

Authentication in Firebird 3

by Helen Borrie & Alex Peshkov Copyright IBPhoenix Publications

Developments introduced in Firebird 3 provide many options for authenticating users
attempting to attach to a database. No longer is authentication restricted to a single method:
the methods available are determined by the plug-in authentication modules configured in the
global and/or database config files.

Plug-in Authentication Provider Modules
Authentication-specific calculations, hashes and related activity in the security databases
are performed by a provider module invoked according to the configuration of the
AuthServer and AuthClient parameters. Configuration and its effects in different .conf
files is discussed here, later. Suffice it to say, at this point, that AuthServer is configured
at the server side, while AuthClient is configured in a client-side configuration file when
the client connection is to be configured differently from the global default. The
AuthClient settings configured in firebird.conf at the server side initially represent the
protocols available to Firebird 3 clients, although any settings there have no effect on
clients..

All of the code related to authentication is conducted by the provider. Generic work, like
extracting authentication data from a network message or inserting data into one, is
performed in the interface code of the server application.

The Firebird 3 Authentication Providers
Firebird 3 comes with two providers for authentication: srp.dll and legacy_auth.dll on
Windows, libsrp.so liblegacy_auth.so on POSIX, libsrp.dylib and liblegacy_auth.dylib on
MacOSX. Respectively, these modules encode the work for the newly-introduced SRP
protocol and the legacy authentication protocol. On Windows systems, a security support
provider interface (SSPI) is enabled for server-wide users already logged into the system
to be accepted as trusted users in Firebird.

Firebird 3 is not limited to these three authentication protocols. A third-party provider
(sometimes referred to as a 'pluggable authentication module' or 'PAM') could be plugged
into the server interface with little effort or one could be written from scratch. In this
paper, we talk only about the three providers supported out-of-the-box.

Authentication in Firebird 3 Page 2 of 12

SRP Protocol

Firebird 3's new user authentication protocol, SRP, is installed as the default provider,
meaning that it is configured so that clients logging in through the Firebird 3 client
library will need to supply SRP credentials. These credentials (user name and password)
cannot be inherited from a legacy security database (security2.fdb or older). One way or
another, new credentials must be installed into security3.fdb. A script exists in the
Firebird 3 file structure for converting the users in a restored backup of a security2.fdb
database to the record format for Firebird 3 security databases. The old passwords do not
survive, since long passwords are the key to the security of this protocol.

Quoting from Wikipedia:

“The SRP protocol creates a large private key shared between the two parties in a manner
similar to DiffieHellman key exchange, then verifies to both parties that the two keys are
identical and that both sides have the user's password.

In cases where encrypted communications as well as authentication are required, the SRP
protocol is more secure than the alternative SSH protocol and faster than using Diffie-
Hellman key exchange with signed messages.

It is also independent of third parties, unlike Kerberos.”

SRP is resistant to “man-in-the-middle” attacks and does not need the key pre-exchange
between server and client that SSH would require. A client needs only user name and
password. Exchange occurs when the connection is established.

Legacy_Auth Protocol

The legacy authentication protocol is a survivor from older Firebird versions and, of
course, their predecessor, InterBase. Passwords, limited to 8 characters, are hashed using
a DES algorithm and are relatively easy to sniff and crack. Retaining the legacy protocol
is not recommended but it remains available for use where SRP is unavailable to clients,
typically where applications are connecting pre-V.3 clients to a V.3 server.

As with SRP, legacy user accounts must be created anew or converted using the upgrade
script. The old passwords are lost.

User Managers

The configuration parameter UserManager determines the default protocol for which user
accounts are created or altered. In a new installation, it is set to Srp. To change the
default user manager, uncomment

 #UserManager = Srp

and change it to

UserManager = Legacy_UserManager

Alternatively, if you have clients needing to access both, then include both, separated by a
comma:

Authentication in Firebird 3 Page 3 of 12

UserManager = Srp, Legacy_UserManager

The symbols Srp and Legacy_UserManager, along with Win_sspi, are used in the
USING <protocol> clause of DDL commands for managing user accounts and for setting
up access mappings for externally authenticated users,
Note, when enabling trusted user authentication on Windows, the current setting of
UserManager is irrelevant.

