vary_length := USHORT(n); // write the length for VARCHAR

 tostr := 0;

 while (p >= s) and (n > 0) do

 begin

 dest^.vary_string[tostr] := Ord(p^);

 Inc(tostr);

 Dec(p);

 Dec(n);

 end;

Here, tostr is an integer, used as an index while treating vary_string as an array, a
technique familiar to Pascal programmers. After that, we can change the condition (n>0)
by (tostr<n) and eliminate the Dec(n) expression from the body of the loop.

Third version

For our third version, we have CSTRING for both input and output.
declare external function p_reverse3

cstring(30),

cstring(30)

returns parameter 2

entry_point 'p_reverse3' module_name 'phoenix';

As before, we find the terminator, then go back one position to the last character. Then we
simply copy the reversed input into the output, using "n" as a sentry marking the

Writing External Functions—A General Guide Page 46 of 107

maximum output length. Finally, do not forget or you will cause garbage to be read in the
engine: we told the engine our output is cstring(30) and hence it allocates 31 characters to
allow us to append the null terminator. This is our last sentence after the loop finishes.

// This is for output = CSTRING type

void p_reverse3(const char* s, char* dest)

{

 const char* p = s;

 while (*p)

 ++p;

 --p;

 for (int n = CHAR_LEN; p >= s && n; --n)

 *dest++ = *p--;

 *dest = 0; // write the NULL terminator for CSTRING.

}

Pascal version:

// This is for output = CSTRING type

procedure p_reverse3(s, dest: PChar);

var

 p: PChar;

 n: Integer;

begin

 p := s;

 while p^ <> #0 do

 Inc(p);

 Dec(p);

 n := CHAR_LEN;

 while (p >= s) and (n > 0) do

 begin

 dest^ := p^;

 Inc(dest);

 Dec(p);

 Dec(n);

Writing External Functions—A General Guide Page 47 of 107

 end;

 dest^ := #0; // write the NULL terminator for CSTRING.

end;

We go to the end of the source, looking for the C terminator #0, then go back one position
to skip it. The maximum number of characters we can copy is CHAR_LEN, that should be
the same as the UDF declaration, so we make it the second condition in the loop.

After finishing, we still need to terminate our output again with the C terminator.

Notice that none of the reverse functions returns any
argument. Because they use an output parameter, in C++
they are of type void and, in Pascal, they are simple
procedures, not functions.

Functions that work getting and/or setting blobs
Here we want to demonstrate the blob handling facilities that have long been available,
although the blobcallback structure used was not declared in the public header. It was
documented in the technical documentation, with one omission: the existence of a function
to seek into blobs. The omission probably had to do with the fact that it works only for
stream type blobs, which are not available through SQL DDL statements.

It is important to treat the blob handle as an opaque value, without changing it.

Blobs are handled as input or output parameters, never as return value. If a UDF
declaration uses a blob as the return value, it will be converted to the mechanism with an
output parameter. For example:

SQL> declare external function try int returns blob entry_point 'K'

CON> module_name 'K';

SQL> declare external function trz int, blob returns parameter 2

CON> entry_point 'K' module_name 'K';

SQL> ^Z

When asked to extract information, isql says:
/* External Function declarations */

DECLARE EXTERNAL FUNCTION TRY

INTEGER, BLOB

RETURNS PARAMETER 2

ENTRY_POINT 'K' MODULE_NAME 'K';

Writing External Functions—A General Guide Page 48 of 107

DECLARE EXTERNAL FUNCTION TRZ

INTEGER, BLOB

RETURNS PARAMETER 2

ENTRY_POINT 'K' MODULE_NAME 'K';

Since blobs can be returned only as output parameters, there is no way to signal a NULL
output blob. Starting in Firebird v1.5, the blob handle can be set to NULL just before
returning, to tell the engine it should assume a null blob is the result from the function.
However, the old functionality with input blobs has been retained: so as not to produce an
incompatible change there is no way to distinguish an empty blob from a null blob.

Indeed, when the engine has a null representing a blob that it has to pass to a UDF, it
creates an empty blob and fills the blobcallback structure to make it point to that empty
blob.

declare external function p_defragment_blob

blob,

blob,

int

returns parameter 2

entry_point 'p_defragment_blob' module_name 'phoenix';

Since our function will use an output parameter, we declare it to return nothing.

Also, since C++ translates a reference to a pointer behind scenes, we used that idea to
declare the segment size (the integer parameter) as a reference instead of as a pointer.
This avoids having to dereference a pointer when its value is going to be used. We decided
that we would equate an input blob with zero segments, or one whose total length was
zero (an empty blob), to a null input. Thus, to inform the engine that the output
parameter is to be treated as null, we set the handle of the output blob to zero and return.

defragment_blob ?
While the name of the function may suggest that it improves the storage of the blob, it
should be taken only as an exercise in logic. Defragmenting a blob does not make much
sense, since internally very small blobs reside in data pages and bigger blobs reside in
special blob pages.

What this function does is to retrieve a blob and then generate an equivalent blob with the
same information, but with a given segment size, the same for all segments except
possibly the last. That, typically, will have the remainder unless the blob's size is a
striaght multiple of the chosen segment size.

Writing External Functions—A General Guide Page 49 of 107

Given a segment size of zero, or one that goes above the limit, the maximum segment size
(64K-1) will be used. The user should see the same data in the original and the new blob.

The differences are:

 A blob can have segments of different sizes, according to how it was written. Each call
to put_segment generates naturally a segment that can vary from size 1 to 65535,
depending on how much data was written. The declared segment size in DDL
statements is only an indication. The new blob will have all segments the same size,
except the last, probably..

 A blob can have a lot of small segments. If a big value (inside the allowed range, of
course) is provided, chances are the blob will fit on one segment or will be composed of
a few big segments.

 Fewer calls to get_segment will be needed on the new blob, and chunks retrieved will
be of predictable size, but a performance gain is hard to prove.

To repeat, defragmenting here means that, provided long segments, the new blob will
probably end up with fewer segments. It has little effect on how the engine stores the blob
and has no effect on physical defragmentation at the hard disk level.

// This is for input blob struct and output blob struct.

// Null cannot be distinguished from empty blob.

// will return NULL if the input blob is empty.

void p_defragment_blob(const blobcallback* input, blobcallback* output,

 const SLONG& input_seg_size)

{

 if (!input->blob_number_segments || !input->blob_total_length ||

 input_seg_size < 0)

 {

 output->blob_handle = 0; // hint to the engine -> make output blob NULL

 return;

 }

 int seg_size = input_seg_size;

 if (!seg_size || seg_size > MAXSEG)

 seg_size = MAXSEG;

 UCHAR* const buf = new UCHAR[seg_size];

 const UCHAR* const endbuf = buf + seg_size;

Writing External Functions—A General Guide Page 50 of 107

 UCHAR* p = buf;

 int num_seg = input->blob_number_segments + 1;

 while (num_seg)

 {

 USHORT result_len = 0;

 const int rc = input->blob_get_segment(input->blob_handle,

 p, endbuf - p, &result_len);

 p += result_len;

 if (!rc || p >= endbuf) // blob eof, buffer full

 {

 output->blob_put_segment(output->blob_handle, buf, p - buf);

 p = buf;

 if (!rc)

 break;

 }

 if (rc != -1) // -1 happens if we got a a fragment of a segment

 --num_seg;

 }

 delete[] buf;

}

First, we allocate a buffer of our desired output segment size. Then we go into a loop for
one more than the number of segments the input blob has. This is because we want to
handle two conditions at the same time instead of repeating logic after the loop. When the
buffer is full, we write it to the output blob, but also, when the input blob is exhausted, we
write the remainder to the output blob.

For safety, we initialize the length of the retrieved segment to zero before calling
get_segment. The result of get_segment has three values:

♦ one means we got a full segment

♦ zero implies there was not data retrieved (typically, end of blob)

♦ -1 is to signal that we got all our buffer with data, but it was not enough to retrieve a
full segment (since the segment was bigger than the buffer, the next call to
get_segment will retrieve the remaining data in the segment).

Writing External Functions—A General Guide Page 51 of 107

Fragment of a segment

The third case is known as getting a fragment of a segment. Take note we use that
information to decide whether or not to decrement the number of segments that we have
still to read: if we got a fragment, then we still did not read a whole segment.

Since the logic to write the output is done for both the buffer full and end of blob
conditions, we only break the loop if there is no more data (rc is zero). At the same time,
after we write the buffer, we reset the pointer that indicates the position in the buffer that
will be passed to get_segment.

Handling the available space in the buffer is the only logic that needs careful attention
here. Our main loop tests num_seg only for security, since the logic that writes the output
blob will terminate the loop is there is no more data.

Finally, after the loop, we deallocate our buffer.
Since we will never move buf and endbuf, we can mark them as const after the asterisk,
meaning the pointer itself can not be changed. Although the data pointed by buf can still
be changed, endbuf can neither move itself nor modify the data.
Now our Pascal version. Remember, we are not doing a real defragmentation in the
internal structures of the database. We are simply writing the blob with less format. This
way, a single get_segment, with buffer sufficient to accommodate the biggest segment, will
be called fewer times than for a lot of small segments, even if the buffer to read the blob is
big.

However, since we can control the size of the segments, we could eventually write a new
blob that has more but smaller segments than the original blob:

// This is for input blob struct and output blob struct.

// Null cannot be distinguished from empty blob.

// will return NULL if the input blob is empty.

procedure p_defragment_blob(input, output: Pblobcallback;

 var input_seg_size: SLONG);

var

 seg_size, num_seg, rc: Integer;

 buf, endbuf, p: PUchar;

 result_len: USHORT;

begin

 if ((input^.blob_number_segments = 0) or (input^.blob_total_length = 0) or

 (input_seg_size < 0)) then

 begin

 output^.blob_handle := nil; // hint to the engine -> make

Writing External Functions—A General Guide Page 52 of 107

 //output blob NULL

 Exit;

 end;

 seg_size := input_seg_size;

 if (seg_size = 0) or (seg_size > MAXSEG) then

 seg_size := MAXSEG;

 GetMem(buf, seg_size);

 endbuf := buf;

 Inc(endbuf, seg_size);

 p := buf;

 num_seg := input^.blob_number_segments + 1;

 while num_seg > 0 do

 begin

 result_len := 0;

 rc := input^.blob_get_segment(input^.blob_handle, p,

 PChar(endbuf) - PChar(p), result_len);

 Inc(p, result_len);

 if (rc = 0) or (PChar(p) >= PChar(endbuf)) then // blob eof, buffer full

 begin

 output^.blob_put_segment(output^.blob_handle, buf,

 PChar(p) - PChar(buf));

 p := buf;

 if rc = 0 then

 break;

 end;

 if rc <> -1 then // -1 happens if we got a fragment of a segment

 Dec(num_seg);

 end;

 FreeMem(buf, seg_size);

end;

The variable input_seg_size was declared as var as the means of declaring a variable
declared by pointer without having to use pointer dereferencing notation to use the
variable. Recall that const in Pascal is compiler dependent). To avoid any problem of

Writing External Functions—A General Guide Page 53 of 107

changing it accidentally, it is copied into a variable named seg_size, that is adjusted to the
maximum allowed segment size, in case the requested size is out of range.

Before that, we made the same assumption as the C++ code, that a blob with no segments,
a blob with total length of zero, or a requested segment size less than zero meant
returning a NULL blob. We do that with the aforementioned hint to the engine: putting
the handle in the blob structure to nil.

We are going to play with the direct memory allocation and deallocation routines here. We
request dynamic memory for the requested segment size and set our endbuf indicator to
the same address as the new memory chunk. Then, we increment it by seg_size, making it
point one byte past the allocated buffer.

