

Embedded Engine in Firebird 3
by Helen Borrie Copyright IBPhoenix Publications

Revised May 2018 in collaboration with Vlad Khorsun

Since Firebird 3 was released, users have sometimes been confused about the "missing" kits
for Firebird embedded. We hope this article will demystify the issue and help developers
migrating older embedded applications to Firebird 3 and higher.

One deployment option for Firebird is "embedded", whereby the Firebird API client
connects directly to one or more databases through an instance of the database engine
that is incorporated in the application's workspace.

 Before Firebird 3, this embedding was achieved on POSIX platforms by connecting
the application directly through the Firebird API client library to a Classic process
(Superclassic in v.2.5) without including a TCP/IP address or hostname in the
path to the database file. Firebird on POSIX always had this mode.

 For Windows applications, you had to download a specially-compiled API client
library (fbembed.dll) that included a single-instance Superserver engine
(Superclassic in 2.5) and locate it, along with some other components, in the folder
with the application executable. As with the POSIX version, the connection path
would be hostless.

Embedded in Firebird 3
Everything you need for deploying Firebird 3 embedded with your application is present
in the .zip (Windows) or .tar.gz (Linux) kit that you download from the Firebird website.
We'll work with mainly with the Windows zip kit here, but the principle is the same for
the Linux kit: unzip the Windows kit into its own folder or decompress and untar the
Linux one into its own directory. There are differences between structures of the file
systems now, specifically in the location of the binary files: Linux retains them in the
/bin directory beneath the Firebird root, whereas Windows has them all directly in the
Firebird root.

Tuning the Directory Structure
We'll make it a minimal install, on the assumption that the only executables wanted are
gfix, gstat, gbak, isql and nbackup. (You might not want any of them.) You don't need the
firebird executable at all. You don't need the security database, since authentication is
not used in embedded. We are retaining the hoary old employee database in the sub-
directory /examples/empbuild for testing, but it is not needed for deployment.

Embedded Server in Firebird 3 Page 2 of 6

The following screenshot shows the Firebird root directory with the files and sub-
directories we might want at this point:

Notice that the Firebird executablefirebird.exe in Windows, firebird in Linuxis
not wanted. You can take out any of the other executables that you don't intend to deploy
to users, as well.

Embedded Server in Firebird 3 Page 3 of 6

We need the engine12.dll (libengine12.so) provider module in the sub-directory
/plugins. This is the only module we need to keep in /plugins, for our minimal
installation. You'll want to keep others if you plan to use them for something in your
application.

 And just the employee.fdb database in /examples/empbuild for testing. It can be
deleted once we are ready to trim down for deployment.

Configuring the Provider for Embedded
With the full unification of Firebird in Firebird 3 came plug-in providers for all of the
deployment options. In the initial installation, all are enabled by default. In
firebird.conf:

#Providers = Remote,Engine12,Loopback

Embedded Server in Firebird 3 Page 4 of 6

The engine12 plug-in is used for all deployment models on all platforms. Remote
additionally enables connections from the LAN or WAN; Loopback additionally enables
connections through the TCP/IP local loopback interface. If all are present in the
configuration, the server can accept connections from any of the interfaces. Connection
style is governed by the connection path.

For a simple embedded setup that mimics the pre-V.3 one, there is no need to modify the
default configuration for Providers on a machine that is not running a Firebird network
server. When the Dispatcher encounters a hostless connection path, it first tries the
Remote provider and, as expected, fails in the absence of the networked service. Next, it
tries the Engine12 provider, which should succeed if the database is not exclusively locked
by a Superserver process or another embedded engine instance. The Dispatcher's last
resort would be to call on the Loopback provider to attempt an XNET or INET connection,
which would fail in the absence of login credentials.

If the system does have a Firebird network server running, you can eliminate it from the
scope of your application by simply uncommenting the Providers parameter and deleting
the Remote and Loopback options:

Providers = Engine12

Note that it is now possible for the application to pass some configuration elements via the
DPB or SPB of the connection request as a string argument on the connection tag
isc_dbp_config or isc_spb_config, as the case may be. It could pass "Providers = Engine12"
in the attach database call, if practicable, avoiding the need to configure it specifically.
The form is:

isc_dbp_config | isc_spb_config <string-length> "<config-fragment>"

E.g.,

isc_dbp_config 21 "Providers = Engine12"

When multiple parameters are configured via the isc_xxx_config tag, use the \n (newline)
symbol to separate the parameters within the string, counting each \n as one character.

Bitness: Server vs Client
Because both the engine and the client are running in the same application space, you
cannot mix the 64-bit client and the 32-bit engine, or vice versa. To get the benefit of the
64-bit engine, you should ensure that your application is built as 64-bit.

Illustration
To illustrate our embedded application at work, we will use isql to connect to the employee
database, which the default installation aliases in databases.conf as employee. An

Embedded Server in Firebird 3 Page 5 of 6

embedded connection does not authenticate, so a user name and password are not
required.

C:\Programs64\Firebird_3_0_embedded>isql employee

Database: employee, User: HELEN

SQL> show tables;

 COUNTRY CUSTOMER

 DEPARTMENT EMPLOYEE

 EMPLOYEE_PROJECT JOB

 PROJECT PROJ_DEPT_BUDGET

 SALARY_HISTORY SALES

SQL> exit;

User HELEN is just an ordinary, serverwide user on Windows, which the engine requests
from the operating system if user name not passed explicitly, or obtained implicitly from
the environment variables (ISC_USER, et al.).

Although no authentication is required, we still might need to log in explicitly as SYSDBA
or another user with non-public privileges. In that case, we need to supply the user name.
The password is not required, since authentication still does not apply. The user name
will be associated with privileges and mappings in the specified database.

C:\Programs64\Firebird_3_0_embedded>isql employee -user sysdba

Database: employee, User: SYSDBA

SQL> exit;

Coexisting with a Server
Before Firebird 2.5, an embedded engine on Windows could not connect to a database that
already had connections from a full server or an existing instance of embedded. The
reverse is true, too: a full server could not connect to a database to which an embedded
instance was connected. That was because the prior versions of the embedded database
server on Windows were implemented as Superserver which, for various reasons, requires
an exclusive lock on the database file. In v.2.5, embedded could share a database with
another embedded engine and with a stand-alone Superclassic or Classic server on all
platforms.

In the unified Firebird 3 architecture, an embedded engine is configured by default to run
as a Superserver instance on both Windows and Linux. In firebird.conf:

#ServerMode = Super

As such, it needs to acquire an exclusive lock on the database file to connect and, while
connected, it prevents shared connections from other engine instances. With this

Embedded Server in Firebird 3 Page 6 of 6

configuration, it is not possible, for example, to have client/server clients connected
simultaneously with browser clients attached to the same database through an intranet
application that uses an embedded engine.

The solution is to run your embedded engine as a [Super]Classic process in concert with
your Superclassic or Classic server. Uncomment the ServerMode parameter in the
firebird.conf of your embedded structure and set it to Classic or Superclassic:

ServerMode = Classic

Note, for the embedded engine, Classic and Superclassic are equivalent.

Embedded Connections for Tools Usage
It is not necessary to construct a separate file framework if you plan to use an embedded
connection to run administrative tools such as gbak or gfix or run privileged DDL in
Classic or Superclassic. Simply keep the original Providers configuration and log in with
a "hostless" path and whatever user name you need to accomplish the tasks. The
illustrations above will work equally well from the Firebird root location.

Conclusion
That's all it takes to construct a framework for your embedded engine application in
Firebird 3. You can set it up with as much or as little functionality as you want. Just add
your application, stir gently, and you are good to go.

.