Creating or Updating User Accounts

User accounts for Firebird 3 are database objects created, altered and dropped using a
DDL syntax while logged in to any database as a user with suitable privileges. That
change first appeared in V.2.5 and was enhanced in V.3.0. User names, previously
strings, are now object identifiers of up to 31 characters. The syntax has expanded to
accommodate accounts for either the default SRP user manager or the legacy one or,
indeed, a third-party user manager. They are not mutually exclusive: srp and legacy
accounts can coexist in the same security database. However, they are not
interchangeable.

Except for ALTER CURRENT USER, these operations require SYSDBA privileges.

The syntax is:

CREATE USER username [options_list] [USING PLUGIN plugin_name]

ALTER USER username [SET] [options_list] [USING PLUGIN plugin_name]

DROP USER username [USING PLUGIN plugin_name]

CREATE OR ALTER USER username [SET] [options_list] [USING PLUGIN
plugin_name]

Also:

ALTER CURRENT USER [SET] [options_list]

which allows the logged-in user to change some of his/her own account options, e.g.,
password. However, note that it is not recommended for use in Firebird 3.0 if the server is
configured with multiple user managers. This caveat may be removed in a later release.

options_list is a (possibly empty) list with the following options:

PASSWORD 'password'

FIRSTNAME 'string value'

MIDDLENAME 'string value'

LASTNAME 'string value'

ACTIVE

INACTIVE

USING PLUGIN plugin_name

The plugin_name argument for the USING PLUGIN clause can be Srp or
Legacy_UserManager. If you omit the USING PLUGIN clause, the request will use the

Authentication in Firebird 3 Page 4 of 12

configured user manager by default, or the first (leftmost) one if two or more user
managers are configured. Because it is possible to duplicate user names under different
user managers, it is recommended to specify the user manager whenever you make these
requests.

SYSDBA

Be aware that both user managers provide a ready-created SYSDBA user if an installer
kit was used. The SYSDBA password under Legacy_UserManager would be preset to
'masterke', as before. Under Srp, a password is set for SYSDBA during installer
execution, where it may be either entered by the user or generated automatically and
saved to disk.

If you did not use an installer or the installation was broken then, to initialise
authentication and thus make the server usable, one must connect to a database in
embedded mode with SYSDBA as user and set a password, e.g.

> isql employee -user SYSDBA

Database: employee, User: SYSDBA

SQL> create or alter user SYSDBA set password 'sardineBurger'

CON> using plugin srp;

SQL> commit;

Tip: it is recommended to use the CREATE OR ALTER verb for this operation.

The extensions include the ability to include attribute tags, although we do not discuss
that here. You can look up those details in the Security chapter of the Firebird 3 release
notes.

gsec

The old gsec utility can still be used, although only with the "global" security3.gdb
database. It is deprecated and there are no good reasons to use it. It does not support all
of the security features in Firebird 3; nor can it be used to manage users in dedicated or
embedded security databases.

Upgrading a Security Database - Notes

 The script in the /misc/upgrade/security sub-directory of the Firebird 3 installation
is accompanied by a text file with instructions. More detailed instructions can be
found In Chapter 12 of the Firebird 3 release notes, in the topic Upgrading a v.2.x
Security Database.

 The upgrade script generates new long passwords for each user, one by one, based
on a GUID, which the administrator will need to record manually as they are
output. There is no way to retrieve either legacy or Srp passwords from any
security database.

Authentication in Firebird 3 Page 5 of 12

 If you want the upgrade script to create legacy user accounts, you must first
change the UserManager parameter to Legacy_UserManager, on its own. Only
the first 8 characters of the password will be recognised. Remember to restart the
Firebird server after any change to a config file.

Trusted User Authentication
A third option for user authentication is Win_Sspi which, if configured, will enable trusted
user authentication for Windows clients on a Windows server. With this style of
authentication, the security database is not consulted: the engine relies on the login
security of the OS to be trustworthy. Since Windows users can be set up to log in without
passwords, be careful about this.

Database Access for Trusted Users
Understand that trusted user authenticationlike other server-wide methods gives the
users access only to the server. An attempt to connect to a database returns the error
"Statement failed, SQLSTATE = 28000 Missing security context for ..{database filename
or alias}". A mapping must exist to allow a trusted user access to a specific database or,
optionally, to any database on the server. Mapping is a new feature in Firebird 3,
explained later. As with native users, trusted users will then require privileges within
each database to access objects that are not accessible to PUBLIC.

Configuring Authentication
Because of the granularity introduced in Firebird 3per-database configuration and
multiple authentication protocolsthe configuration for authentication in Firebird 3 is
split into two parts: AuthServer governs the network protocols that the server can accept,
while AuthClient governs the protocol[s] that the client may use. The Authentication
parameter in the Firebird 2 series is gone.

