
Document Version 1.06 2/3/2005 8:48 AM

Vulcan Overview

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 2 of 26

Table of Contents

Overview... 3
Project Goals... 3
New Features of Vulcan.. 3
SMP .. 4
Compatibility .. 5
Process Architecture ... 5
Configuration Files ... 7
Configurable Security Managers .. 10
User Authentication .. 11
SQL Integration .. 11
Performance .. 12
Lock management... 12
Vulcan Internals .. 13
Unfinished Work and Loose Ends .. 14
Portability.. 15

Temporary Installation Procedure... 15
The config utility... 15

Syntax and switches.. 16
Config output .. 16

Configuration Files ... 16
Locating the initial configuration file ... 16
Configuration file syntax – Parameters... 17
Using firebird parameters ... 18
Object definition syntax.. 19

Using internal SQL ... 21
Syntax ... 21

Building Vulcan on Windows... 22
Building Vulcan on Posix system... 24
Building Vulcan on 64-bit Linux.. 25
Document history.. 26

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 3 of 26

Overview
Vulcan is a major redesign of the Firebird database management system. It undoes more
than a decade of increasingly conditional code, starts integrating SQL into the core
engine, and unifies the database access architecture.

Project Goals
Vulcan had four primary goals.

• Portability: Vulcan was developed simultaneously on four platforms: 32 bit
Windows using the Microsoft compiler from Visual Studio 7, 32 bit Linux and 64
bit Linux for AMD64/Opteron using various versions of gcc, and 64 bit Solaris
using the Sun Forte C++ compiler. Ports exist to 64-bit MVS UNIX, Itanium, and
AIX. See the Portability section.

• Single processor performance: tests on Win32 demonstrate some performance
improvement over Firebird 1.5. See Performance section.

• SMP performance: on a four processor SMP box, Vulcan benchmarks up to about
3.5 times the speed of a single processor system on cache intensive benchmarks.
See SMP section.

• Upward compatibility: programs written for Firebird work unchanged on Vulcan
when relinked. See Compatibility Section.

In the process of achieving these goals, Vulcan achieved a great deal more. Although
Vulcan retains much of the code from Firebird, it makes radical changes to the code
organization and architecture.

This paper outlines some of the major differences between Vulcan and Firebird 1.5.

New Features of Vulcan

Process Architecture
Vulcan resurfaces the original InterBase architecture and updates it to reflect modern
hardware and software technology. For more information see the Process Architecture
section.

Configuration Files
Vulcan configuration files are upward compatible from the Firebird configuration file,
but have significant new capabilities. For more information see the Configuration Files
section.

Configurable Security Managers
Different organizations require different levels of user authorization. Vulcan provides a
path to the resolution of this requirement and introduces several improvements in the
management of authentication information. For more information see the Configurable
Security Managers section.

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 4 of 26

User Authentication
Vulcan configuration files can specify a per-database source for authentication
information. Vulcan also adds SQL statements to create, update, and drop users. For
more information see the User Authentication section.

SQL Integration
Vulcan moves DSQL from outside the engine to inside, making it more efficient, and
eliminating duplicate metadata representation . For more information see the SQL
Integration section.

Lock Manager
Signal based lock notification has been deprecated in favor of thread-based notification
and the two variants of the lock manager have been recombined. See the Lock
management section.

Call tracing
The Vulcan dispatch module (Y-valve) will print a session log the contents of which are
controlled with configuration file parameters. The options are tracing calls, tracing
results, or tracing SQL statements.

Vulcan Internals
Most of the changes to Vulcan are internal. Their effect on performance and reliability
can be measured by client applications, but they don’t change the API or other user
interfaces. See the Vulcan Internals section for more information.

Garbage Collect Thread
Firebird 1.5 uses a separate thread for garbage collection when compiled as SuperServer.
Firebird 2.0 uses cooperative garbage collection or a garbage collect thread, depending on
the circumstances. Vulcan uses only cooperative garbage collection.

SMP

Firebird
The Firebird SuperServer is multi-threaded, but only one thread runs at a time, which was
an appropriate architecture when a typical server system had only one processor. Each
request operates in a thread. A built-in thread scheduler allows a thread to run for a fixed
period of time, then stops it and starts another. This type of threading prevents a single,
complex request from blocking all others. Firebird controls threads through a single,
system-wide mutex manipulated by the THREAD_ENTER and THREAD_EXIT macros.
Threads check the state of the mutex at convenient times and yield control as requested.
In Firebird, a thread can never be interrupted while updating a critical data structure.

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 5 of 26

Vulcan
In Vulcan, threads run in parallel and are scheduled by the operating system thread
scheduler. This algorithm works well on symmetric multi-processors, but requires a
different mechanism for protecting critical data structures.

Thread Synchronization
Vulcan threads run concurrently and are synchronized, where necessary, by controlling
access to specific data structures and objects. Wherever possible, data structures and
objects are changed from one consistent state to another by a single, non-interruptible
instruction. When an object must be held in a consistent state for reading or writing, the
accessing thread must acquire a lock.