Unlike C++, where the normal operators can be used, we are forced to use the Inc
procedure to increment a pointer. Also, unlike C++, we cannot tell the compiler we do not
want to move the address of buf and endbuf (to be able to deallocate and to mark the end,
respectively), so we should check that we did not alter them in the rest of the function.

We use p as an indicator of the position available in the buffer to read a segment. For
example, with a buffer size of 10 and two segments of length 3 and 4, p and buf are the
same in the first get_segment call. In the next cycle, p is 3 bytes ahead (remaining space
is 7) and in the third iteration, p is 7 bytes ahead (remaining space is 3).

As in the C++ code, our num_seg is set to one more than the number of segments to
guarantee that the loop will be able to write any remnants from the source blob into the
target blob. In practice, the condition of the while loop will never be false because the
loop will be broken from inside it.

One annoying difference with C++ is the cast to PChar to be able to take the difference in
bytes between two pointers. The reason is that such a difference is managed natively in
Pascal only for pointers to normal Char. Here, because the blob may contains any kind of
information, we are using unsigned Char to have each position treated as an 8-bit byte.

Now, inside our loop, we set the result_len to zero for safety, then read a segment
according to our remaining space, our objective being to fill the segment buffer and then
write it to the destination. Again we have to use Inc to position p, the beginning of the
available space in the buffer. If we got eof (result of get_segment being zero) or the
available space is zero (p reached the position of endbuf), then we first write the buffer in
the destination blob. We position p at the beginning of buf again for a possible new loop,
once again making the full buffer available to get_segment.

Finally, if the cause of the code block being executed was eof, we break the loop.

Otherwise, if the loop is not broken at that point, we go to the place where the result from
get_segment is checked against -1, to check whether a whole segment was available to be
read, or just a fragment of a segment. We decrement the num_seg variable, as expected, if
we get a whole read, since we are counting full segments.

Writing External Functions—A General Guide Page 54 of 107

Imagine our source blob has a segment of length 20, our output segment size is 9
and our buffer is totally empty. In that scenario, there will be two get_segment
calls that will get -1 as result, since they are still reading a fragment of the same
segment. The third will read two bytes and will return zero, at which point we
decrement our segment counter.

This counter is really just a safety net in case something unexpected happens. Under
normal circumstances, the "break" inside the loop will finish it. After the loop, we return
the dynamic memory that we allocated.

Finally, a clarification with the pointer game, where we simplified the names and got rid
of the casts just to show the essential idea:

 get_segment(blob_handle, p, endbuf - p, result_len);

means we are reading at p, the beginning of the available space, and the amount of
available space is the difference between the end of the buffer and the current available
space. However, when writing,

 put_segment(blob_handle, buf, p - buf);

we are always writing from the beginning of the buffer (buf) and we can't pad the last
segment with random characters or garbage from the previous loop, hence the number of
bytes to be written is the available position minus the beginning of the buffer. In both
cases, we forced to PChar to be able to compile and to make sure the difference is
measured in bytes.

Blob generation
If we wanted to test our previous routine, we would have to keep a database with blobs of
several combinations of segment sizes and number of segments to validate it. Instead, we
have a built a function that can create and populate a blob given two parameters, the
starting segment size and the number of segments.

declare external function p_generate_blob

blob,

int,

int

returns parameter 1

entry_point 'p_generate_blob' module_name 'phoenix';

For each new segment, we increment the segment size by one and we take care to not go
beyond the maximum segment size. If we reach MAXSEG, we will keep writing the rest of
the segments requested with that maximum size.

While it may seem strange that we are going to pass blobs between two functions without
using a table, it is perfectly natural: a blob is temporary until its blob identifier is
assigned to a blob field in a table and that operation is committed.

Writing External Functions—A General Guide Page 55 of 107

The engine automatically discards temporary blobs when they are no longer needed. This
happens typically when the request that used them finishes or when the transaction
under which they were created is committed or rolled back. A temporary blob that gets
assigned to a blob field in a table is said to become a materialized blob.

In this case, we are playing exclusively with temporary blobs, but there is nothing that
prevent us from assigning the result of this function to a table's field. Temporary blobs can
be read the same way as materialized blobs.

Our function first checks that the desired starting segment size and the number of
segments are one at least; otherwise it returns without doing anything. We then proceed
to declare an array of the maximum allowed length.

Granted, we could have been more careful and, given the starting segment size and the
number of segments, could have determined the maximum needed buffer size as

min(seg_size + num_seg - 1, MAXSEG)

and allocated it dynamically. However, we went for simplicity here.

We might also have created the buffer, as we did now, with its maximum size, but outside
any function, as a static variable and have initializes it using platform-dependent
facilities when the library is loaded. We wanted to avoid writing code that was dependent
on the operating system, though.

We chose to initialize it simply with ASCII values representing the printable characters
zero to nine and going back to zero, and so on, until all the buffer is filled. If you consider
this technique a waste of time, then a global buffer is feasible, considering the buffer is
only read by this function.

As an alternative to operating system hooks to initialize a library that has been loaded, a
C++ class with a constructor can be used (where the only instance would be global) or the
Delphi initialization section may be used in the same unit where the UDFs are defined.

// This is for output blob struct, to create a blob to test the previous

function.

void p_generate_blob(blobcallback* output, const SLONG& input_start_size,

 const SLONG& input_num_seg)

{

 if (input_start_size < 1 || input_num_seg < 1)

 return;

 UCHAR buf[MAXSEG];

 for (int i = 0; i < MAXSEG; ++i)

 buf[i] = '0' + static_cast<UCHAR>(i % 10);

Writing External Functions—A General Guide Page 56 of 107

 int seg_size = input_start_size;

 if (seg_size > MAXSEG)

 seg_size = MAXSEG;

 for (int num_seg = input_num_seg; num_seg; --num_seg)

 {

 output->blob_put_segment(output->blob_handle, buf, seg_size);

 if (++seg_size > MAXSEG)

 seg_size = MAXSEG;

 }

}

The logic is really simple: we ensure that our original segment size does not surpass
MAXSEG or use this value and go into a loop that calls put_segment as many times as the
number of segments requested. In each iteration, we increase the segment size. If we hit
MAXSEG, we continue using this value for the rest of the iterations.

Here is our Pascal version. Instead of messing with a C++ program (the server) running a
Pascal DLL under the Delphi debugger, we chose to put compile-time conditional code to
put a dialog on screen, since we are going to debug locally (otherwise, we will halt the
function execution on the remote machine, of course). Apart from a Spanish message, the
logic is the same as the C++ version:

// This is for output blob struct,

// to create a blob to test the previous function.

procedure p_generate_blob(output: Pblobcallback; var input_start_size: SLONG;

 var input_num_seg: SLONG);

var

 i, seg_size, num_seg: Integer;

 buf: array[0..MAXSEG - 1] of UCHAR;

begin

{$IFDEF GUI_MSG}

 ShowMessage('Aquí voy, generate_blob.');

{$ENDIF}

 if (input_start_size < 1) or (input_num_seg < 1) then

 Exit;

 for i := 0 to MAXSEG - 1 do

 buf[i] := Ord('0') + UCHAR(i mod 10);

Writing External Functions—A General Guide Page 57 of 107

 seg_size := input_start_size;

 if seg_size > MAXSEG then

 seg_size := MAXSEG;

{$IFDEF GUI_MSG}

 ShowMessage(Format('%p %p %.10s', [output, output^.blob_handle,

 PChar(@Buf[0])]));

{$ENDIF}

 for num_seg := input_num_seg downto 1 do

 begin

 output^.blob_put_segment(output^.blob_handle, @buf[0], seg_size);

 Inc(seg_size);

 if seg_size > MAXSEG then

 seg_size := MAXSEG;

 end;

end;

If the starting size or the number of segments are not positive, we exit, returning an
empty blob (not a null blob, because the engine already created an empty blob for us to
fill).

We fill our buffer with the sequence '0' to '9', then '0' to '9' again and so on. The usage of
Ord() is needed since we are dealing with unsigned characters. We adjust the segment
size, produce a dialog box with debugging information and go in the loop of writing each
segment with as much information as we can from the buffer with the sequence '0'..'9',
taking care to not go beyond the maximum allowed segment size, that can be reached if
the initial size incremented by the number of segments to be written is bigger than
MAXSEG.

Samples for testing
Since we have a function to rewrite the blob in segments of fixed size and we have a
function to generate blobs of monotonically increasing segment sizes with predicatable
data, we need a function that can be applied to them, to verify that:

 The UDF generate_blob is working as expected.

 The UDF defragment_blob, after being applied to a database field or the output from
generate_blob, still retains all the data that it began with and no data corruption has
happened as a result of changing the segment size. For validation purposes, the user
should see the same data without considering segment boundaries that are marked
with a comma.

Writing External Functions—A General Guide Page 58 of 107

 Any function that outputs a blob works as expected without the need to first assign
the blob to a table's field and then read from that table.

declare external function p_sample_blob

blob,

int

returns varchar(150) free_it

entry_point 'p_sample_blob' module_name 'phoenix';

The function is called sample_blob because it takes a sample of each blob's segment.

For readability, we want to test small blobs, so we have limited the output of the function
to 150 characters. If more is desired, then the function has to be declared with a bigger
varchar size as output. again. (It can be declared with another name, leaving the original
declaration unchanged.)

If the data returned by the UDF is bigger than the declared output length, then the
engine will not be able to assign it to the preallocated buffers and will complain about
data truncation. Nothing harmful will happen, since it is the engine that prevents a buffer
overrun. However, to avoid having more parameters in the function, we hard-coded some
values.

The first part of the function is used in verification. If a blob has no segments or length
zero, we'll assume the empty blob is a null blob and will return NULL accordingly. We
also reset the sample to be not bigger than the biggest segment in the blob (this
information is known from the blobcallback structure).

Next, we get into a formula to determine the maximum sample: given a sample, we need
one more byte for a comma (we separate segments by a comma), then that value
multiplied by the number of segments in the blob cannot surpass the practical limit of a
row's size in the engine. For the sake of accuracy, we take into account the two bytes that
the varchar fields need.

Finally, we determine that we do not want the sample of each segment to be bigger than
an arbitrary length, 30. Imagine if you have 50 segments of maximum length 100 and you
requested a sample of 15, this will produce an output of approximate length 15 * 50, or
750 bytes, not easily readable for a single field.

Let's consider the following limitations:

 The calculation of the output's length is the worst case, using the biggest blob's
segment as recorded by the engine. Obviously there can be much smaller segments
(even one byte in length) that may make the result smaller.

 The UDF has no way to know the declaration of the result, so it assumes it has the full
row size allowed by the engine as the maximum. If you get truncation errors, either
you will have to be more modest in your sample size (chunk of each segment that is

Writing External Functions—A General Guide Page 59 of 107

shown) or you will have to declare the result to be wider. Unfortunately, field
declarations are limited to values smaller than 32K, so the UDF is over-optimistic in
assuming it can return values a few smaller than 64K (MAXROW).

// This is for input blob struct and output VARCHAR(150)

// Null cannot be distinguished from empty blob, but the routine

// will return NULL if the blob is empty. We will use FREE_IT.

// Really, we will return any length. When we surpass 150, the engine

// will not be able to copy the result to another location and will

// generate the "string truncation" message.

paramvary* p_sample_blob(const blobcallback* input, const SLONG& input_len)

{

 if (!input->blob_number_segments || !input->blob_total_length

 || input_len < 1)

 {

 return 0;

 }

 int sample_len = input_len;

 // adjust sample_len to something reasonable

 // a) cannot be bigger than segment max size; we do not know min size

 if (sample_len > input->blob_max_segment)

 sample_len = input->blob_max_segment;

 // b) cannot be bigger than max row size near 64K div by num segments

 // (1 + sample_len) * num_seg + VARCHAR_PREFIX < MAXROW

 // where 1 is for each comma appended to separate segments.