For the three authentication protocols that ship with Firebird 3, the options in the global
firebird.conf are Srp, Legacy_Auth and Win_Sspi. These are comma-separated string
symbols (not quoted strings), representing the secure remote password, legacy and trusted
user protocols, respectively.

AuthServer
By default, at installation AuthServer is set to Srp, allowing the server to accept only
secure connections.

When more than one plugin is configured for authentication, in most cases, the server will
try to process a connection by attempting to match the connection credentials with the
symbols listed in the AuthServer parameter in left-to-right order. However, the
processing order is implementation-defined. The first working plugin from the client's
AuthClient list is tried by the client in the very first (CONNECT) packet sent to the server

Authentication in Firebird 3 Page 6 of 12

and it will take precedence if that plugin is present in the server configuration. For
example:

Server side:
AuthServer = Srp, Win_Sspi

Client side:
AuthClient = Srp, Legacy_Auth, Win_Sspi

When the user connects without providing login credentials, the client tries Srp and
Legacy_Auth, both of which fail because of the missing credentials. The connection
succeeds with Win_Sspi, the server accepting that the connection request is not saying
"try first with Srp".

AuthClient
In a configuration file on the server side, the values for AuthClient in a new installation
simply reflect the protocols available by default to connect from a Firebird 3 client, i.e., all
of them. Any reconfiguration of this parameter in a server-side file has no effect on clients
requesting connection from remote network locations: it governs only non-embedded client
connections that are requested from the server, typically from an EXECUTE
STATEMENT call in a PSQL module or block.

 Any client application that needs to have its connection protocol restricted to just one
protocol can do so in one of two ways:

 directly in the API, DPB or SPB of the connection request, by passing a
configuration fragment as a string argument on the connection tag isc_dbp_config
or isc_spb_config, as the case may be. The form is:
isc_dbp_config <string-length> "AuthClient=Legacy_Auth"
E.g.,
isc_sbp_config 22 "AuthClient=Legacy_Auth"

When multiple parameters are configured, use the \n (newline) symbol to
separate the parameters within the string, counting each \n as one character.

 by including a configuration file (firebird.conf or databases.conf) that contains the
desired AuthClient configuration in the client application root directory.

A parameter that is configured in the isc_xxx_ config tag takes precedence over the
equivalent setting in a conf file. As with the server-side conf files, a setting in
databases.conf take precedence over any setting for the same parameter in
firebird.conf.

Authentication in Firebird 3 Page 7 of 12

Other Parameters
Certain other parameters are pertinent to configuration files that are split between the
server and the client. Of particular interest are :

 Wirecrypt, which sets encryption across the wire. In the default installation it is set
as Required on the server side and Enabled on the V.3 client side. If you expect
applications to connect using the V.2 client, or the V.3 client with win_sspi, then it
should be downgraded to Enabled in the conf file on the server. The default on the
client side is Enabled, which is OK, so there is no need to reconfigure it there.

 WireCompression, a True/False value, determines whether data should be compressed
across the wire. It is really only useful where the client has extremely slow
communication with the server. It is a client-side-only setting and is false by default
in a new server installation. On the client side, if needed, it can be set true if the
application uses the V.3 client; otherwise, don't include it at all.

 IpcName, RemotePipeName, RemoteServiceName and RemoteServicePort should be
configured at both client and server. Take into account that RemoteServicePort can
also be set in the connection string host/{RemoteServicePort}:employee. If the client
and server sides do not match, a connection cannot be established.

 RemoteAuxPort is configured only at the server side.

 SecurityDatabase. This is the parameter that provides the location and name of the
security database file. In a new installation,in firebird.conf, it is configured to be the
global database:
#SecurityDatabase = $(dir_secDb)/security3.fdb

It is a server-side setting only. But, of course, Firebird 3 allows a variety of
alternatives to the older "one-fits-all" model, including embedding the authentication
account structures inside a user database or having separate security databases for
individual databases or groups of databases on the same server. Its scope in
firebird.conf, is server-wide; in databases.conf, it can be used in the configs for
individual databases, to direct the provider to a non-global stand-alone or embedded
security database.

Firebird 3 Split Configurations
With advent of database-level and connection-level configuration and dedicated security
databases, Firebird 3 provides plenty of granularity to suit the authentication scenarios of
most deployments. Splits can be distributed four ways, depending on how you plan to
manage authentication (as well as some other cross-border elements) for your deployment.