Objects typically provide their own locks. Most objects use instances of a SyncObject
class contained in their class definitions. SyncObject provides shared and exclusive locks
with exclusive lock requests managed in a “fair” (i.e.) fifo ordering. Shared locks allow
multiple threads to read the values of an object instance. Exclusive locks allow one
thread to change values in an object instance.

“Fair” ordering means that requests for a lock on an object are serviced in order. If the
object is locked in shared mode with no lock requests pending and another request is
received for that lock in shared mode, the second lock is granted. As soon as a thread
requests an exclusive lock on the object, additional requests for shared locks queue
behind the request for the exclusive lock.

SyncObjects can be managed directly, but are more often managed by block local Sync
objects that automatically release locks on exit or stack unwind.

Compatibility
Certain specific parts of Firebird 1.5 have not yet been completely implemented in
Vulcan. They are: the WNET and XNET local server interfaces, Execute SQL
Statement, and the Services API. In addition, some areas need additional work:
Configuration File Structure needs some work to insure seamless upgrades. The Remote
Architecture and the Use of XDR reflect pure early 1980’s technology and should be
upgraded. Other areas offer opportunities that should be exploited to improve the product
including Internal Engine SQL, and the Compiled Statement Cache. The Gateway
Provider will provide a bridge from future InterBase versions to Firebird. Finally, the
Event Manager appears to have suffered in the translation to Vulcan.

Process Architecture

Firebird
Firebird is distributed in three forms: SuperServer, Classic, and Embedded. Each
represents conditional code and a conditional build.

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 6 of 26

SuperServer is a single process that accepts network connections and manages all
database access. Coordination between requests is handled within the SuperServer. The
server opens the database in exclusive mode and no other type of access is permitted to
that database. SuperServer is multithreaded to avoid having a single request block others
but does not support parallel thread execution.

Classic is a shared library containing database access, update, and lock management
code. Each process reads and writes to the database independently. Access is coordinated
through a shared memory lock table. A single process can make multiple connections to
a database or connections to multiple databases. Requests to different connections can
be interspersed, but are not multi-threaded. Classic provides parallel execution from
different processes on SMP.

Embedded requires that all access to a database be through a single process that locks the
database. Embedded provides the same level of multi-threading as SuperServer.

Vulcan
Vulcan provides fine granularity multi-threading with parallel thread execution in all
configurations. It differs from Firebird in several ways, the most obvious being that
Vulcan separates the functions of server and database access and controls database
sharing through configuration file settings.

The Vulcan server is a process that accepts network connections and converts the
requests conveyed in the network protocol to Firebird API calls. All database access
goes through a thin primary shared library known as the Y-Valve to an open-ended set of
data providers.

If the configuration file specifies that the database is not shared, network access to that
database is equivalent to SuperServer. All connections share a single buffer pool. If the
configuration file specifies database sharing, local access is similar to Classic, with any
number of processes, each with a private buffer pool, synchronized by an external lock
manager. If remote access is enabled on a database that allows sharing, Vulcan runs in
hybrid mode. Remote clients access the database through a multi-client, multi-threaded
server with a shared buffer pool that share the file with other local processes that
maintain private buffer pools, all synchronized by the lock manager. With no server and
database sharing disallowed, Vulcan runs in Embedded mode.

Y-valve
The primary library, firebird.dll or libfirebird.so, is called the “Y-valve” or “dispatch
module”. It implements all user visible API entrypoints but does not perform any data
management services itself. It loads and invokes other libraries called “providers” to do
the actual work. All programs that access a Vulcan database do so through the Y-valve.
There is no separate client library, classic library, or embedded library.

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 7 of 26

When the client asks for a database, the dispatch module finds engine, interface, gateway,
or server that supports the requested database, whether local, remote, or even a different
architecture.

In the configuration system, the Y-valve is a provider called dispatch.

Providers
A provider is a C++ object that implements the canonical provider interface class. The
base interface class is extensible. A provider that does not support a particular function
returns a proper OSRI error sequence.

Providers include actual database engines, remote interfaces to communicate with
servers, gateways to another version of Firebird or InterBase, and any other data
manipulation code which supports OSRI semantics.

Currently Firebird support ODS formats 9, 10, and 11 in a single code base. That support
significantly complicates the code because it requires different execution paths depending
on the result of tests for ODS version. Maintaining several parallel and intersecting
execution paths is an engineering challenge at best. In the original InterBase, on-disk
structure (ODS) changes were handled by including a provider that handled the old ODS
and a provider that handled the new ODS.

The Vulcan architecture is similar, though the mechanism for choosing a provider is
different. As the database engine evolves, we can expect to have a set of database
providers, each handling a different generation of database files. A single application
program can run against everything from an InterBase version 4 database to the most
recent experimental version of Firebird.