 // This gives us:

 // sample_len < (MAXROW - VARCHAR_PREFIX) / num_seg - 1;

 int num_seg = input->blob_number_segments;

 const int max_sample = (MAXROW - VARCHAR_PREFIX) / num_seg - 1;

 if (sample_len > max_sample)

 sample_len = max_sample;

 //c) We set the arbitrary limit in 30

 if (sample_len > 30)

Writing External Functions—A General Guide Page 60 of 107

 sample_len = 30;

 const USHORT seg_lim = input->blob_max_segment > MAXSEG ?

 MAXSEG : (USHORT) input->blob_max_segment;

 UCHAR* const input_buf = new UCHAR[seg_lim];

 paramvary* const v = reinterpret_cast<paramvary*>(

 ib_util_malloc((sample_len + 1) * num_seg + VARCHAR_PREFIX));

 UCHAR* output_buf = v->vary_string;

 v->vary_length = 0; // let's play safe if we have to exit prematurely

 for (; num_seg; --num_seg)

 {

 USHORT result_len = 0;

 const int rc = input->blob_get_segment(input->blob_handle,

 input_buf, seg_lim,

 &result_len);

 // This cannot happen in our limited world,

 // so if it happens, we quit.

 if (rc == -1) // got only a fragment of a segment?

 break;

 if (result_len > (USHORT) sample_len)

 result_len = sample_len;

 for (const UCHAR* ip = input_buf; result_len; --result_len)

 *output_buf++ = *ip++;

 *output_buf++ = ',';

 }

 delete[] input_buf;

 // ptrdiff_t->USHORT

 v->vary_length = static_cast<USHORT>(output_buf - v->vary_string);

 return v;

}

For the rest of the function, we first verify that our buffer is enough to read one segment
at a time. This is for simplicity, since with only one call to get_segment we will get even
the largest segment and will take a few bytes from it (the sample). If we had to deal here
with segment fragments, the logic would be more complex.

Writing External Functions—A General Guide Page 61 of 107

We made an additional check to ensure that the stated biggest segment is in the range 1
to MAXSEG. This happens because the supposed limit for a segment in the engine is
655535 but the field blob_max_segment in the blobcallback structure is a signed 32-bit
quantity, which puts it well beyond the limits of an unsigned 16-bit quantity (the type of
the segment size accepted by get_blob and put_blob).

Whether this condition can arise in a real scenario is unknown, so, inside the loop, we
made the test "if get_segment says we only read a fragment of a segment, we quit the loop,
since we do not have logic to cope with that condition".

We allocated our buffer for the worst case (biggest segment) using the native facilities in
the language, i.e., the "new" operator for C++. We cannot call ib_util_malloc because it is
only useful for allocating memory that will be passed from the UDF to the engine, and not
for memory used inside the UDF.

In this case, our temporary buffer is deallocated before the function exists. However, the
next call makes use of ib_util_malloc because our declaration indicates that the function
will allocate and return varchar and that the engine is reponsible for getting rid of it
(free_it).

We add one to the sample length, to make room for the comma that we will use to mark
the separations between two consecutive segments and then multiply that quantity by the
number of segments that the incoming blob has.

Finally, we add VARCHAR_PREFIX (two bytes) to account for the length information a
VARCHAR needs at the beginning, pass this value to ib_util_malloc and cast the result to
be of type paramvary (remember, we declared that the function would return a
VARCHAR).

We declare a pointer to the beginning of the data part of the result (the vary_string
member in paramdsc) for use when copying samples from each segment in the input blob.
We cannot move the variable pointing to "v" (the paramdsc) because we need to return
that pointer. As a precaution, we assign zero to the length of the result.

As many times as there are segments, we set the number of bytes read to zero for safety,
then try to read a segment into our buffer. If we encounter the previously described
condition, where the buffer is insufficient and we must read just a fragment, we quit the
loop, adjust the bytes read so they are not bigger than our desired sample's size and use
the same variable to copy bytes from the buffer to the output variable.

Finally, we append the comma to the output buffer and go for another cycle.

Once the loop is finished, we free our temporary buffer (not the result!) and adjust the
length. Calculating the effective length (which may be smaller than the declared length) is
easy since both vary_string (the starting value for output_buf) and output_buf itself are of
type pointer to byte, so their difference is the number of bytes that were written.

Writing External Functions—A General Guide Page 62 of 107

We then return the varchar variable (a pointer). The engine will take it, read it and
deallocate it when needed.

We could have been paranoid and, in the loop that copies bytes, ensured we did not write
more than seg_lim bytes into the result, which would cause a buffer overrun in dynamic
memory. If it happened, it would be due to either a logic bug in this function or an
inconsistency in the information about the blob that was provided by the engine , i.e.
possibly blob corruption in the database.

Just before ending the loop, we append the semicolon with the statement
 *output_buf++ = *ip++;

If the blob contains some unprintable or blank characters, that trailing semicolon will
indicate visually the real end of the sample. For purists, this has the nasty effect that
there will be a trailing semicolon, after the last segment sample. If you do not want to see
the trailing semicolon, you can write instead:

 if (num_seg > 1)

 *output_buf++ = ',';

Now, our Pascal version, again with some Spanish messages and debugging information
in dialog boxes for local usage.

Since we now have the ability to return a null string (using a descriptor) we do so if the
parameters are invalid or out of range. Then we proceed to adjust the sampling lengthas
in the C++ version. The limit of 30 bytes per segment is arbitrary but with a declared
returned length of 150 bytes, at least we can show five segments if there are five or more.

We do the extra check of adjusting seg_lim for the sole reason that the maximum segment
in the current engine is MAX_SEG but, for some reason, the blobcallback structure
provides blob_max_segment with more capacity than it currently needs.

// This is for input blob struct and output VARCHAR(150)

// Null cannot be distinguished from empty blob, but the routine

// will return NULL if the blob is empty. We will use FREE_IT.

// Really, we will return any length. When we surpass 150, the engine

// won't be able to copy the result to another location and will

// generate the "string truncation" message.

function p_sample_blob(input: Pblobcallback;

 var input_len: SLONG): Pparamvary;

var

 sample_len, num_seg, max_sample, rc: Integer;

 seg_lim: USHORT;

 input_buf, output_buf, ip: PUChar;

Writing External Functions—A General Guide Page 63 of 107

 v: Pparamvary;

 result_len: USHORT;

begin

 if ((input^.blob_number_segments = 0) or (input^.blob_total_length = 0)

 or (input_len < 1)) then

 begin

{$IFDEF GUI_MSG}

 ShowMessage('Retorno null, sample_blob.');

{$ENDIF}

 Result := nil;

 Exit;

 end;

 sample_len := input_len;

 // adjust sample_len to something reasonable

 // a) cannot be bigger than segment max size; we don't know min size

 if sample_len > input^.blob_max_segment then

 sample_len := input^.blob_max_segment;

 // b) cannot be bigger than max row size near 64K div by num segments

 // (1 + sample_len) * num_seg + VARCHAR_PREFIX < MAXROW

 // where 1 is for each comma appended to separate segments. This gives us:

 // sample_len < (MAXROW - VARCHAR_PREFIX) / num_seg - 1;

 num_seg := input^.blob_number_segments;

 max_sample := (MAXROW - VARCHAR_PREFIX) div num_seg - 1;

 if sample_len > max_sample then

 sample_len := max_sample;

 //c) We set the arbitrary limit in 30

 if sample_len > 30 then

 sample_len := 30;

 if input^.blob_max_segment > MAXSEG then

 seg_lim := MAXSEG

 else

 seg_lim := USHORT(input^.blob_max_segment);

Writing External Functions—A General Guide Page 64 of 107

 GetMem(input_buf, seg_lim);

 v := ib_util_malloc((sample_len + 1) * num_seg + VARCHAR_PREFIX);

 output_buf := @v^.vary_string[0];

 v^.vary_length := 0; // let's play safe if we have to exit prematurely

 for num_seg := num_seg downto 1 do

 begin

 result_len := 0;

 rc := input^.blob_get_segment(input^.blob_handle, input_buf,

 seg_lim, result_len);

 // This cannot happen in our limited world, so if it happens, we quit.

 if rc = -1 then // got only a fragment of a segment?

 break;

 if result_len > USHORT(sample_len) then

 result_len := sample_len;

 ip := input_buf;

 while result_len > 0 do

 begin

 output_buf^ := ip^;

 Inc(output_buf);

 Inc(ip);

 Dec(result_len);

 end;

 output_buf^ := Ord(',');

 Inc(output_buf);

 end;

 FreeMem(input_buf, seg_lim);

 // ptrdiff_t to USHORT

 v^.vary_length := USHORT(PChar(output_buf) - PChar(@v^.vary_string[0]));

{$IFDEF GUI_MSG}

 ShowMessage(Format('%d %.30s', [v^.vary_length,

 PChar(@v^.vary_string[0])]));

{$ENDIF}

Writing External Functions—A General Guide Page 65 of 107

 Result := v;

end;

We allocate memory directly from the basic facilities to contain our read blob but, to
allocate the output, we use the Firebird routine since it will be passed to the engine and
the engine should deallocate it. We read a whole segment at a time but write only the
requested "sample" size of each segment (or less if the segment was smaller). We copy the
bytes one by one.

Again, our while loop is the counterpart of the more compact C++ for, due to the absence
of a Pascal syntax to mix the increment and decrement operators in the same statement.

Finally, we add the comma to separate the segment samplings visually, adjust the output
pointer one byte ahead, again, and go into another cycle. When the cycle is finished, we
return the memory for the input buffer, adjust the length in the Paramvary structure, call
(if enabled) a dialog with debugging information and assign the allocated Paramvary to
the result of the function.

Side note—blobcallback
It is intriguing that, in all those years, we did not receive any question from newcomers
about the magic in the blobcallback structure. Either nobody noticed it or everybody knew
about it or all programmers took it for granted.

Pascal translations have existed for years so you did not need to know our
ibase_custom.pas (developed only recently) to question why it works. In C++, there is no
big difference between a struct (record in Pascal) and a class (more or less a class in
Pascal) because a struct is considered a class with all members being public. Therefore, if
you define functions inside a struct, they will be considered methods and the compiler will
pass the "this" pointer behind scenes. This would make blobcallback a different beast
depending on whether C or C++ compiled the header.

Apart from the fact that plain old C will not like functions inside a structure, blobcallback
in ibase.h only declares pointers to functions, because the addresses are filled by the
engine. In Pascal, records are simple records, not objects, so even if you manage to declare
functions inside them, they will not receive any "self" pointer. But since the engine needs
to fill in these addresses, again the Pascal version declares pointers to functions.

Therefore, we avoid any difference in interpretation from different language compilers.
The compilers do nothing to pointers to plain functions declared inside structures or
classes. Of course, C++ has (rarely used) pointers to members and Delphi has (widely
used) declarations of procedures and functions "of object" for delegation.

Writing External Functions—A General Guide Page 66 of 107

Functions that work with internal descriptors
We reached the point where adventurous programmers want to go: directly using
information from the engine in the format that the engine uses. Granted, using
VARCHAR variables directly is already making use of internal structures, but here we go
a step further: we use the descriptor, the structure indicating several run-time attributes
of the data.

At a low level where the engine does not care about field names, descriptors point to the
each field's data and explain how to interpret the data they hold, in a generic variable of
type pointer to byte.

A structure known as format describes the layout of a record, including an array of
descriptors. The format is not available externally, but the descriptor is.

You should be extremely careful when dealing with descriptors, since the engine is not
giving you a copy of its data or its metadata, but direct access to the in-memory structures
holding data. A mistake here may cause side effects hard to track. As a general rule,
NEVER modify an input descriptor in any way. If you use C++, declare the input
descriptor(s) as pointers to constant data, thus enabling the compiler to catch
programming errors.

We explained previously that descriptors pose an additional challenge: the lack of data
type verification in against the UDF declaration. To explain this, let's analyze these facts:

 Input parameters by value are deprecated and cannot be declared through SQL DDL,
so they are not considered here.