Authentication in Firebird 3 Page 8 of 12

Server Side
On the server side, firebird.conf stores all of the parameters that apply to all databases to
which it can attach, i.e., databases with the on-disk structure (ODS) 12. This is the first
Firebird version that cannot attach to databases having an older ODS. Many of the
configuration parameters, including those related to authentication, can be overridden for
specific databases by setting them in databases.conf. Setting up configurations in
databases.conf is explained in some detail in the Chapter 6 of the Firebird 3 release notes,
under the topic Per-database Configuration.

Client Side
You can also have a firebird.conf or a databases.conf, or both, at the client side. On
Windows, these files should be in the same location as the executable that connects to
databases and it is advisable to place fbclient.dll in that location, too. On POSIX clients
the files can be placed in /opt/firebird or in some other directory, according to how the
binaries are configured. This might be something like /etc/firebird/firebird.conf or
something else.

In these client-side .conf files you configure the behaviour you want for that application
for parameters that cross borders. If you want the application to attach to more than one
database and you want different behaviour for connection to one database than for
another, you would configure the global behaviours in the client-side firebird.conf and the
database-specific ones in the client-side databases.conf.

Mapping SSPI-Authenticated Users
The only way to enable trusted users to attach to a database is for the SYSDBA or
equivalent to create a mapping in that database. The most generalised mapping is a
global one providing access for all Windows user accounts to all databases:

create global mapping trusted_users
using plugin win_sspi
from any user to user

 The identifier used in the example, trusted_users, could be any valid identifier

of 31 or fewer characters.

 from any user makes the mapping apply to any user that has been authenticated
by the SSPI

 to user specifies that the user's own Windows account name will be recognised
and applied to CURRENT_USER in any database to which he/she connects.

Once the mapping is committed, the trusted user should be able to connect to a
database without any login credentials:

Authentication in Firebird 3 Page 9 of 12

SQL> connect 'DBSERVER:employee';
Database:DBSERVER:employee, User: OURDOMAIN\JACK
SQL> select current_user from rdb$database;

USER
===============================
OURDOMAIN\JACK

Reminder: make sure that the config parameter WireCrypt is either 'Enabled' or
'Disabled' at both client and server sides.

At this point, of course, the user will be able to access only those objects that have
privileges granted to PUBLIC. To go further will require SYSDBA or another user with
owner privileges to create one or more roles packaging the special privileges and granting
those roles to the appropriate user names.

If you want the actual account name for some users to be substituted with something in
common for each specified user, invent a name and add it as an argument to this clause,
e.g.
...
from user "ourdomain\sherlock" to user dog_walker

As an example of how a name switch might be useful, one could define a role named
Accounts, consisting of the privileges needed by users in a group named "Accounts". The
role ACCOUNTS would then be granted to accounts_user.

A mapping in the Accounts database for each user in that group would switch the name to
the common name accounts_user. E.g.

connect accounts.db;
create mapping accounts_users
using plugin win_sspi
from user "ourdomain\Fred" to user accounts_user;

Note: The double-quotes around the SSPI user name are needed in order for the backslash
to be handled correctly.

Mapping SSPI User Groups to SQL Roles
The example above provides a workaround for mapping of SSPI user groups to SQL roles
indirectly. As at Firebird 3.0.3, the ability to map them directly is still awaiting
implementation in a later sub-release.

However, one group, Windows domain administrators, can be mapped so that its members
assume the built-in RDB$ADMIN role automatically if they do not connect with any other
role. A notional "well-known RID" group, DOMAIN_ANY_RID_ADMINS, is applied for
this specific purpose. This is how it is done:

Authentication in Firebird 3 Page 10 of 12

create global mapping win_admin

using plugin win_sspi

from predefined_group DOMAIN_ANY_RID_ADMINS

to role RDB$ADMIN;

Note, even with this mapping in place, the Windows administrator will not be assigned
the RDB$ADMIN role, globally or in any database, if a role is passed in the DPB. In that
case, the client application will be able to call SET TRUSTED ROLE during the session if
the admin user needs it.

Giving SYSDBA Rights to a Specific User
If you have a SSPI user who is competent and trusted to have SYSDBA rights in all
databases, including the security database, it can be done with a mapping:

create global mapping cto_sysdba

using plugin win_sspi

from user "ourdomain\cto"

to user sysdba

Examples
These examples are far from being exhaustivemerely a source of guidance for a few of
the many possible deployment conditions. It is assumed that any necessary privileges and
mappings are already present in the databases.