Servers
A Vulcan database server is a program layered on the published database API. The
current server handles TCP-IP connections following the Firebird 1.5 remote protocol. It
connects to the Y-valve and then to providers for all data manipulation.

Configuration Files
The Vulcan configuration file system is a superset of the Firebird 1.5 configuration file.
The full syntax and semantics are documented in section on Configuration Files.

Firebird
Firebird has a single configuration file for the entire installation with no provision for
separate control, either by user groups or by database. Originally, the configuration file
controlled the size and organization of the lock table, a resource that is shared by all
databases served by an installed version of Firebird. Versions 1.5 and 2.0 greatly
expanded the number of parameters managed by the configuration file.

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 8 of 26

Vulcan
Vulcan balances need for database and application specific configuration values and the
need for system wide management of configuration with cascading configuration files.
The Vulcan configuration files control the mapping of databases to providers and security
managers by defining those objects and their relationships.

Configuration file definitions
Vulcan configuration files define parameters and objects. Configuration parameters are
fixed attributes like the lock table hash width, sort memory size, etc. Configuration
objects include databases, providers, servers, security managers, and other as yet
unknown object types. Configuration parameters that are declared globally within a
configuration file become defaults. Configuration parameters that are declared within the
definition of an object are local to the object.

A global default parameter overrides an intrinsic, built-in default parameter of the same
name. A parameter defined within a provider object overrides the global default value for
that parameter. A parameter defined within a database object overrides the same
parameter defined in the provider. Parameters are scoped to support a balance between
general policy and special case exceptions.

Database objects
Database objects are described by a file name that may include wild cards. The database
object description has one of two formats. The normal format includes a provider.

1. a general database object that includes a TCP/IP address. This object describes all
databases which have a name that contains a “:” character. The filename is left
unchanged and the designated provider is remote. Thus a request to open a database
with a file name of “caine:/usr/harrison/databases/foo.fdb” would be passed to the
TCP/IP remote access provider.

<database *:*>
 filename $0
 provider remote
</database>

2. a specific database object. This object describes all databases with the name
“msg.fdb” and redefines the name to point to the message database in the Vulcan
install directory.

<database msg.fdb>
filename $(root)/databases/msg.fdb
provider engine8
</database>

3. a generic database object. This object describes all other databases and assigns them
to the local provider.

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 9 of 26

<database *>
 filename $0
 provider engine8
</database>

A second style of database object simply changes the name of the database. This is a
useful feature, but its behavior is unlike anything else in the configuration files.

4) A database object definition can replace the name of the database without giving
it any other characteristics. For example, some of the Vulcan and Firebird
sources are modules that must be preprocessed by gpre. Those files contain the
name of a database to use in the preprocessing. Many of them reference
yachts.lnk. The build configuration file replaces the name yachts.lnk with a full
path to a database called metadata.fdb.

When a database object definition replaces the name given on input, the
configuration file manager reapplies all configuration files in order, using the new
name rather than the name originally supplied.

 <database yachts.lnk>
 filename caine:c:\harrison\vulcan\databases\metadata.fdb
 </database>

Provider objects
1. a provider object. This object is the local engine. Its attributes are the name and

location of the lock file and the name and location of the shared libraries that can
serve as that provider. In this case, the library can either be a 32-bit binary or a 64-
bit binary. The Y-valve will attempt to open a database with the first library lists,
then the second, and so on.

<provider engine8>
LockFileName $(root)/vulcan.lck

 library $(root)/bin/engine8 $(root)/bin64/engine8
</provider>

The Y-valve is a degenerate provider, which accepts one parameter, TraceFlags,
indicating that certain operations should be written to its output stream.

<provider dispatch>
TraceFlags 6

</provider>

Security Objects

2. a security manager. Security management is discussed in more detail <here>.

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 10 of 26

<SecurityManager SecurityDb>
SecurityDatabase $(root)/security.fdb
AuthAccount user
SecurityPlugin SecurityDb

</SecurityManager>

3. a security plug in. Security management is discussed in more detail <here>.

<SecurityPlugin SecurityDb>
 library $(root)/bin/securitydb $(root)/bin64/securitydb
</SecurityPlugin>

Cascading Configuration Files
The second major difference between Vulcan and Firebird configuration files is that
Vulcan configuration files cascade. The Y-valve opens an initial configuration file that
can provide all parameter and object definitions, like firebird.conf, or it can provide some
definitions and include one or more additional configuration files. Those files can
include other configuration files. Typically, the initial configuration file is the most
specific and the included files are increasingly generic, ending with firebird.conf.

Objects can be defined at multiple levels. An earlier object definition overrides a later
object definition. A system manager can choose to delegate control over various group
databases to the groups themselves while retaining control over server configurations.
An individual (or application program) can specify a personal or application
configuration file that cascades to the group configuration file that cascades to the system
wide client configuration files.