 With input parameters declared by reference or by reference with null signaling, the
engine checks that each parameter type exactly matches the UDF declaration. Since
this is too restrictive, the engine checks for compatible types and does the conversions
if possible, for example to pass an integer to a function that wants a double precision
value. But if no conversions are available, the engine will say that there is not a match
between the UDF declaration and the intended usage and will not compile the
statement.

There seems to be evidence that UDFs can be overloaded (based on internal code that
compares what it calls homonyms) but a unique index on the UDF name in the system
table rdb$functions makes impossible to declare two UDF's with the same name and
different parameters (probably the engine would have to check that the combination of
entry_point and module_name is unique).

 With input parameters declared by blob,, the engine will pass blobs and arrays to the
UDF and will wrap their internal structures in the externally visible blobcallback
structure. Probably arrays are undesirable here, but the check is left to the user. On

Writing External Functions—A General Guide Page 67 of 107

the other side, the UDF might want to print or save arrays in raw format for
debugging, for example.

 With input parameters declared by scalar_array, the engine will check at run-time
that it is getting an array and will pass a higher level, simplified structure named
scalar array descriptor.

 However, with input parameters by descriptor, the engine does not care which data it
is passing to the UDF. The declaration of the UDF's parameters becomes only a
formality to keep happy the places that would otherwise complain about unknown
data types.

For any input parameter declared by descriptor, the engine can pass a descriptor
pointing to integers, doubles, timestamps, strings, blobs (pointing to the internal
structure, not blobcallback) and arrays (again, pointing the internal array structure
that is, after all, a blob.

You have to deal with all this variability. Since you cannot raise exceptions from
UDFs, your only indication that you do not accept the given parameters or that
something went wrong would be to return NULL v/s whatever arbitrary value (a
pointer to a global constant, for example) or to return an integer with values zero or
one. (Boolean UDFs may have beeen considered, but they were not implemented.

If you are just looking for a way to detect SQL NULL without all these details, prefer
the new reference with null signaling mechanism, explained previously with the
"lastchar" family of functions.

UDFs with descriptors
Our next example outputs a combination of two strings. To demonstrate descriptors, we
receive both input parameters by descriptor.

Since we only want to deal with strings, we built a helper named get_string for use when
the descriptor indicates it contains a CHAR, VARCHAR or CSTRING type. It will return
a pointer to byte pointing to the data (the string. It will also set the length of the returned
string in the second parameter, received by reference.

If the descriptor does not contain one of the three string types, get_string simply returns
the null pointer and leaves the length parameter unchanged. We could try to make this
function available to the engine for experimentation but we elected to keep it private.

Notice the function says clearly it will not change the input descriptor. The price one pays
for the complexity of dealing with a descriptor is partly mitigated because descriptors are
efficient: they are pointing directly to the internal data, so no translation or copy to a
temporary buffer needs to be done by the engine.

Writing External Functions—A General Guide Page 68 of 107

// Do not publish this helper.

// Given a descriptor, it gets the string and the length if it is one of the

// three string types recognized by the engine.

// It does not put the terminator.

const UCHAR* get_string(const paramdsc* p, USHORT& length)

{

 if (!p || !p->dsc_address || (p->dsc_flags & DSC_null))

 return 0;

 const UCHAR* rc = 0;

 switch (p->dsc_dtype)

 {

 case dtype_text:

 rc = p->dsc_address;

 length = p->dsc_length;

 if (length > 0)

 {

 int loop = length - 1;

 while (loop >= 0) // let's ignore trailing blanks

 {

 if (rc[loop] == ' ')

 --loop;

 else

 break;

 }

 length = (USHORT) (loop + 1);

 }

 break;

 case dtype_varying:

 {

 const paramvary* v =

 reinterpret_cast<paramvary*>(p->dsc_address);

 rc = v->vary_string;

 length = v->vary_length;

 }

 break;

Writing External Functions—A General Guide Page 69 of 107

 case dtype_cstring:

 {

 rc = p->dsc_address;

 length = 0;

 for (const UCHAR* cp = rc; *cp; ++cp)

 ++length;

 }

 break;

 default:

 break;

 }

 return rc;

}

First, we'll check that the descriptor is useful. It is the equivalent of SQL NULL if we find
any of the following conditions:

 The descriptor itself is the null pointer. It can happen if the UDF receives the literal
NULL directly in one parameter. Remember, our next function (the visible one) will
pass whatever descriptor it gets to this function.

 The descriptor's data pointer (address) is the null pointer. Although it is almost
impossible for this to happen, it is a risk we do not want to take. No data would mean
SQL NULL.

 The descriptor's flags include the activated null indicator.

When any of these conditions is met, we simply return the null pointer. Nothing more to
do.

Now, if we got a valid descriptor, we initialize the return pointer to null and we'll have to
branch, based on the data type (dsc_dtype) as follows:

 For CHAR, the address is the data and the length is taken from the descriptor's
length. Since we want to trim trailing blanks, we have extra logic to determine the
trimmed length.

 For VARCHAR, the address is really the address of the paramvary struct we used in a
previous example, hence we cast the address to paramvary and get the data and the
length. If we wanted to be more cautious, we would compute the minimum of
dsc_length – VARCHAR_PREFIX and vary_length. Typically the engine does that for
safety, since for VARCHAR, the descriptor's length includes the length indicator in
paramdsc, a 16-bit unsigned quantity.

 For CSTRING, the address is the data, but we do not trust the descriptor's dsc_length.
Instead, we calculated the length of the string as strlen() would do.

Writing External Functions—A General Guide Page 70 of 107

The disadvantage of that code is that, if we get a string in charset BINARY
(OCTETS), it could have embedded ASCII nulls and therefore, we would miscalculate
the length.

Again, if we want to be more accurate, the descriptor contains charset information
(something that's not available otherwise) and we could skip the loop if we receive
charsets we know are problematic (binary plus MBCS charsets including
UNICODE_FSS).

 For other data types, it simply does nothing, since the return value is already
initialized to be the null pointer.

As the function's comment says at the top, this function returns exactly what it gets. For
people used to C strings, the function does not put the null terminator or it would need to
copy the buffer. This is why the function, if it returns a not null pointer (meaning it got
one of the three string types and nothing else) the length is provided in the variable
passed as the second parameter. Of course, for CSTRING the value comes already with
the null terminator.

Here is our Pascal version. If we detect SQL NULL as either nil input pointer, descriptor's
address (data) pointer being nil or the descriptor's flags indicating NULL, we'll return nil:

// Do not publish this helper.

function get_string(p: Pparamdsc; var length: USHORT): PUchar;

var

 rc, cp: PUChar;

 loop: Integer;

 v: Pparamvary;

begin

 if ((p = nil) or (p^.dsc_address = nil)

 or ((p^.dsc_flags and DSC_null) > 0)) then

 begin

 Result := nil;

 Exit;

 end;

 rc := nil;

Writing External Functions—A General Guide Page 71 of 107

 case p^.dsc_dtype of

 dtype_text:

 begin

 rc := p^.dsc_address;

 length := p^.dsc_length;

 if length > 0 then

 begin

 loop := length - 1;

 while loop >= 0 do // let's ignore trailing blanks

 begin

 if (PChar(rc) + loop)^ = ' ' then

 Dec(loop);

 else

 break;

 end;

 length := USHORT(loop + 1);

 end

 end;

 dtype_varying:

 begin

 v:= Pparamvary(p^.dsc_address);

 rc := @v^.vary_string[0];

 length := v^.vary_length

 end;

 dtype_cstring:

 begin

 rc := p^.dsc_address;

 length := 0;

 cp := rc;

 while cp^ <> 0 do

 begin

 Inc(length);

 Inc(cp);

 end;

 end;

Writing External Functions—A General Guide Page 72 of 107

 else; // nothing for now

 end;

 Result := rc;

end;

We initialize our intermediate variable rc to nil immediately to avoid more checks later.
We try to report effective lengths. For CHAR, we skip trailing blanks; for VARCHAR, we
get the length from the Paramvary structure and for CSTRING, we count bytes until we
get the terminator.

There might be several ways to do the same operation. We could have compared the
vary_length member of the Paramvary against that of the Paramdsc (always two bytes
until FB2 at least) taking the minor value for VARCHAR and assuming that the
dsc_length member of the Paramdsc has correct value for CSTRING. For CHAR and
CSTRING, the descriptor's data member is the string, whereas for VARCHAR we have to
convert it to Paramvary or skip two bytes, if we want to hardcode known facts (we can use
the VARCHAR_PREFIX constant). Finally, if nothing is found that resembles a string,
we simply return nil and the length parameter is undefined.

declare external function p_intersperse

varchar(30) by descriptor,

varchar(30) by descriptor

returns varchar(60) by descriptor free_it

entry_point 'p_intersperse' module_name 'phoenix';

Now we have the function that will intersperse two strings, taking one byte from the first
argument, then one byte from the second argument, another from the first and so on.

First, we use our auxiliary previous function to get both strings. Since get_string will
return NULL when the input is invalid or NULL, we do the same here.

Now, we calculate the total output length. Because we are using two unsigned 16-bit
quantities, we do the sum in two steps in a signed 32-bit quantity to ensure we can get the
correct sum (no wrapping will happen), then adjust the length so it won't be bigger than
our maximum row size (we truncate silently) minus two bytes for the varchar indicator.

Our declaration says that we accept two inputs of length 30. Although the engine will not
obey our data types since it's using descriptors, it will obey the length! This means if you
pass a string bigger than 30 characters, you will get the classical string truncation error.
Same on the returned value, if the function happens to create something wider than 60
characters, the engine won't be able to copy the result to the internal buffers.

If you want to experiment with longer strings, you can fix the declaration. Since the
function is working with descriptors, it will retrieve the length dynamically.

Writing External Functions—A General Guide Page 73 of 107

// This is for arbitrary input, but only will accept VARCHAR or CSTRING.

// Finally we handle CHAR, too.

// If either or both input arguments are NULL, NULL is returned; same if we

// do not get the desired input data types.

// FREE_IT is used for the returned data and the descriptor itself.

paramdsc* p_intersperse(const paramdsc* p1, const paramdsc* p2)

{

 USHORT p1_len = 0;

 const UCHAR* p1_string = get_string(p1, p1_len);

 if (!p1_string)

 return 0;

 USHORT p2_len = 0;

 const UCHAR* p2_string = get_string(p2, p2_len);

 if (!p2_string)

 return 0;

 int total_len = (int) p1_len;

 total_len += (int) p2_len; // sum made in two steps

 // to avoid wrapping before assignment.

 if (total_len + VARCHAR_PREFIX > MAXROW)

 total_len = MAXROW - VARCHAR_PREFIX;

 paramvary* const v =

 reinterpret_cast<paramvary*>(ib_util_malloc(total_len

 + VARCHAR_PREFIX));

 UCHAR* output_buf = v->vary_string;

 v->vary_length = 0; // let's play safe if we have to exit prematurely

 paramdsc* const d =

 reinterpret_cast<paramdsc*>(ib_util_malloc(sizeof(paramdsc)));

 d->dsc_address = reinterpret_cast<UCHAR*>(v);

Writing External Functions—A General Guide Page 74 of 107

 while (total_len)

 {

 if (p1_len)

 {

 *output_buf++ = *p1_string++;

 --p1_len;

 --total_len;

 }

 if (p2_len && total_len)

 {

 *output_buf++ = *p2_string++;

 --p2_len;

 --total_len;

 }

 }

 v->vary_length = static_cast<USHORT>(output_buf - v->vary_string);

 // ptrdiff_t to USHORT

 d->dsc_dtype = dtype_varying;

 d->dsc_length = v->vary_length + VARCHAR_PREFIX;

 d->dsc_flags = 0;

 return d;

}

After we have our length calculated, we proceed to allocate dynamic memory for the
result. Here we will return a descriptor, so we should allocate both the paramvary and the
paramdsc with the facility ib_util_malloc so the engine can deallocate them.