As a general rule of thumb, it is unnecessary to configure on both sides. The capabilities
are there to meet the needs for unusual deployments. Each of the examples here will work
fine with the default configuration in the client-side firebird.conf. It does no harm to
configure the defaults explicitly at both sides, reflecting the defaults, as long as they are
correct and consistent, of course.

Firebird 3 clients, native Srp Authentication
In our simplest scenario, the application uses the Firebird 3 client and server on any
supported OS platform. Workstations could be on Windows, Linux or MacOSX. House
rules require legacy and Windows SSPI authentication routes to be blocked and for data
across the wire to be encrypted.

This is native SRP authentication, using the installation defaults. There is no need
change anything in firebird.conf on the server side, although here we chose to remove the
symbols for the AuthServer plugins we want to block.

Configuration Files
Server Side Client Side

firebird.conf UserManager = Srp firebird.conf AuthClient = Srp
AuthServer = Srp
AuthClient See note 1
WireCrypt = Required WireCrypt = Required

Authentication in Firebird 3 Page 11 of 12

At the client side we are blocking the unused protocols in AuthClient and upgrading
WireCrypt from Enabled to Required. The latter is not essential: Enabled will do, since
the server requires it by default. Thus, we reinforce security and avoid attachments to
pre-V.3 servers.

Note 1: Set AuthClient to enable such authentication protocol[s] as you require for server-
based operations, such as an EXECUTE STATEMENT task, to attach to databases (self or
other).

Firebird 3 clients, SSPI Authentication
For this one, our application is using the Firebird 3 client from users on Windows
workstations in the Windows network to connect to one database on a Windows server.

We want all users to connect using their SSPI accounts.

Configuration Files

Server Side Client Side
firebird.conf UserManager doesn't

matter
firebird.conf AuthClient = Win_Sspi

AuthServer = Win_Sspi
AuthClient See note 1
above

WireCrypt = Enabled WireCrypt = Disabled

With Windows SSPI as the authentication protocol, Firebird's authentication process will
actually skip checking the connection packet against the unusable protocols and proceed
with Win_Sspi from the outset.

An Unholy Mix of Everything
Now, we look at a slightly more complicated scenario. We have two databases on a
Windows server, aliased as Sales.db and Accounts.db. Versions of several client
applications are running from Windows, Linux and MacOSX workstations: point-of-sale,
sales ordering, stock control, accounts receivable, purchasing, accounts payable, all
accessing Sales.db; payroll, HR, assets management, investments and other stuff
accessing Accounts.db.

Windows clients using the Sales applications are to be allowed access to the Sales
database without having to log in: mappings and privileges will be needed for them.
Users connecting from their Sales applications on Linux, Android, MacOSX or POS
devices will be required to use one or other of the native authentication protocols. The
preference is for Srp but the applications on our old POS terminals and PDE devices still
use the Firebird 2 client.

Authentication in Firebird 3 Page 12 of 12

Only selected members of the Windows Administrator group may access the Accounts
database, using their elevated OS credentials. We have to set up mappings for that and
privileges to control each user's specific access to the non-public database objects.

Configuration Files

Server Side Client Side
firebird.conf UserManager =

Srp,Legacy_UserManager
firebird.conf WireCompression =

False
AuthServer =
Srp,Legacy_Auth,Win_Sspi

WireCrypt =
Disabled

AuthClient See note 1
above

WireCrypt = Enabled

databases.conf Accounts.db = ...

{
AuthServer = Win_Sspi
..
}

databases.conf Accounts = ... {
AuthClient =
Win_Sspi
WireCrypt =
Disabled
..
}

 Sales.db = ...
{
 AuthServer = Srp,
Legacy_Auth
...
}

Deploy version
of
databases.conf
to suit the
client version
used with the
application

V.3 client apps:
Sales = ...
{
 AuthClient = Srp
}

 V.2 client apps:
Sales = ...
{
 AuthClient =
Legacy_Auth
}

Conclusion
New capabilities in Firebird 3 to choose a provider for authenticating users and to restrict
or enable access to databases can seem overwhelming at first. We hope this article helps
to answer some of the questions that have appeared as developers set about migrating
databases and applications to Firebird 3 and addressing the security aspects of the task.