Configurable Security Managers

Firebird
Firebird supports a single hard-coded security model – a single, system wide, security
database. Any user with access to one database has access to all databases on a system.

Vulcan
Vulcan introduces the architecture for loadable security managers. For the initial release,
there is only one security manager, which emulates the Firebird security semantics. The
architectural support for loadable security manager will permit installations to specify
and enforce other security.

Security manager classes
The security manager is implemented with a C++ base class, like the provider interface.
All security managers must support the interface, providing a framework for complex
interactions between database engine and security manager while allowing future
extensibility.

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 11 of 26

Like other configuration objects, security managers can be daisy chained. A single
installation can support a mixture of security managers.

User Authentication

Firebird
The Firebird security management system depends on a database called security.fdb in
the installation directory. All user authentication data for the installation is stored in that
database.

Vulcan
The configuration files specify where Vulcan should look for user authentication data.
That data can be in the installation-wide security.fdb, in another database, or in the target
database itself. The configuration file can also specify that a database uses no
authentication at all.

Vulcan also implements a user authentication extension to the published API designed for
open-ended interaction with various loadable security managers. The user authentication
facility also eliminates the public accessibility of account names and password hashes,
significantly increasing database security.

Vulcan supports these SQL statements:

create user <username> password ‘<password>’
alter user <username> password ‘<password>’
drop user <username>
upgrade user <username> password ‘<password>’

SQL Integration

Firebird
Dynamic SQL (DSQL) in Firebird is implemented in the Y-valve rather than the engine.
Each database attachment fetches and manages a private view of database metadata,
incurring substantial overhead and delaying time to first record.

Vulcan
Vulcan moves SQL processing from the Y-valve into the database engine. This has
several advantages.

Shared metadata cache
The SuperServer version of Firebird maintains a metadata cache within the engine and a
metadata cache for each connection. Building a new metadata cache is a significant part

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 12 of 26

of the cost of establishing a new connection. In a Vulcan shared server, all connections
share a single copy of metadata.

Internal SQL execution
The Firebird engine does not use SQL directly. Internal database access is through
GDML preprocessed by gpre using a special switch to generate internal rather than
external calls. In Vulcan internal metadata management uses internal statements like
this:

PStatement statement = connection->prepareStatement (
"SELECT"
" vrel.RDB$CONTEXT_NAME,"
" vrel.RDB$RELATION_NAME"
" FROM RDB$VIEW_RELATIONS vrel"
" WHERE vrel.RDB$VIEW_NAME = ?");

statement->setString(1, viewName);
RSet resultSet = statement->executeQuery();

while (resultSet->next())
{
const char *contextName = resultSet->getString(1);
const char *relationName = resultSet->getString(2);

…

}

Moving away from GDML and gpre is hard, but necessary.

Performance
To maintain performance while protecting shared resources, Vulcan reduces critical code
paths. In particular, in Firebird 1.5 more than 500 routines, many on critical paths, start
with a call to get_thread_data. Where thread data is required, Vulcan uses the normal
parameter passing mechanism to provide it. This clean-up compensates for the
interlocked instructions used to protect shared data structures.

Lock management

Firebird
Firebird has two lock managers. The SuperServer lock manager is part of the server, but
still uses a defined, fixed size memory area to manage concurrent access to page buffers
and other resources. The Classic lock manager is a shared memory area that all processes
use to record their requests for access to shared database objects. Although the lock
manager is discussed as if it were a separate entity, it is actually part of the SuperServer
image and the Classic library. However, the Firebird lock manager carries with it years
of history. Those years show themselves in the wide variety of ways that the lock
manager attempts to establish communication between processes in Classic mode.

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 13 of 26

In particular, some systems require semaphores which may require a rebuild of the
kernel. Others use signals, which may require a separate privileged process to transmit
between clients from different process groups.

Vulcan
Vulcan has only one lock manager. The server can share a database with local clients.
The lock manager uses a single mechanism for inter-process communication: threads.
The need for a privileged resignalling process is gone.

Vulcan Internals

Object Lifetime Management
In Firebird all memory is allocated from memory pools and persists until the memory
pool is deleted. Vulcan supports memory pools, but release-by-pool is deprecated. All
new and revised code explicitly releases objects allocated. All objects track resources
they allocate and release any remaining allocated resources in the class destructor.

Thread Data
The use of thread specific data other than thread management itself is deprecated. The
“thread database” object has been retained, but is passed as a formal parameter to all
methods and functions where it is required.

System Tables
In Firebird, compiled database access statements reference tables and fields by their
identifiers (relation_id, field_id) rather than names. At one point the memory and
processing necessary to maintain names was significant. Processor speed and memory
cost have eliminated the benefit of that optimization, and Vulcan now uses names rather
than identifiers. This change will allow “soft” system tables – system tables that accept
and preserve user extensions.