Keep in mind that this function will work as desired only on FB v2, since in v1.5 it won't
deallocate the descriptor (only the varchar structure), so a small memory leak will happen
in each call.

We set the varchar's length to zero for safety, allocate our descriptor and assign the
paramvary to the descriptor's address data member. We know we should iterate until
total_len is exhausted (remember, total_len may be smaller than the sum of the lengths of
the two input parameters). Since we don't make any assumption about the relative sizes of
both inputs, if one is smaller, the loop simply keeps copying the rest of the bytes from the
other.

We take care to ask for the remaining length for both arguments and also to check for
total_length when handling the second argument, since it can be exhausted when copying
one byte from the first argument.

Writing External Functions—A General Guide Page 75 of 107

After the loop, we calculate the length in the paramdsc as the difference between the
variable used to fill in the result and the starting address of the result. This gives the
difference counted in bytes, exactly what we want.

In C/C++, the difference between two pointers is a signed quantity known as ptrdiff_t, but
here, we cast it to USHORT, because vary_length has this type and because we ensured
that total_len would be always smaller than MAXROW (itself, in turn, being smaller than
the upper limit of USHORT).

Finally, we have to fill our descriptor with meaningful data. The type is VARCHAR, the
length is the same as vary_length plus the two bytes that vary_length itself uses
(VARCHAR_PREFIX). The flags are reset. We return our result and the rest is the
engine's task.

Now, our Pascal version. We initialize our result immediately to nil in case at least one of
the input parameters is SQL NULL or is not of one of the three string types. Next, we call
our previous function get_string to try to get a pointer to unsigned char that represents
the beginning of the data in the input descriptors.

Our total_len is of a type enough to perform the sum of the two lengths and determine if
we are above the maximum row size in the engine, in case we need to truncate the output.
We take into account that we will be returning a VARCHAR inside a descriptor, so we
need to reserve additional space with the VARCHAR_PREFIX constant (currently being
two bytes).

// This is for arbitrary input, but only will accept VARCHAR or CSTRING.

// Finally we handle CHAR, too.

// If either or both input arguments are NULL, NULL is returned; same if we

// don't get the desired input data types.

// FREE_IT is used for the returned data and the descriptor itself.

function p_intersperse(p1: Pparamdsc; p2: Pparamdsc): Pparamdsc;

var

 p1_len, p2_len: USHORT;

 p1_string, p2_string, output_buf: PUchar;

 total_len: Integer;

 v: Pparamvary;

 d: Pparamdsc;

begin

 Result := nil;

Writing External Functions—A General Guide Page 76 of 107

 p1_len := 0;

 p1_string := get_string(p1, p1_len);

 if p1_string = nil then

 Exit;

 p2_len := 0;

 p2_string := get_string(p2, p2_len);

 if p2_string = nil then

 Exit;

 total_len := p1_len;

 Inc(total_len, p2_len); // sum made in two steps

 // to avoid wrapping before assignment.

 if total_len + VARCHAR_PREFIX > MAXROW then

 total_len := MAXROW - VARCHAR_PREFIX;

 v := ib_util_malloc(total_len + VARCHAR_PREFIX);

 output_buf := @v^.vary_string[0];

 v^.vary_length := 0; // let's play safe if we have to exit prematurely

 d := ib_util_malloc(sizeof(paramdsc));

 d^.dsc_address := PUchar(v);

 while total_len > 0 do

 begin

 if p1_len > 0 then

 begin

 output_buf^ := p1_string^;

 Inc(output_buf);

 Inc(p1_string);

 Dec(p1_len);

 Dec(total_len)

 end;

 if (p2_len > 0) and (total_len > 0) then

Writing External Functions—A General Guide Page 77 of 107

 begin

 output_buf^ := p2_string^;

 Inc(output_buf);

 Inc(p2_string);

 Dec(p2_len);

 Dec(total_len);

 end;

 end;

 // ptrdiff_t->USHORT

 v^.vary_length := USHORT(PChar(output_buf) - PChar(@v^.vary_string[0]));

 d^.dsc_dtype := dtype_varying;

 d^.dsc_length := v^.vary_length + VARCHAR_PREFIX;

 d^.dsc_flags := 0;

 Result := d

end;

We allocate the space for the ParamVary with ib_util_malloc because our result has to be
deallocated by the engine; then set the auxiliary variable output_buf, pointing to its
vary_string member (the ultimate place for our data). We set the vary_length to zero in
advance, in case we write nothing.

Now, we have to allocate the descriptor itself, that will be deallocated by the engine, too
This trick will only work with FB2; previous versions will leak the memory used for the
descriptor in each call.

Next, we work the reverse of the logic to get a VARCHAR from a Paramdsc: we build the
VARCHAR, making the address of the descriptor the Paramvary itself, not its data
member.

We start a loop, copying one byte from each input string into the output and so on. The
loop is bigger than its C++ counterpart only due to the lack of Pascal syntax allowing
increment and decrement operators in the same statement. We add the check for total_len
being still bigger than zero before copying from p2_string, because our copy from p1_string
may have exhausted the output capacity.

Finally, we adjust the length of the output, keeping things coherent: output_buf started
pointing to v's vary_string and advanced in the loop, so the difference between the two is
the length in bytes. We cast to PChar to allow the compilation to succeed in Pascal.

We tell the engine that the descriptor contains a VARCHAR and the descriptor's length is,
in turn, the same as the the length of Paramvary plus the vary_length size, represented by
VARCHAR_PREFIX. We clear the descriptor's flags and assign the descriptor to the
function's result.

Writing External Functions—A General Guide Page 78 of 107

Functions that work with arrays
Arrays are a subject for polemic in a RDBMS. On one side, they allow misuse because they
are not normalized data. On another. for small repetitive data of known fixed length
(number of elements in known in advance), they may be easier than handle than several
rows for programmers using a traditional programming language.

In Firebird, most of the work with arrays is done through the API. The only array support
built-in for queries written in SQL is the ability to treat specific array elements as if they
were fields. PSQL has no support to create or deal with arrays, above what a single query
can do. Particularly annoying is the lack of support to update even single elements from
SQL.

Firebird keeps arrays in an internal format and loads them in memory with a layout
defined by a structure known as internal array descriptor.

UDF's are not different from SQL, in the sense of having special facilities to work with
arrays. Granted, a UDF could read an array as a blob (arrays are defined on top of stream
type arrays) and copy the logic to decode and load an array from the engine's internals,
but that is a place most developers would not want to go.

However, the engine provides a facility, never advertised at SQL level but available
through proprietary language, that allows a UDF to request that the engine convert the
internal format to a simplified layout determined by a structure known as a scalar array
descriptor. This structure could only be an input parameter to the UDF, since there is no
support for UDF's to return arrays to the engine.

All that said, for some basic operations with matrices, it may be useful to know how to
read arrays.

In Firebird v2, SQL DDL has been enhanced so a UDF can be declared to receive a
parameter by scalar array. No enhancement was done to the internal code: it lay dormant
for 10 years just because it was not exposed, unless you knew GDML. The only change is
the ability to declare this mechanism without resorting to changing values in system
tables directly.

The example UDF exposed here does not aspire to be a milestone, it provides information
to foster more experimentation. We decided to show an example that works with the SQL
int, a 32-bit signed integer. Since we are reading SLONGs and putting them in a string,
we created a helper routine that will write the SLONG as a string, but reversed. The
caller is responsible for providing a buffer of enough size (defined by the constant
SLONG2TEXT) and for reversing the string for display. We did that because it's easier to
decode the number in the string in reverse order and the logic of the caller fit naturally
with that behavior.

Writing External Functions—A General Guide Page 79 of 107

// Do not publish this helper.

// Given an int32 and an output buffer of SLONG2TEXT size, converts the number

// to a string representation, reversed. It does not put the terminator.

// Probably you have found in many programming textbooks much better versions.

int reversed_string_from_int32(SLONG n, UCHAR* const out)

{

 // Test, only done to check negative and bigger numbers.

 //if (n % 2)

 // n *= -50;

 //else

 // n *= 33;

 UCHAR* output = out;

 const bool neg = n < 0;

 if (!n)

 *output++ = '0';

 // We handle negative numbers in a clumsy way, repeating the loop.

 // We cannot do -n because positive range is

 // one less than negative range

 // and we did not want to switch to int64.

 while (n > 0)

 {

 *output++ = n % 10 + '0';

 n /= 10;

 }

 while (n < 0)

 {

 *output++ = -(n % 10) + '0';

 n /= 10;

 }

 if (neg)

 *output++ = '-';

 return output - out; // ptrdiff_t handled as int

}

Writing External Functions—A General Guide Page 80 of 107

First, we assign a pointer to fill the output and a boolean to indicate whether the original
number is negative. As a special case, when the quantity is zero, we write the character
zero (ASCII(32)) in the output to avoid printing a blank string.

When we receive a negative number, we cannot reverse the sign and carry on because, in
the specific case of the smallest value (the most negative), it would fail due to the negative
range for numbers being one more than the positive range in absolute value. Instead of
working with int64 to ensure we will have room for any number, we simply do two loops,
one for positive and one for negative. They exclude one to another naturally. Since we are
writing the number in reverse order, we assign the negative sign (if needed) at the end.

Finally, we calculate the number of bytes written as the difference of the pointer that
filled the output (out) and the output itself, that is, the starting value for out.

Our Pascal version is a direct mapping of the preceding C++ function:

// Do not publish this helper.

// Given an int32 and an output buffer of SLONG2TEXT size, converts the number

// to a string representation, reversed. It doesn't put the terminator.

// Probably you have found in many programming textbooks much better versions.

function reversed_string_from_int32(n: SLONG; outstr: PUChar): Integer;

var

 output: PUchar;

 neg: Boolean;

begin

 // Test, only done to check negative and bigger numbers.

 //if n mod 2 <> 0 then

 // n := n* -50

 //else

 // n := n* 33;

 output := outstr;

 neg := n < 0;

 if n = 0 then

 begin

 output^ := Ord('0');

 Inc(output);

 end;

Writing External Functions—A General Guide Page 81 of 107

 // We handle negative numbers in a clumsy way, repeating the loop.

 // We cannot do -n because positive range is one less than negative range

 // and we didn't want to switch to int64.

 while n > 0 do

 begin

 output^ := n mod 10 + Ord('0');

 Inc(output);

 n := n div 10;

 end;

 while n < 0 do

 begin

 output^ := -(n mod 10) + Ord('0');

 Inc(output);

 n := n div 10;

 end;

 if neg then

 begin

 output^ := Ord('-');

 Inc(output);

 end;

 Result := PChar(output) - PChar(outstr) // ptrdiff_t handled as int

end;

The only differences arise because we deal with unsigned characters: we can use them
like numbers but, when interacting with characters singly, we have to convert them to
numbers using Ord().

Remember, in the negative case, -(n mod 10) will give the correct result whereas (-n) mod
10 can overflow if the most negative value in the range is received.

Finally, our result is again the difference in bytes (forced to PChar) between the
temporary variable and the buffer that was its initial value.

declare external function p_array2text

int by scalar_array,

varchar(100) by descriptor

returns parameter 2

entry_point 'p_array2text' module_name 'phoenix';

Writing External Functions—A General Guide Page 82 of 107

Finally, we get to our function that reads an array. This is an idea that resembles the blob
sampling but, here, all elements are shown, separated by commas.

In our declaration, we request an array of integers and the engine will obey that. If the
array passed (typically, a column of a table) does not have integers, the engine tries to
perform the conversion of each element. If the conversion cannot be done, the engine will
throw an error.