Exception Handling
In most cases, Vulcan exceptions are thrown and caught as instances of the
OSRIException class. The OSRIException carries the full context (information load) of
the exception, eliminating the need to find a target status vector in order to throw an
exception.

Class Encapsulation
Numerous internal mechanisms have been encapsulated as C++ classes including BLR
generation, message formatting, message lookup, the mover, status vector, SQL parser, a
string class, handle management, etc.

Namespace Management
Vulcan contains a great amount of code shared between the engine, the Y-valve, other
providers, and external components. To promote code sharing while preserving

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 14 of 26

architectural borders, shared Vulcan classes are qualified by soft, component-specific
namespaces declared in the build configuration.

Coding Conventions
Vulcan code follows the class, member, and file name conventions laid out in the paper
“Vulcan Rules” distributed in the Vulcan source tree.

Unfinished Work and Loose Ends

Remote Architecture
Parts of the interface for the various remote network modules have been encapsulated as
a Port structure. The encapsulation, however, was driven more by pragmatics than
coherent design. The encapsulation itself as well as the division of work between the
base classes and individual networks modules could use a careful redesign. The interface
is non-architectural, and can be changed at any point.

Use of XDR
The remote line protocol is defined in terms of XDR, the lower layer of Sun’s remote
procedure protocol. In practice, however, XDR adds nothing but cumbersome overhead.
XDR should be replaced by simpler in-line code without impacting the line protocol or
forward and backward compatibility.

WNET and XNET
The WNET and local transport mechanism XNET have not yet been converted to Vulcan.

Event Manager
The event manager has not been tested in Vulcan and can be assumed not to work.

Compiled Statement Cache
The Firebird 2.0 dynamic SQL handling has been implemented in the Vulcan engine as
two classes, CStatement, a compiled statement, and DStatement, an instance of a
compiled statement. This architecture can support a cache of compiled statements. To
finish the implementation of a statement cache requires creating a statement cache
manager to manage compiled statements and to validate security and access control to
prospective compiled statements.

Internal Engine SQL
Vulcan supports internal engine SQL. Following implementation of the compiled
statement cache, GDML should generally be replaced by SQL for metadata handling
within the engine.

Execute SQL Statement
The Firebird 2.0 implementation of Execute Statement loops back through the API to
provide call-level dynamic SQL. Vulcan’s internal engine SQL provides a cleaner
mechanism.

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 15 of 26

Configuration File Structure
Vulcan configuration files are designed to cascade, giving great flexibility, but have
evolved in a rather ad hoc manner. Some careful thought should be given to the specific
layout of configuration files to preserve site configuration information over Firebird
upgrades.

The Gateway Provider
The Gateway Provider is demonstrable but incomplete. The Gateway is also compiled to
support a single remote interface. It should probably be reworked to pick up information
about the foreign system from the configuration file.

Services API
The services API is designed to be supported by a Services Provider. The Services
Provider, however, does not yet exist.

The Commit Manager
Vulcan includes the skeleton of code to group commits. When a transaction commits, all
pages it changed must be written to disk. Some of those pages are common to many
transactions: the header page, the tip, generator pages, etc. Considerable saving can be
achieved by grouping commits to those pages are written once for the whole group. The
ability to group commits was not required to achieve the performance goals, but the
structure to do so is in the code.

Portability

Firebird
Firebird V1.5 and V2.0 are sensitive to minor variations in C++ compilers, which is a
serious liability given the somewhat cavalier attitude of compiler developers toward
version-to-version compatibility.

Vulcan
Vulcan was developed on four compilers simultaneously: gcc 2.96, gcc 3.3.4,
Solaris/Forte 5.5, and Microsoft VC7. To make that work, Vulcan eliminated the
dependency on std.lib, minimized all other dependencies outside the core clib (c library),
and reduced the complexity of template usage.

Temporary Installation Procedure
To be provided

The config utility
Vulcan includes a command line utility called config which reads the configuration files
and reports on their contents.

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 16 of 26

Syntax and switches
Config accepts the following switches:

 -t Trace configuration file opens
 -l Print the contents of configuration files
 -i Show installation directory
 -f filename Config file name
 -h Print this text

Config output
The most common use of config is to determine how a database will be accessed, using
the –t option. Config first reports on the configuration files it opens in order, then reports
any translation of the file name, then lists the provider and the shared library that
implements the provider.

In this example, config reports that the installation configuration file for clients is the first
one located, and that the file rogers.fdb be opened locally.

C:\harrison>config -t rogers.gdb
Opening \harrison\vulcan\install/client.conf
Opening \harrison\vulcan\install/databases.conf
Opening \harrison\vulcan\install/vulcan.conf
Looking up database name string "rogers.fdb"
 Matches "*", translates to "rogers.fdb"
 Provider engine8
 Library "C:\harrison\vulcan\install\bin\engine8": succeeded

This example comes from the vulcan build directory. There is a vulcan.conf file in the
source directory that invokes a shared configuration file called build.conf. Build.conf
renames yachts.lnk to be help.fdb – solving one of the long standing build problems.