However, we decided to play safe in case we change the UDF declaration without
updating the code. We return NULL if:

 The number of dimensions is zero (the engine got a NULL field and converted it to an
empty array, similarly to NULL values being converted to empty blobs when
blobcallback is used.

 The type of the array's elements is unknown (probably the first condition is enough
because both will happen simultaneously if the array is empty).

 The array's address is NULL (the same precaution we took with the address member
of paramdsc).

 The array's flags indicate that we got a NULL field.

 The type of the array elements is not SLONG. This cannot happen unless we change
the UDF declaration.

However, we can't simply return the null pointer here. Indeed, the type of this function is
void. The reason is that we told the engine it had to free the descriptor and the varying
structures we passed to it. However, in this case, we asked for a VARCHAR(100) passed
by descriptor to be created for us and passed to the function as an output parameter.
Therefore, to signal NULL, we must activate the NULL flag in the flags data member of
the descriptor.

Now we have a tricky piece of logic that can be handled in several ways, some no doubt
better. We have to calculate how much room we have for output. In previous cases,
receiving a descriptor as the output parameter, you could discover the maximum length of
the output that was allocated by the engine dynamically. Thus, even if you changed the
declaration, the code would not need to change.

In the case at hand, we have asked for a VARCHAR(100) to be created. The varying
structure (paramvary) will have its length initialized to zero but the descriptor's length
will be the total allocated space, including the VARCHAR_PREFIX, as expected.

First, output will be the variable we use to fill and traverse our result descriptor's data
member. We set an indicator to zero and branch according to the three string field
subtypes. We do that to be able to experiment by changing to declaration to use an ouput
parameter by descriptor of type CHAR, VARCHAR or CSTRING (we currently declare
VARCHAR) without having to recompile the UDF:

Writing External Functions—A General Guide Page 83 of 107

 If we get a CHAR, we do nothing (no case for it). The descriptor's address is all we
need to write the result.

 If we get a VARCHAR (the case we declared), we remember that the descriptor's
address data member is actually pointing to a paramvary, so we set the indicator to 2
(VARCHAR_PREFIX, the size of paramvary's vary_length, a 16-bit signed quantity)
and advance the output pointer by that number of bytes. We canott write over the
length, but after it; and it is filled afterwards. That is similar to casting
pout->dsc_address to paramvary and assigning output to vary_string.

 If we get a CSTRING, we set our indicator to 1, for the null terminator.

Writing past the allocated output area will trash or shutdown the engine, so it is
imperative to avoid that. We calculate the final position, a constant pointer named end.
This will point one byte past the last position available for us to write data.

That position, in turn, is the output pointer advanced (in bytes) by the length of the data
provided by the descriptor minus our calculated indicator. Remember, for VARCHAR we
had to skip the length in paramvary and for CSTRING we have a position reserved to
write the null terminator finally.

Verification of the logic is left to the reader. Hint: remember to look at the end of the
function to see how the parts fit.

Since we are here for a demonstration and not for an award for cleverest or most complex
logic, we chose to do two loops. In the first loop, we calculate the total number of elements
that the array contains.

Notice that Firebird, like programming languages, allows different dimensions of the
array to have different numbers of elements. Therefore, the number of dimensions
mutiplied by the number of elements in the first dimension is not the answer. We have to
multiply the number of elements in all dimensions.

But Firebird goes beyond that and allows a dimension to be declared either by size or by
range.

In the first case, it will convert the declaration to a range with a default starting position.

In the second case, the range is a starting and an ending index for the elements of the
dimension. The indices can be negative, positive or zero, provided that the starting index
is lower than or equal to the ending index.

Refer to the definition of scalar array descriptor and the child sad_repeat structure to
understand the layout (we didn't say the nested sad_repeat because in Pascal does not
support a syntax for nesting declarations in this manner).

Writing External Functions—A General Guide Page 84 of 107

Some examples to clarify
Let's assume these field declarations are wrapped in a CREATE TABLE statement:

- v int[3] is an array with one dimension and three elements. The range default to be 1
up to 3.

- v int[3, 4] is an array with two dimensions. The first dimension has tree elements (1 to
3) and the second, four elements (1 to 4).

- v varchar(10)[-1:5] is an array with one dimension and seven elements. The range
effectively starts at -1 and goes up to 5.

- v timestamp[2, 0:1, -10:-9] is an array with three dimensions and two elements in each
dimension. The implicit range for the first dimension is 1 to 2, the explicit range for
the second is 0 to 1 and the explicit range for the third is -10 to -9.

Therefore, to get the number of elements in a dimension, we need the upper index minus
the lower index plus one. Our code sets the element counter to 1 (we will be multiplying
elements in each dimension so zero as initializer would be a typical newbie error) and goes
to review each dimension. We like references and used them to avoid copying the
sad_repeat structure

 const scalar_array_desc::sad_repeat& elem = input->sad_rpt[loop];

 total_elems *= (elem.sad_upper - elem.sad_lower + 1);

but people that prefer pointers could have used equally

 const scalar_array_desc::sad_repeat* elem = &input->sad_rpt[loop];

 total_elems *= (elem->sad_upper - elem->sad_lower + 1);

After our multiplication, we make a simple check for overflows. If the sign of our
multiplicand became negative, then we had an overflow (remember, in theory, the number
of dimensions and the range inside a dimension are all 32-bit signed integers, so we could
overflow).

Granted, the most accurate method to know if an overflow happened is to check the
processor's flags, but we don't want to go to that level. After all, using such a huge
array with an example wouldn't be practical. We could use an int64 multiplicand if we
wanted to handle bigger array declarations.

If total_elems became negative, we reset it to zero before reporting an error. This is
because C and C++ programmers tend to be minimalist: testing a value means implicitly
it is different from zero and can be used as a boolean. As the comment in the code says

"avoid problems in the while(total_elems--) below."

We expect to be able to report the error in the output if it is too small (due to a declaration
error, for example). Our naive condition

Writing External Functions—A General Guide Page 85 of 107

while(total_elems--)

assumes a well behaved total_elems, equal to or bigger than zero. Unless we reset the
value to zero, execution would enter a big loop through all the negative range until the
space for the result were exhausted or an error occurred.

To report the error, we copy the string ERROR (including the null terminator implicitly)
to a local buffer and to the Result without the null terminator. Since we set total_elems to
zero, the second loop is not executed: we break the loop to continue execution in the last
part of the function.

We return NULL in the unlikely event that there is not even enough room even for five
bytes (perhaps the declaration of the Result was too little and, under normal conditions,
maybe even one array element won't fit). Once again, since we have an output parameter
and we are dealing with a descriptor, we do this by activating the NULL flag.

// This function takes an array (converted to simplified form by the engine)

//and fills a string with it. NULL is not signaled directly, but since arrays

// with zero dimensions cannot be created, we'll assume that it may be used

// as another way to tell us about NULL. We only handle integer arrays.

void p_array2text(const scalar_array_desc* const input, paramdsc* const pout)

{

 if (!input->sad_dimensions || input->sad_desc.dsc_dtype == dtype_unknown

 || !input->sad_desc.dsc_address

 || (input->sad_desc.dsc_flags & DSC_null)

 ||input->sad_desc.dsc_dtype != dtype_long)

 {

 pout->dsc_flags |= DSC_null;

 return;

 }

 UCHAR* output = pout->dsc_address;

 int indicator = 0;

 if (pout->dsc_dtype == dtype_varying)

 {

 indicator = VARCHAR_PREFIX;

 // We'll fill vary_length at the end, make space for it

 output += VARCHAR_PREFIX;

 }

Writing External Functions—A General Guide Page 86 of 107

 else if (pout->dsc_dtype == dtype_cstring)

 indicator = 1;

 const UCHAR* const end = output + pout->dsc_length - indicator;

 // We'll handle elements sequentially. Otherwise, we need a fixed number

 // of nested loops (static) or a recursive helper routine (dynamic).

 int total_elems = 1;

 for (int loop = 0; loop < input->sad_dimensions; ++loop)

 {

 const scalar_array_desc::sad_repeat& elem =

 input->sad_rpt[loop];

 total_elems *= (elem.sad_upper - elem.sad_lower + 1);

 if (total_elems < 0)

 {

 total_elems = 0; // avoid problems in the

 // while(total_elems--) below.

 char msg[] = "ERROR";

 // We did overflow the multiplier. Better go out.

 if (output + sizeof(msg) - 1 < end)

 {

 for (const char* p = msg; *p; ++p)

 // We do not copy the terminator

 *output++ = *p;

 break; // exit from the for()

 }

 else

 {

 // Too little output space, cannot put

 // a message; let's return NULL.

 pout->dsc_flags |= DSC_null;

 return;

 }

 }

 }

Writing External Functions—A General Guide Page 87 of 107

 const SLONG* data = reinterpret_cast<const SLONG*>(input-

>sad_desc.dsc_address);

 UCHAR temp[SLONG2TEXT];

 while (total_elems--)

 {

 int len = reversed_string_from_int32(*data++, temp);

 if (output + len + 1 < end)

 {

 // We got the string reversed.

 // Now, fix it while we copy it.

 while (len--)

 *output++ = temp[len];

 *output++ = ';';

 }

 else

 break;

 }

 // Adjust the length.

 pout->dsc_length = output - pout->dsc_address; // [***]

 switch (pout->dsc_dtype)

 {

 case dtype_text:

 // Nothing else to do

 break;

 case dtype_varying:

 {

 // Space for paramvary->vary_length

 // is already counted implicitly

 // in [***] and therefore

 // we do not increment pout->dsc_length here.

 // Instead, we should acknowledge the real length

 // in paramvary.

 paramvary* const v =

 reinterpret_cast<paramvary*>(pout->dsc_address);

 v->vary_length = pout->dsc_length - VARCHAR_PREFIX;

Writing External Functions—A General Guide Page 88 of 107

 }

 break;

 case dtype_cstring:

 *output = 0; // Put the null terminator

 pout->dsc_length += 1; // Space for the null terminator

 break;

 default: // Did someone declare an output param of type <> string?

 pout->dsc_length = 0;

 pout->dsc_flags |= DSC_null;

 break;

 }

}

Assuming all went well in our first loop, now we have our variable total_elems with the
total number of elements throughout all dimensions in the array.

To make the code more readable, we define an auxiliary variable pointing to the address
member of the descriptor inside the input scalar array descriptor. We make it a
temporary of size SLONG2TEXT, to make it big enough to hold the maximum possible
result from the function: a 32-bit signed number written as a string but in reverse order.

We enter the second loop, cycling as many times as there are elements found.

In turn, execution puts the elements, one after another, in the sad_desc.dsc_address
pointer. Since we have hard-coded our function to process SLONG inputs (equivalent to
the SQL integer type), we cast the input as pointer to SLONG, to make it easier to
traverse. We only have to increment the pointer by one; the rest is done by the compiler.

Once we have the number converted to string, we also have the count of bytes it needed.
We check whether the current output position, plus that length, plus one for the comma is
still smaller than the end marker we have pointing one position beyond our available
space to write.

- If we have space, we copy the number (in reverse order, to compensate for the
conversion function) and append the comma.

- Otherwise we stop the loop since we cannot write any more bytes.

After the loop, we have to adjust our structures. The length in the result descriptor is the
difference between the current position of the writer and the original position where it
started from. This is a difference in bytes. Then we branch to make data type specific
calculations:

 For CHAR, we have nothing else to do.

Writing External Functions—A General Guide Page 89 of 107

 For VARCHAR, we know from previous examples that the length of the varying
should be the nett length of the data, i.e., the descriptor's length (already set) minus
the VARCHAR_PREFIX.

 For type CSTRING we write the terminator and increment the length by one. Here
lies the reason for the indicator being 1 for this type at the beginning. The C-style
string is not a native type in SQL and the engine counts the null terminator as part of
the data. CSTRINGs are transient containers. They are never written to the
database. Their use is solely to communicate with a UDF if the function declaration
requests it.