C:\harrison\vulcan\src\qli>config -t yachts.lnk
Opening vulcan.conf
Opening ../build.conf
Opening \harrison\vulcan\install/client.conf
Opening \harrison\vulcan\install/databases.conf
Opening \harrison\vulcan\install/vulcan.conf
Looking up database name string "yachts.lnk"
 Matches "yachts.lnk", translates to
"../../install/help/help.fdb"
 Provider engine8
 Library "C:\harrison\vulcan\install\bin\engine8": succeeded

Configuration Files

Locating the initial configuration file
Vulcan locates a configuration file by trying the following steps in this order:

1. Translate the environmental variable VULCAN_CONF

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 17 of 26

2. Open vulcan.conf in the program’s default directory
3. Open ~/.vulcan.conf – vulcan.conf in the user’s home directory on Unix

and Linux systems.
4. Translate the environmental variable VULCAN and open client.conf there
5. Translate the environmental variable FIREBIRD and open client.conf there
6. Windows registry for Windows systems only.

a. SOFTWARE\\Firebird Project\\Firebird Server\\Instances
b. SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\App

Paths\\Firebird

Include statements in the initial configuration file lead to other configuration files.

Configuration file syntax – Parameters
The syntax for defining a parameter is the same as in Firebird

<parameter name>[=] <value>[<value>…]

A newline terminates the parameter definition. Boolean parameters accept the values
yes, no, true, and false.

For example
RootDirectory /opt/vulcan

Or
RootDirectory = /opt/vulcan

Or
provider remote engine8 services

Or
DatabaseFileShared true

Vulcan accepts all the parameters supported by Firebird 1.5 and a number of new
parameters. The file firebird.conf documents the firebird specific parameters. This
section describes the Vulcan specific parameters.

DatabaseFileShared – defaults to false. This parameter is normally
used within the definition of a database object. If it is set to
false, only one process can attach to the database at any one time.
This is equivalent to embedded access or SuperServer access if the one
process is the server.

LockFileName – defaults to null (0x0). The parameter is provided so
two or more copies of Vulcan can exist on a computer and ignore each
other. That configuration, while important and powerful, is also
dangerous unless carefully designed.

SecurityDatabase – defaults to “none”. The permissible values are
“none”, “self”, and the file name for a security database. Typically
an installation’s vulcan.conf file will name a security database and
the definitions of specific databases will override that definition
with either “none” for databases that have no authentication, “self”

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 18 of 26

for databases that contain their own authentication information, or an
application / installation specific shared authentication database.

Library – the name of a shared library that implements a particular
service.

TraceFlags – defaults to zero. The flags are traceCalls 1,
traceResults 2, and traceSQL 3. They can be combined.

SecurityManager – defaults to "SecurityDb". No other manager is
currently available. This parameter is part of the security management
architecture to support security plugins.

CommitInterval – defaults to 200. This parameter controls the
frequency of group commits under the (unfinished) commit manager.

Using firebird parameters
To emulate customized Firebird 1.5 behavior, you can add the line

include $(root)firebird.conf

to the vulcan.conf file in the in installation directory. However, many parameters are
more useful when applied to a specific database, and those parameters can be set in the
object definitions in Vulcan configuration files. Others, like SortMemSize may be set
differently for different processes and should be included in the vulcan.conf files for
those processes.

Specific installations
If you are setting up multiple independent copies of Firebird and Vulcan, you should
create a configuration file in the root directory of each installation that includes these
parameters:
RootDirectory, LockFileName SecurityDatabase

Resource use
Some parameters should be set differently for different clients to distribute resources
according to need.

SortMemBlockSize, SortMemUpperLimit, DefaultDbCachePages,
MaxUnflushedWrites, MaxUnflushedWriteTime,

Deprecated parameters
Due to changes in architecture, a number of Firebird parameters have no meaning in
Vulcan.

RemoteFileOpenAbility – Vulcan does not support the ability to open
databases through NFS mounts.

CpuAffinityMask, TraceMemoryPools, LockSemCount, LockSignal,
LockAcquireSpins, SolarisStallValue, PrioritySwitchDelay,
DeadThreadsCollection, PriorityBoost,

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 19 of 26

TCP Server options
These parameters should be set in the server configuration file.
GuardianOption, TcpRemoteBufferSize, TcpNoNagle, ConnectionTimeout,
DummyPacketInterval, RemoteServiceName, RemoteServicePort,
RemoteAuxPort, RemoteBindAddress,

Non-tcp Server options
These parameters should be set in a configuration file specific to the affected server.

IpcMapSize, RemotePipeName, IpcName, ProcessPriorityLevel,
CreateInternalWindow,

Compatibility with older versions
These parameters should be set at the process or user level
OldParameterOrdering

Lock and Event manager parameters
These parameters should be set at the installation level:

LockMemSize, LockGrantOrder, LockHashSlots, DeadlockTimeout,

EventMemSize,

Access control parameters
These parameters should be set at the process or sever level:
ExternalFileAccess, DatabaseAccess, UdfAccess, TempDirectories

Object definition syntax

Special tokens
$(install) – the actual installation directory.
$(root) – the translation of the parameter RootDirectory or the installation directory if
that parameters is underfined.
$(this) – the current directory.

$0 - the current name
$1 - the translated value of the first wildcarded portion of the current name
$n - the translated value of the nth wildcarded portion of the current name

Object definitions
The basic format of an object definition is:

<object name>
parameter value[value…]
</object>

The known objects are server, provider, SecurityManager, SecurityPlugin, gateway, and
database.

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 20 of 26

 <provider engine8>
 LockFileName $(root)/vulcan.lck
 library $(root)/bin/engine8 $(root)/bin64/engine8
 </provider>

 <SecurityManager SecurityDb>
 SecurityDatabase $(root)/security.fdb
 AuthAccount user
 AuthPassword lookup
 SecurityPlugin SecurityDb
 </SecurityManager>

Only one security plugin is supported currently.

 <SecurityPlugin SecurityDb>
 library $(root)/bin/securitydb $(root)/bin64/securitydb
 </SecurityPlugin>

A database object definition can have one of two forms. It can map a database name,
possibly wild-carded, to one or more providers and apply other parameters to the
database like this:

 <database *>
 filename $0
 provider remote engine8 services
 </database>

The other form of the database object definition changes the name given for the database
without giving it any other characteristics. When the configuration file manager finds a
database object which simply renames the database, it reapplies all configuration files in
order, using the new name rather than the name originally supplied.

 <database yachts.lnk>
 filename caine:c:\harrison\metadata.fdb
 </database>

Unless you include at least one provider in a database object, the only parameter you can
set is the database name.

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 21 of 26

Using internal SQL

Syntax
Internal SQL is very much like JDBC. One starts by constructing a PStatement object by
invoking the prepareStatement method of the Connection object on a SQL string that can
include wild cards.

PStatement statement = connection->prepareStatement (
"select"
" rfr.rdb$field_name,"
" rfr.rdb$field_position "
"from "
" rdb$relation_fields rfr join"
" rdb$fields fld on"
" rfr.rdb$field_source = fld.rdb$field_name "
"where"
" rdb$relation_name = ?");

The PStatement has a method for establishing values for the wildcards.

statement->setString(1, rel_name);

Executing a query statement produces an RSet object.

RSet resultSet = statement->executeQuery();

The RSet object iterates through the query results.

while (resultSet->next())
{
int seq = resultSet->getInt(2);
const char *fieldName = resultSet->getString(1);
…
}

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 22 of 26

Building Vulcan on Windows

Anyone who would like to build Vulcan at home and has access to Visual Studio 7 can
do so, reasonably easily, following this procedure.

Check out the sources from sourceforge using the module name vulcan and any CVS
client. The account is anonymous with no password. The CVSROOT is
/cvsroot/firebird. If you are using a version of CVS that does not check out empty
directories, you’ll need to create a Databases directory under src.

Read the file README.VulcanWin32.txt in the top-level directory. It instructs you to

1) define VULCAN as <vulcan root>\install

2) put %VULCAN%\bin on your path before the paths to Firebird or InterBase

3) run the command file boot_copy.bat

4) copy or rename the file vulcan\builds\VisualStudio7\Vulcan\Vulcan.snl.template
to vulcan\builds\VisualStudio7\Vulcan\Vulcan.sln

Then start Visual studio pointing it at the solution in vulcan\builds\VisualStudio7\Vulcan.

5) in the Visual Studio/Tools menu, pick Options/Projects, then Visual C++ files. If
the list does not include <source root>/install/bin and <bison install
directory>/bin, add them.

6) click on build solution and it should churn happily for a while and eventually
report that it built 22 projects with no failures.

The build automatically creates all the necessary databases, message files, dynamic
header files, etc.

Local connections will work immediately. To allow remote and loopback connections,
start the server %VULCAN%\bin\inetserver.exe with the switches -a -d -t. The
configuration files are deeply involved with the connection between a utility and a
database. The best way to guess what the config files are doing to you is to run the
config utility with the -t option.

The config utility traces back through the sequence of configuration files, then reports the
translation of the database name, the name of the provider, and whether the provider was
found.