Unlike input parameters received by descriptor, which can contain any data the user
sends, ouput parameters by descriptor are created by the engine to give the UDF space
to write to. The declaration therefore matches exactly what the engine creates. We did
no check at the beginning to verify that we received the right type of output. Only a
wrong DDL statement could cause that problem.

If the output type is none of the three string types, we set the length to zero and set the
descriptor's flags to activate the NULL indicator.

Acute eyes may notice that the case for CHAR is handled in a suspicious way: the CHAR
type demands that strings of this type be padded with null, since the full declared length
is used. In our case, instead of adjusting pout->dsc_length for CHAR and letting the
engine try to handle that, we should have left that length untouched, instead filling any
remaining unfilled output space with blank characters. This is left as an excercise.

Some notes
 You can have up to 16 dimensions.

 The underlying support for arrays is blobs. Since blobs can grow up to 2GB (despite
the fact the maximum chunk you can read at a time is 64K-1), arrays can be really
large. Whether such size makes sense from the perspectives of good design or
efficiency is another question.

 Arrays cannot be nested.. In other words, you cannot define arrays of arrays. Consider
ing you have multidimensional arrays, that is not a hardship.

 Be prepared to deal with the API, or to work through a higher-level db connectivity
package to save the time and effort you would otherwise spend trying to get arrays to
work for you. Your only option in SQL statements is to read each element separately.

 You can't use blobs as array elements.

 It is worth noting that all our UDFs work on the assumption that the declarations for
string types involve no character set attributes other than charset NONE or ASCII. In
order to handle multi-byte character sets (MBCS) we would have to review the logic.

Writing External Functions—A General Guide Page 90 of 107

 The varying structure and the descriptor always count bytes. If someone were going
to write an UDF that handles different charsets automatically, the only way would be
to request the input parameters by descriptor, so the charset could be determined at
run-time. With MBCS, though, some of our assumptions like finding the null
terminator byte-by-byte or padding with blanks could be completely wrong.

The Pascal version
Anticipating that the Pascal code would become quite complex, before attempting the
Pascal version we created a helper function to mimic the C++ post-decrement (decrement
after the statement where the variable appears) and avoid mistakes in the conversion.
The function which, of course, we could have used in the earlier functions, simply sets the
result to the received value, then decrements the received value:

// Do not publish this helper.

// This makes C++ expressions like while (var--) straightforward.

function PostDec(var i: Integer): Integer;

begin

 Result := i;

 Dec(i)

end;

Now, to the Pascal version of our last function. We chose to use msg as an array to make
the code similar to the C++ version. We have SLONG2TEXT to represent the largest
string representation of an int32. We then test for dimensions being zero, the type of the
array's elements being unknown, the data (address) being nil or the flags indicating SQL
NULL to return NULL.

In this case, since the descriptor and its space are created by the engine, thanks to the
UDF declaration, we have a procedure, not a function. Thus, we cannot return nil to
indicate we are returning SQL NULL. Instead, we set the output descriptor's flags to
activate the null flag. Also, having logic to handle only the SQL integer type, we signal
SQL NULL if the input descriptor's type is not dtype_long. Some conditional messages in
dialog boxes are again used to let us know what is going on inside, if necessary.

Our output variable points to the data set up by the engine for placing the result. Our
indicator variable is used to subtract the length of auxiliary information from the space
the engine has provided for output. That is, reserve VARCHAR_PREFIX (two bytes) for
VARCHAR output and reserve one byte for the null terminator in CSTRING output.

The function can discover the size in bytes from the output descriptor (pout) provided by
the engine; so the declaration (set at 100 currently) can be changed without recompiling
the function, and the returning type can be changed, as well, from VARCHAR to CHAR or

Writing External Functions—A General Guide Page 91 of 107

to CSTRING. We can handle any of them, provided the mechanism stays as BY
DESCRIPTOR.

Finally, because we must not overflow the memory provided by the engine, the endoutput
variable signals the end of the buffer by a simple formula: first, the beginning of the
output buffer, then increment it by the number of bytes provided in our output descriptor
minus the aforementioned indicator variable.

Since the number of elements in the array is the product of the elements in each array
dimension, we initialize our total_elems to 1, ready for the loop that reads the dimensions.
The API is C-oriented, so we must remember our cycle is from zero to the number of
dimensions minus 1. We can use the loop variable directly (it's easy to forget to subtract
one inside the cycle in each usage).

For each dimension, the array sad_rpt in the special array descriptor has a position with
an element that carries the lower and upper indices of the array. Hence, the difference
between the two, multiplied by the previous dimension's element count, gives us the
number of elements so far in the dimensions already visited.

 If our multiplier (total_elems) goes to negative, we assume an overflow in the
multiplication caused the problem. If there is enough space, we try to put the error
message "ERROR"; otherwise, we signal that we are returning SQL NULL.

 If we manage to accommodate the error message, we break the loop to pass execution
to the final part of the function to calculate the correct output length and we will show
truncated output.

If we could only set the null indicator, meaning SQL NULL, we simply exit the function,
because the engine will not attempt to read the data.

The way we define and copy the string "ERROR" is unnatural to Pascal programmers, but
if we use the StrPCopy function, it will copy the null terminator, also, converting the logic
in

const

 msg2: string[5] = 'ERROR';

and later
 if PChar(output) + length(msg2) + 1 < endoutput then

 begin

 StrPCopy(PChar(output), msg2);

 Inc(output, length(msg2));

 break; // exit from the for()

 end

because we have to consider one byte for the terminator that we won't use. Again, we tried
to stick to extreme C++ resemblance to make it clear that both versions do the same. The
Pascal version could be customized to suit the style of the language better:

Writing External Functions—A General Guide Page 92 of 107

// This function takes an array (converted to simplified form by the engine)

//and fills a string with it. NULL is not signaled directly, but since arrays

// with zero dimensions cannot be created, we'll assume that it may be used

// as another way to tell us about NULL. We only handle integer arrays.

procedure p_array2text(input: Pscalar_array_desc; pout: Pparamdsc);

const

 msg: array[0..5] of char = 'ERROR'#0;

var

 temp: array[0..SLONG2TEXT - 1] of UCHAR;

 output, endoutput: PUchar;

 indicator, total_elems, loop, len: Integer;

 data: ^SLONG;

 elem: ^sad_repeat;

 p: PChar;

 v: Pparamvary;

begin

 if ((input^.sad_dimensions = 0)

 or (input^.sad_desc.dsc_dtype = dtype_unknown)

 or (input^.sad_desc.dsc_address = nil)

 or ((input^.sad_desc.dsc_flags and DSC_null) > 0)

 or (input^.sad_desc.dsc_dtype <> dtype_long)) then

 begin

 pout^.dsc_flags := pout^.dsc_flags or DSC_null;

 Exit;

 end;

 output := pout^.dsc_address;

 indicator := 0;

 if pout^.dsc_dtype = dtype_varying then

 begin

 indicator := VARCHAR_PREFIX;

 // We'll fill vary_length at the end, make space for it

 Inc(output, VARCHAR_PREFIX)

 end

 else if (pout^.dsc_dtype = dtype_cstring) then

 indicator := 1;

Writing External Functions—A General Guide Page 93 of 107

 endoutput := output;

 Inc(endoutput, Integer(pout^.dsc_length) - indicator);

 // We'll handle elements sequentially. Otherwise, we need a fixed number of

 // nested loops (static) or a recursive helper routine (dynamic).

 total_elems := 1;

 for loop := 0 to input^.sad_dimensions - 1 do

 begin

 elem := @(input^.sad_rpt[loop]);

 total_elems := total_elems * (elem^.sad_upper - elem^.sad_lower + 1);

 if total_elems < 0 then

 begin

 // Avoid problems in the while PostDec(total_elems) > 0 below.

 total_elems := 0;

 // We did overflow the multiplier. Better go out.

{$IFDEF GUI_MSG}

 ShowMessage(Format('array2text, sizeof=%d, %.30s', [sizeof(msg),

msg]));

{$ENDIF}

 if PChar(output) + sizeof(msg) - 1 < endoutput then

 begin

 p := msg;

 while p^ <> #0 do // We don't copy the terminator

 begin

 output^ := Ord(p^);

 Inc(output);

 Inc(p);

 end;

 break; // exit from the for()

 end

 else

 begin

 // Too few output space, can't put a message; let's return NULL.

 pout^.dsc_flags := pout^.dsc_flags or DSC_null;

 Exit;

 end;

Writing External Functions—A General Guide Page 94 of 107

 end;

 end;

{$IFDEF GUI_MSG}

 ShowMessage(Format('array2text, total_elems=%d', [total_elems]));

{$ENDIF}

 data := Pointer(input^.sad_desc.dsc_address);

 while PostDec(total_elems) > 0 do

 begin

 len := reversed_string_from_int32(data^, @temp[0]);

 Inc(data);

 if PChar(output) + len + 1 < endoutput then

 begin

 // We got the string reversed. Now, fix it while we copy it.

 while PostDec(len) > 0 do

 begin

 output^ := temp[len];

 Inc(output);

 end;

 output^ := Ord(';');

 Inc(output);

 end

 else

 break;

 end;

 // Adjust the length.

 pout^.dsc_length := PChar(output) - PChar(pout^.dsc_address); // [***]

 case pout^.dsc_dtype of

 dtype_text:

 ; // Nothing else to do

 dtype_varying:

 begin

 // Space for paramvary^.vary_length is already counted implicitly

 // in [***] and therefore we don't increment pout^.dsc_length here.

 // Instead, we should acknowledge the real length in paramvary.

Writing External Functions—A General Guide Page 95 of 107

 v := Pparamvary(pout^.dsc_address);

 v^.vary_length := pout^.dsc_length - VARCHAR_PREFIX

 end;

 dtype_cstring:

 begin

 output^ := 0; // Put the null terminator

 Inc(pout^.dsc_length); // Space for the null terminator

 end;

 else begin // Did someone declare an output param of type <> string?

 pout^.dsc_length := 0;

 pout^.dsc_flags := pout^.dsc_flags or DSC_null;

 end;

 end;

end;

Finally we are ready to copy as many elements as we can. Remember, if there was an
error, we set total_elems to zero to avoid copying garbage or overflowing the buffer
provided by the engine. Our data variable points to the input information, stored in the
data member of a Paramdsc (sad_desc) inside the scalar array descriptor. Since we know
we are receiving SLONGs, we already made data a pointer to SLONG. We use the
Pointer function to go from one pointer type to another, since Pascal has the strange
property of allowing a typed pointer to receive the value of an untyped pointer.

For as many elements as we find, we convert each element to its string representation
using our helper function reversed_string_from_int32, previously described.

When we increment the pointer, data, by one, the compiler automatically increases it by
the number of bytes of the type pointed to (SLONG in this case, with four bytes), making
it ready in the next element.

 If the output we got in the temp variable, plus the comma, fit in the remaining output
space, we copy it byte by byte and then copy the comma that separates each element.

 Otherwise, we break the loop. since we are unable copy more.

Notice how we used our helper function PostDec twice, to mimic C++ behavior.

Finally, we set the length of the output descriptor. In reality, we are adjusting what the
engine gave, anticipating that the result will be equal to or smaller than the original
value. If that is not the case, the logic is flawed somewhere; but we don't check for that
contrary conditon.

As before, the difference is measured in bytes, so the PUChar have to be converted to
PChar to be subtracted.

Writing External Functions—A General Guide Page 96 of 107

 For CHAR, we are done.

 For VARCHAR, we need to set the paramvary's length to the same length minus the
VARCHAR_PREFIX.

 For CSTRING, we include the null terminator.

 In case the function declaration was wrong and the output descriptor was not either
CHAR, VARCHAR or CSTRING, we detect it here and return NULL.

Remember, all our examples imply the assumption that we were working with ASCII or at
least character sets that have single-byte characters.

9—The output
First we show the commands that were executed to create the output. We assume the
database "phoenix.fdb" was already created and the phoenix.sql script was run on it to
declare the UDFs. The commands were copied here to show how those functions can be
used in an isql session:

isql phoenix.fdb

SQL>

select p_sumchar1('xyz') from rdb$database;

select p_sumchar2('xyz') from rdb$database;

select p_sumchar3('xyz') from rdb$database;

select p_sumchar1(NULL) from rdb$database;

select p_sumchar2(NULL) from rdb$database;

select p_sumchar3(NULL) from rdb$database;

select p_lastchar1('firebird') from rdb$database;

select p_lastchar1('firebirdfirebirdfirebirdfirebird') from rdb$database;

select p_lastchar1('firebirdfirebirdfirebirdfirebi') from rdb$database;

select p_lastchar2('firebird') from rdb$database;

select p_lastchar3('firebird') from rdb$database;

select p_lastchar1(NULL) from rdb$database;

select p_lastchar2(NULL) from rdb$database;

select p_lastchar3(NULL) from rdb$database;

select p_reverse1('platypus') from rdb$database;

select p_reverse2('platypus') from rdb$database;

select p_reverse3('platypus') from rdb$database;

select p_reverse1(NULL) from rdb$database;

Writing External Functions—A General Guide Page 97 of 107

select p_reverse2(NULL) from rdb$database;

select p_reverse3(NULL) from rdb$database;

select p_generate_blob(5, 10) from rdb$database;

set blob all;

select p_generate_blob(5, 10) from rdb$database;

select p_defragment_blob(p_generate_blob(5, 10), 0) from rdb$database;

select p_defragment_blob(p_generate_blob(5, 10), 30) from rdb$database;

select p_defragment_blob(NULL, 0) from rdb$database;

select p_sample_blob(p_generate_blob(5, 10), 3) from rdb$database;

select p_sample_blob(p_generate_blob(5, 10), 5) from rdb$database;

select p_sample_blob(p_generate_blob(1, 10), 5) from rdb$database;

select p_sample_blob(p_defragment_blob(p_generate_blob(5, 10), 30), 5) from

rdb$database;

select p_sample_blob(NULL, 1) from rdb$database;

select p_intersperse('haydn', 'beethoven') from rdb$database;

select p_intersperse(cast('haydn' as varchar(10)), cast('beethoven' as

varchar(10))) from rdb$database;

select p_intersperse('haydn', 'beethoven') from rdb$database;

select p_reverse2(p_intersperse('haydn', 'beethoven')) from rdb$database;

select p_intersperse('', '') from rdb$database;

select p_intersperse('', '') || '*' from rdb$database;

exit;

This small database was filled with a tool capable of filling arrays instead of having to use
the API for this example. Many thanks to Geoff Worboys:

isql array.fdb

show tables;

show tables array_table;

select array_field from array_table;

set blob 0;

select array_field from array_table;

select array_field[1, 1], array_field[2, 2], array_field[3, 3] from

array_table;

select p_array2text(array_field) from array_table;

select p_array2text(NULL) from rdb$database;

exit;

Writing External Functions—A General Guide Page 98 of 107

As expected, the output is the same for both the C++ and Pascal versions, as expected.
Here's the captured output from the preceding commands in both databases:

F:\fb2dev\fbbuild\firebird2\temp\debug\firebird\bin>isql phoenix.fdb

Database: phoenix.fdb

SQL> select p_sumchar1('xyz') from rdb$database;

 P_SUMCHAR1

============

 363

SQL> select p_sumchar2('xyz') from rdb$database;

 P_SUMCHAR2

============

 363

SQL> select p_sumchar3('xyz') from rdb$database;

 P_SUMCHAR3

============

 363

SQL> select p_sumchar1(NULL) from rdb$database;

 P_SUMCHAR1

============

 0

SQL> select p_sumchar2(NULL) from rdb$database;

 P_SUMCHAR2

============

 0

Writing External Functions—A General Guide Page 99 of 107

SQL> select p_sumchar3(NULL) from rdb$database;

 P_SUMCHAR3

============

 0

SQL> select p_lastchar1('firebird') from rdb$database;

P_LASTCHAR1

===========

SQL> select p_lastchar1('firebirdfirebirdfirebirdfirebird') from rdb$database;

P_LASTCHAR1

===========

Statement failed, SQLCODE = -802

arithmetic exception, numeric overflow, or string truncation

SQL> select p_lastchar1('firebirdfirebirdfirebirdfirebi') from rdb$database;

P_LASTCHAR1

===========

i

SQL> select p_lastchar2('firebird') from rdb$database;

P_LASTCHAR2

===========

d

SQL> select p_lastchar3('firebird') from rdb$database;

P_LASTCHAR3

===========

d

Writing External Functions—A General Guide Page 100 of 107

SQL> select p_lastchar1(NULL) from rdb$database;

P_LASTCHAR1

===========

<null>

SQL> select p_lastchar2(NULL) from rdb$database;

P_LASTCHAR2

===========

<null>

SQL> select p_lastchar3(NULL) from rdb$database;

P_LASTCHAR3

===========

<null>

SQL> select p_reverse1('platypus') from rdb$database;

P_REVERSE1

==============================

supytalp

SQL> select p_reverse2('platypus') from rdb$database;

P_REVERSE2

==============================

supytalp

SQL> select p_reverse3('platypus') from rdb$database;

P_REVERSE3

==============================

supytalp

SQL> select p_reverse1(NULL) from rdb$database;

Writing External Functions—A General Guide Page 101 of 107

P_REVERSE1

==============================

SQL> select p_reverse2(NULL) from rdb$database;

P_REVERSE2

==============================

SQL> select p_reverse3(NULL) from rdb$database;

P_REVERSE3

==============================

SQL> select p_generate_blob(5, 10) from rdb$database;

 P_GENERATE_BLOB

=================

 0:1

==

P_GENERATE_BLOB:

BLOB display set to subtype 1. This BLOB: subtype = 0

==

SQL> set blob all;

SQL> select p_generate_blob(5, 10) from rdb$database;

 P_GENERATE_BLOB

=================

 0:2

==

P_GENERATE_BLOB:

Writing External Functions—A General Guide Page 102 of 107

012340123450123456012345670123456780123456789012345678900123456789010123456789

01201234567890123

==

SQL> select p_defragment_blob(p_generate_blob(5, 10), 0) from rdb$database;

P_DEFRAGMENT_BLOB

=================

 0:6

==

P_DEFRAGMENT_BLOB:

012340123450123456012345670123456780123456789012345678900123456789010123456789

01201234567890123

==

SQL> select p_defragment_blob(p_generate_blob(5, 10), 30) from rdb$database;

P_DEFRAGMENT_BLOB

=================

 0:a

==

P_DEFRAGMENT_BLOB:

012340123450123456012345670123456780123456789012345678900123456789010123456789

01201234567890123

==

SQL> select p_defragment_blob(NULL, 0) from rdb$database;

P_DEFRAGMENT_BLOB

=================

 <null>

SQL> select p_sample_blob(p_generate_blob(5, 10), 3) from rdb$database;

Writing External Functions—A General Guide Page 103 of 107

P_SAMPLE_BLOB

==

=

012,012,012,012,012,012,012,012,012,012,

SQL> select p_sample_blob(p_generate_blob(5, 10), 5) from rdb$database;

P_SAMPLE_BLOB

==

=

01234,01234,01234,01234,01234,01234,01234,01234,01234,01234,

SQL> select p_sample_blob(p_generate_blob(1, 10), 5) from rdb$database;

P_SAMPLE_BLOB

==

0,01,012,0123,01234,01234,01234,01234,01234,01234,

SQL> select p_sample_blob(p_defragment_blob(p_generate_blob(5, 10), 30), 5)

from rdb$database;

P_SAMPLE_BLOB

==

=

01234,45678,45678,90123,

SQL> select p_sample_blob(NULL, 1) from rdb$database;

P_SAMPLE_BLOB

==

=

<null>

Writing External Functions—A General Guide Page 104 of 107

SQL> select p_intersperse('haydn', 'beethoven') from rdb$database;

P_INTERSPERSE

==

<null>

SQL> select p_intersperse(cast('haydn' as varchar(10)), cast('beethoven' as

varchar(10))) from rdb$database;

P_INTERSPERSE

==

hbaeyedtnhoven

SQL> select p_intersperse('haydn', 'beethoven') from rdb$database;

P_INTERSPERSE

==

hbaeyedtnhoven

SQL> select p_reverse2(p_intersperse('haydn', 'beethoven')) from rdb$database;

P_REVERSE2

==============================

nevohntdeyeabh

SQL> select p_intersperse('', '') from rdb$database;

P_INTERSPERSE

==

SQL> select p_intersperse('', '') || '*' from rdb$database;

CONCATENATION

===

*

Writing External Functions—A General Guide Page 105 of 107

SQL> ^Z

F:\fb2dev\fbbuild\firebird2\temp\debug\firebird\bin>isql array.fdb

Database: array.fdb

SQL> show tables;

 ARRAY_TABLE

SQL> show tables array_table;

ARRAY_FIELD ARRAY OF [1:3, 1:3]

 INTEGER Nullable

SQL> select array_field from array_table;

 ARRAY_FIELD

=================

 80:0

 <null>

SQL> set blob 0;

SQL> select array_field from array_table;

 ARRAY_FIELD

=================

 80:0

 <null>

SQL> select array_field[1, 1], array_field[2, 2], array_field[3, 3] from

array_table;

 ARRAY_FIELD ARRAY_FIELD ARRAY_FIELD

============ ============ ============

 1 5 9

 <null> <null> <null>

SQL> select p_array2text(array_field) from array_table;

P_ARRAY2TEXT

Writing External Functions—A General Guide Page 106 of 107

==

=

1;4;7;2;5;8;3;6;9;

P_ARRAY2TEXT

==

=

-50;132;-350;66;-250;264;-150;198;-450;

Writing External Functions—A General Guide Page 107 of 107

SQL> select p_array2text(NULL) from rdb$database;

P_ARRAY2TEXT

==

=

<null>

SQL> ^Z

The sources for both Delphi and MSVC6 projects are included in separate archives,
including debugging versions of the libraries (DDLs) compiled with both environments.

The C++ version contains the script with the UDF declarations.

	A General Guide
	Introduction
	1- Basic rules for writing UDFs
	Calling convention
	Thread safety
	Globals
	Dynamic memory management
	SQL declaration syntax
	Character sets and collations
	Data types
	Parameter-passing protocol

	2—Mechanisms
	BY VALUE
	BY REFERENCE
	BY DESCRIPTOR
	BY BLOB
	BY SCALAR_ARRAY
	Firebird arrays
	Passing arrays to a UDF

	BY REFERENCE WITH NULL SIGNALING

	3—Input Parameters
	Scalar types
	String types
	Other types

	4—Return value
	FREE_IT

	5—Output parameter
	FREE_IT v/s PARAMETER n.
	Why PARAMETER is not ideal

	6—Observations
	7—Problems
	FreeUDFLib
	UCHAR
	Overflow
	Exception handling
	"Disaster will happen"

	8—The phoenix library
	The file ibase_custom.pas
	The interface section

	The project file
	The C++ and Pascal units
	C++ declarations
	Explicit passing behaviour

	Pascal declarations
	C++
	Pascal
	Other points to note

	Functions that return scalars by value
	Functions that want to take and give NULLs
	Functions that work with CSTRING as the input parameter �and
	First version
	Second version
	Third version

	Functions that work getting and/or setting blobs
	defragment_blob ?
	Fragment of a segment

	Blob generation
	Samples for testing
	Side note—blobcallback

	Functions that work with internal descriptors
	UDFs with descriptors

	Functions that work with arrays
	Some examples to clarify
	Some notes
	The Pascal version

	9—The output