C:\Harrison>config -t help.fdb
Opening c:\cygwin\home\vulcan\install/client.conf
Opening c:\cygwin\home\vulcan\install/databases.conf

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 23 of 26

Opening c:\cygwin\home\vulcan\install/vulcan.conf
Looking up database name string "help.fdb"
 Matches "help.fdb", translates to
"c:\cygwin\home\vulcan\install\help\help.fdb"
 Provider engine8
 Library "c:\cygwin\home\vulcan\install\bin\engine8": succeeded

C:\Harrison>isql help.fdb
Database: help.fdb
SQL> show version;
ISQL Version: WI-V2.0.0.4027 Vulcan 1.0 Development
Firebird/x86/Windows NT (access method), version "WI-V2.0.0.4027 Vulcan
1.0 Development"
on disk structure version 11.0
SQL>

If you have problems building vulcan, please contact me, aharrison@ibphoenix.com

Thanks,

Ann

mailto:aharrison@ibphoenix.com

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 24 of 26

Building Vulcan on Posix system

1) Check out the sources from sourceforge using your favorite CVS into a directory
somewhere. For this example, call the top of the directory tree /home/vulcan

2) Set and export (depending on the style of your shell) the environmental variable
VULCAN to be the directory called install under the vulcan directory. In this
example it would be /home/vulcan/install.

3) Set and export the environmental variables ISC_USER and ISC_PASSWORD.
SYSDBA and masterke are good – change the password later.

4) If you are building a 32-bit version of Vulcan, add $VULCAN/bin to your PATH
and LD_LIBRARY_PATH variables.

5) If you are build a 64 bit version of Vulcan, add $VULCAN/bin64 to your PATH
and LD_LIBRARY_PATH variables.

6) cd to the src directory under the build tree. In this example cd
/home/vulcan/src

7) Add execute permission to the files set_platform, autogen.sh, build and
boot_build.

8) Invoke the autogen script ./autogen.sh
9) Run the set_platform script with one of these arguments: { linux32 |

linux64 | solaris64 }. For example ./set_platform linux32
10) Run the build script file with no arguments. ./boot_build

If you have problems building vulcan, please contact me, aharrison@ibphoenix.com

Thanks,

Ann

mailto:aharrison@ibphoenix.com

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 25 of 26

Building Vulcan on 64-bit Linux

Here is the full command sequence from a SuSE 9.2 AMD64 build, which already had
the environmental variables defined:

cvs -z3
-d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/firebird
 co vulcan
cd vulcan
./autogen.sh
cd src
./set_platform linux64
boot_build
rehash

If you have problems building vulcan, please contact me, aharrison@ibphoenix.com

Thanks,

Ann

mailto:aharrison@ibphoenix.com

Vulcan Overview

Document Version 1.06 2/3/2005 8:48 AM
Page 26 of 26

Document history

V1.0 first draft
V1.01 removed installation instructions
V1.02 corrected errors including classic on windows
V1.03 added Linux instructions and improved configuration section
V1.04 corrected and restated various problems, corrected linux instructions added 64 bit
build example
V1.05 incorporated Helen’s comments
V1.06 removed details of Firebird use of the security database that changed between 1.5
and version 2.0 and added the need for user and password environmental variables in the
Posix builds.

	Vulcan Overview
	Overview	3
	Project Goals
	New Features of Vulcan
	Process Architecture
	Configuration Files
	Configurable Security Managers
	User Authentication
	SQL Integration
	Lock Manager
	Call tracing
	Vulcan Internals
	Garbage Collect Thread

	SMP
	Firebird
	Vulcan
	Thread Synchronization

	Compatibility
	Process Architecture
	Firebird
	Vulcan
	Y-valve
	Providers
	Servers

	Configuration Files
	Firebird
	Vulcan
	Configuration file definitions
	Database objects
	Provider objects
	Security Objects
	Cascading Configuration Files

	Configurable Security Managers
	Firebird
	Vulcan
	Security manager classes

	User Authentication
	Firebird
	Vulcan

	SQL Integration
	Firebird
	Vulcan
	Shared metadata cache
	Internal SQL execution

	Performance
	Lock management
	Firebird
	Vulcan

	Vulcan Internals
	Object Lifetime Management
	Thread Data
	System Tables
	Exception Handling
	Class Encapsulation
	Namespace Management
	Coding Conventions

	Unfinished Work and Loose Ends
	Remote Architecture
	Use of XDR
	WNET and XNET
	Event Manager
	Compiled Statement Cache
	Internal Engine SQL
	Execute SQL Statement
	Configuration File Structure
	The Gateway Provider
	Services API
	The Commit Manager

	Portability
	Firebird
	Vulcan

	Temporary Installation Procedure
	The config utility
	Syntax and switches
	Config output

	Configuration Files
	Locating the initial configuration file
	Configuration file syntax – Parameters
	Using firebird parameters
	Specific installations
	Resource use
	Deprecated parameters
	TCP Server options
	Non-tcp Server options
	Compatibility with older versions
	Lock and Event manager parameters
	LockMemSize, LockGrantOrder, LockHashSlots, DeadlockTimeout,
	Access control parameters

	Object definition syntax
	Special tokens
	Object definitions

	Using internal SQL
	Syntax

	Building Vulcan on Windows
	Building Vulcan on Posix system
	Building Vulcan on 64-bit Linux
	Document history

